
A Framework for Adaptive Crowd Query Processing

Beth Trushkowsky
AMPLab, UC Berkeley
trush@cs.berkeley.edu

Tim Kraska
Brown University

tim kraska@brown.edu

Michael J. Franklin
AMPLab, UC Berkeley

franklin@cs.berkeley.edu

Abstract
Search engines can yield poor results for information retrieval
tasks when they cannot interpret query predicates. Such pred-
icates are better left for humans to evaluate. We propose an
adaptive processing framework for deciding (a) which parts
of a query should be processed by machines and (b) the order
the crowd should process the remaining parts, optimizing for
result quality and processing cost. We describe an algorithm
and experimental results for the first framework component.

Introduction
Existing search engines are a good starting place for infor-
mation retrieval tasks, but can yield poor results when they
have difficulty interpreting query predicates. For example,
in an image search query for “people against a light back-
ground”, a search engine may incorrectly filter some images
by misapplying the predicate regarding background color,
yielding fewer correct results than a search for just “people”.
Similarly, searching a quotations search engine for “funny
quotes about computers” may be challenging if it cannot
discern if a quote is humorous. For queries consisting of a
conjunction of boolean predicates, some predicates may be
well suited for automated processing, while others are better
left for crowd processing (Parameswaran and others 2013).

Thus given a query, we need to choose how to divide the
query processing work between the automated search tool
and the crowd to optimize for query quality while keeping
crowd costs low. The first challenge is determining the sub-
set of predicates to use as search terms in the automated
search., i.e., which predicates we should “push down” into
the search engine. An additional challenge is choosing in
which order the crowd should evaluate the remaining predi-
cates, similar to predicate ordering in databases (Hellerstein
and others 1993). Unlike with a search engine, we can pro-
cess the predicates one after another with the crowd; which
order the predicates are evaluated may influence cost and
quality. To minimize crowd costs, predicates should be or-
dered to reduce the number of worker evaluations needed to
filter items in the query result.

As we will not know a priori which predicates are best
suited for the crowd, nor the predicates’ cost or selectiv-
ity, we propose an adaptive query processing approach that

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Predicate
Pushdown!

Predicate
Ordering!

Query!

Task
Generation!

Answer
Collecting
/Quality
Control!

Result!

Feedback!
Loop!

Figure 1: Adaptive query processing framework

adjusts its strategy based on observed performance. In this
work-in-progress paper, we describe an adaptive processing
framework for attacking predicate pushdown and ordering.
We then describe an algorithm and experimental results for
predicate pushdown as applied to image search.

Architecture
The adaptive query processing framework (Figure 1) takes
a query with n predicates describing the constraints that all
results must satisfy. The query is processed with an initial
search engine query using a subset of the predicates and then
human workers evaluate the remaining predicates.

Predicate pushdown The predicate pushdown compo-
nent decides which subset of the predicates to evaluate us-
ing automated search. It determines which predicates yield
lower quality results from the search engine. We describe an
adaptive algorithm and experimental results for this compo-
nent applied to the image search problem in the next section.

Predicate ordering The predicate ordering component
is responsible for deciding in which order the crowd should
process the predicates on the items returned from the search
engine. Some predicates may cost more than others, where
cost may entail worker think time, number of votes to reach
consensus, etc., in addition to monetary cost. Choosing an
evaluation order that “fails fast” will minimize query pro-
cessing cost. This component is future work.

Adaptive Predicate Pushdown
For the predicate pushdown component, we propose a
greedy algorithm that searches the predicate combination
space by executing search engine queries using fewer and
fewer predicates until it finds the best combination for the
search engine. We first define the notion of paths that the

74

Human Computation and Crowdsourcing: Works in Progress and Demonstration Abstracts
AAAI Technical Report CR-13-01

(a) “Confused” query

20 40 60 80 100

0
5

10
20

30

image search results

m

at
ch

in
g

al
l p

re
di

ca
te

s

!

!

! !

!

!

!
!

!
!

! !
! ! ! !

!
!

! !

!

optimal
adaptive
baseline

(b) “Jordan” query

20 40 60 80 100

0
5

10
20

30

image search results

m

at
ch

in
g

al
l p

re
di

ca
te

s

!

! !
!

!

!

!

!

!
! !

!
!

! !

! !
!

!

