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Introduction
The recent growth of global crowdsourcing platforms has
enabled businesses to leverage the time and expertise of
workers world-wide with low overhead and at low cost. In
order to utilize such platforms, one must decompose work
into tasks that can be distributed to crowd workers. To this
end, platform vendors provide task interfaces at varying de-
grees of granularity, from short, simple microtasks (e.g.,
Amazon’s Mechanical Turk) to multi-hour, context-heavy
tasks that require training (e.g., oDesk).

Most research in quality control in crowdsourced work-
flows has focused on microtasks, wherein quality can be
improved by assigning tasks to multiple workers and inter-
preting the output as a function of workers’ agreement. Not
all work fits into microtask frameworks, however, especially
work that requires significant training or time per task. Such
work is not amenable to simple voting schemes, as redun-
dancy can be expensive, worker agreement can be difficult
to define, and training can limit worker availability.

Nevertheless, the same characteristics that limit the effec-
tiveness of known quality control techniques offer unique
opportunities for other forms of quality improvement. For
example, systems with worker training modules also possess
a wealth of context about individuals and their work history
on specific tasks. In such a context-heavy crowd work sys-
tem with limited budget for task redundancy, we propose
three novel techniques for reducing task error:

• A self-policing crowd hierarchy in which trusted workers
review, correct, and improve entry-level workers’ output.

• Predictive modeling of task error that improves data qual-
ity through targeted redundancy. When workers complete
tasks, we can allocate spot-checked reviews to the tasks
with the highest predicted error. This technique allows us
to capture 23% more errors given our reviewing budget.

• Holistic modeling of worker performance that supports
crowd management strategies designed to improve av-
erage crowd worker quality and allocate training to the
workers that need the most assistance.
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Redundancy outside the World of Microtasks
Locu’s largest use of crowd work is in parsing the contents
of price lists (e.g., menus) from unstructured documents
(e.g., PDF, Flash, HTML) that can be discovered on local
merchants’ (e.g., restaurants’) websites. Workers, in com-
bination with automated machine learning extractors, are
tasked with converting unstructured documents into struc-
tured, wikitext-like syntax to annotate elements like menus,
sections, items, and prices. Such work is poorly suited for
microtask decomposition: menu items and sections can be
interdependent (e.g., a list of toppings at the top of a pizza
menu might affect pricing options for a pizza at the bottom
of the menu) and worker output is not a simple categorical
answer (we process a complex structured document).

Assigning multiple workers to every task is expensive,
and it is difficult to reconcile multiple responses. We do
use redundancy, however, by assigning trusted workers to
review a sample of other workers’ output. Our hierarchical
approach has three levels. Data Entry Specialists (DES) pro-
cess incoming tasks to completion. Reviewers look at tasks
completed by DES, make corrections, provide feedback, and
ask the DES to make additional changes before approving
the task. In a third step, Reviewers might review other Re-
viewers’ work for continued education and quality. Man-
agers serve a cross-cutting role by arbitrating disagreements
and holistically training workers. An example task lifecycle
is shown in Figure1 We have not utilized our hierarchical
design outside of business and price lists, but we believe our
design can generalize to other complex workflows.

This hierarchy has several benefits. First, it’s iterative:
workers benefit from the experience of previous workers
who have completed the task. Second, promoting the high-
est quality workers improves the odds that reviews will catch
lingering errors. Finally, by giving workers higher in the hi-
erarchy trust and responsibility, we increase their commit-
ment to the system and motivation to perform well. Since
we implemented this hierarchy iteratively and specifically
to support Locu’s workflows, we have not yet evaluated the
system against other organizational strategies.

Reducing Task Error with Predictive Modeling
Ideally, with a hierarchical crowd like the one described
above, every task would be reviewed at each level of the hier-
archy. Unfortunately, the cost of assigning a trained worker
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to a long-running, context-heavy task makes such an ap-
proach prohibitively expensive. As such, a crowd system
must trade off budget expenditure against data quality by
selecting a subset of tasks for review up the hierarchy. The
optimal spending strategy given a budget of n dollars with
a task cost of m dollars per task is to review the n

m tasks
with the highest error. (As a practical matter, any strategy
to predict high-error tasks must also allocate a budget for
randomly reviewing tasks to train on in the future.)

First, we must define Task Quality. Task quality is the
fraction of lines that are incorrect (e.g., 1.0 represents a com-
pletely incorrect task, and 0.0 represents a perfect task). We
can estimate this value for tasks that have already been re-
viewed: we take a diff between the output of the original
worker and the output of the reviewing worker, and calculate
the percentage of lines that were changed. Our challenge,
however, is that we must estimate task quality in tasks be-
fore review, so that we can select the worst tasks for review.

To predict task quality of unreviewed tasks, we trained a
supervised boosted random forest regression model (called
the TaskGrader). We train using a sample of several hundred
thousand previously reviewed tasks. Each task is featurized,
with features broken down along two axes depicted in Table1
: task-specific vs. worker-specific features, and generalizable
vs. domain-specific features. Task-specific features are those
which are only dependent on the task itself, whereas worker-
specific features are those which are built from the worker’s
profile. Generalizable features are those which could be used
in any crowd system with basic bookkeeping about tasks
and workers, whereas domain-specific features are specific
to Locu’s problem domain.

We are in the process of fully evaluating the TaskGrader
to determine its impact on reducing task error. Preliminary
results show that using such a model to select tasks for re-
view results in significant improvement over a random se-
lection strategy. Figure1 shows the ROC curves generated by
reviewing varying proportions of tasks (from 0% to 100%)
for the TaskGrader’s review strategy and a random sampling
review strategy. The TaskGrader has a significantly better
AUC than the random sampler, 0.73 to 0.50. Given our cur-
rent review budget, implementing the TaskGrader at Locu
has resulted in 23% more errors being caught.

Future Directions: Inferring Worker Quality
Although avoiding error at task output time is important,
it only attacks the symptoms of poor data quality, not its
causes. Workers who are unattached or under-trained are
likely to perform poorly on tasks, resulting in systemic data
quality problems. Reducing the rate of this type of error is
more efficient than attempting to improve data quality at task
output time, as improvements to the workforce will benefit
all future tasks. A crowd’s net worker quality can be im-
proved by ranking the workers’ quality, intervening with or
demoting poor workers, and promoting good workers. The
research question here, stated simply, is “How do we best
model workers to determine their overall quality and to iden-
tify correctable behavior?” We are actively investigating two

1AAAI removed supplemental material; find this paper on the web.

approaches to this problem: detecting workers with anoma-
lous behavior to identify spamming or systematic biases, and
clustering workers by performance to rank their quality. Im-
proving our model of workers should inform the TaskGrader
model described above, and vice versa.

Related Work
Most research on quality control in crowdsourcing sys-
tems has focused on the microtask setting, both on im-
proving task quality (Callison-Burch 2009; Le et al. 2010;
Snow et al. 2008) and worker quality (Downs et al. 2010;
Ipeirotis, Provost, and Wang 2010; Le et al. 2010). Other
work has described hierarchies of crowd workers, (Kochhar,
Mazzocchi, and Paritosh 2010; Kulkarni et al. 2012) but
there has been little published evaluating the approaches.
Machine learning has been used to predict task quality,
(Rzeszotarski and Kittur 2011) but such work is focused on
features related to user click and event logging rather than
rich worker profiles and history, and task-specific features.
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