!!

optimal
adaptive
baseline

(c) “Pair” query

20 40 60 80 100

0
5

10
20

30

image search results

m

at
ch

in
g

al
l p

re
di

ca
te

s

!

! !

! ! !
!

! !
! !

! !
!

! !

!

!
! !

!

optimal
adaptive
baseline

Figure 2: Number of query results matching all predicates after processing the first 100 images from Google search.

algorithm chooses between. A path is a particular combina-
tion of predicates that are executed by the automated search
engine. A path’s set of children includes the combinations
of predicates that result when one predicate is removed.

Algorithm core The algorithm begins exploring the per-
formance of the path with all predicates used in the search
engine, as well as that path’s children. It proceeds in stages
as follows. In each stage, the crowd evaluates all predicates
for the first batch of m search results from each of the cur-
rent paths being compared. A performance score, e.g., “rel-
ative” recall (the set of total relevant results is the union of
correct results from all paths) or precision, is computed for
each path, and the winner for the stage is decided via sta-
tistical analysis, described below. The winning path and its
children paths are explored in the next stage. The algorithm
terminates when (a) the stage winner is the same as in the
previous stage, or (b) a stage’s winning path has no children.

Choosing stage winner To determine the winning path
for a stage, we want to show that the path with the current
highest score is significantly better than the others. Recall
that we compute each path’s performance score as they pro-
cess more and more results. After processing m results, we
generate a set of measurements for each path, one for each
step in 1, ...,m− 1,m. As the query processing algorithm
is typically comparing three or more paths, we employ the
ANOVA statistical test to determine if there are significant
differences amongst the paths’ scores. Once we observe that
the paths are significantly different, we must also show that
the path with the highest score is significantly better than
each of the other paths under consideration. For pairwise
comparisons between paths, we perform post-hoc analysis
via the TukeyHSD test. If either test fails to show signifi-
cance, we conclude there is not yet a winning path and more
search results (m+ 1,m+ 2...) need to be evaluated.

Query name Free-form text Predicates
Confused confused person using a

computer alone
(1) confused, (2)
using a computer,
(3) alone

Jordan Michael Jordan with
basketball full body
black background

(1) with basketball,
(2) full body, (3)
black background

Pair two people using
computers white
background

(1) two, (2) us-
ing computers, (3)
white background

Table 1: Image search queries used in experimental results.

Experimental Results: Image Search
Setup We explore the image search problem for three
queries, described in Table 1. For each combination of pred-
icates (paths) we use the Google search API1 and extract the
image search results. We use Amazon’s Mechanical Turk for
crowd processing. Workers indicate “yes”/“no”/“unsure” for
each predicate applied to each image; we use majority vote
across workers. The algorithms compare paths after m = 20
images have been crowd-processed. We use relative recall as
a path’s performance score, and a p-values of 0.05.

Results We compare the query result performance of the
statistical adaptive algorithm to a baseline algorithm that
pushes all predicates into the search engine. Figure 2 de-
picts the number of correct images found by each algorithm
as results from the search engine are processed. “Optimal”
is the best path, determined by evaluating all combinations.

In all cases, the baseline algorithm’s performance shows
that pushing all predicates into the search engine can lead
to poor result quality. The adaptive algorithm chooses the
correct predicate combination to push down for each query,
aligning with the optimal algorithm. For some queries, the
difference in performance between paths can be quite stark,
e.g., for the “Confused” query pushing down the two pred-
icates “confused” and “using computer” yields vastly better
results. The adaptive algorithm is also able to capture opti-
mal paths that may seem unintuitive. In the “Jordan” query,
pushing down “black background” has the highest recall. We
hypothesize this is because images of Michael Jordan with a
black background are more likely to depict him in a stylized
manner dunking a basketball.

Conclusion
The crowd can help search engines process query predicates
that are more amenable to human evaluation. We show that
our adaptive framework can get better results than search
engines alone by deciding which predicates should be eval-
uated by the crowd. Future work includes addressing predi-
cate ordering to optimize crowd processing cost.

References
Hellerstein, J. M., et al. 1993. Predicate migration: optimizing
queries with expensive predicates. SIGMOD 1993.
Parameswaran, A., et al. 2013. Datasift: An expressive and ac-
curate crowd-powered search toolkit. Technical report, Stanford
University.

1http://developers.google.com/custom-search

75

