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Abstract

Crowdsourcing is a technique to outsource tasks to a
number of workers. Although crowdsourcing has many
advantages, it gives rise to the risk that sensitive infor-
mation may be leaked, which has limited the spread
of its popularity. Task instances (data workers receive
to process tasks) often contain sensitive information,
which can be extracted by workers. For example, in an
audio transcription task, an audio file corresponds to an
instance, and the content of the audio (e.g., the abstract
of a meeting) can be sensitive information. In this pa-
per, we propose a quantitative analysis framework for
the instance privacy problem. The proposed framework
supplies us performance measures of instance privacy
preserving protocols. As a case study, we apply the pro-
posed framework to an instance clipping protocol and
analyze the properties of the protocol. The protocol pre-
serves privacy by clipping instances to limit the amount
of information workers obtain. The results show that the
protocol can balance task performance and instance pri-
vacy preservation. They also show that the proposed
measure is consistent with standard measures, which
validates the proposed measure.

Introduction

Crowdsourcing is a web-based approach to outsource tasks
to a number of unspecified workers. Because it provides
an easy way to access abundant human resources at very
low cost, it has become a popular method for executing a
large amount of tasks that require human intelligence. How-
ever, crowdsourcing entails the problem of instance pri-
vacy1: sensitive information contained in task instances can
easily leak. A worker who processes tasks must access task
instances and may extract sensitive information contained
in them. For example, consider a task to transcribe audio
recordings of business meetings, where an audio recording
corresponds to an instance. The content of such recordings
includes confidential information. There are also many other
tasks whose instances contain sensitive information, such as
a task to digitize analog texts or to detect objects in images.
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1Instance privacy is defined as a state that sensitive information
contained in an instance cannot be revealed.

Therefore, there is a strong demand on realizing instance-
privacy preserving crowdsourcing, where tasks can be pro-
cessed with high accuracy and low privacy leakage.

To the best of our knowledge, three research groups han-
dled this issue. Varshney (2012) proposed a random pertur-
bation approach: adding perturbations to instances to pre-
serve instance privacy. This was a theoretical study aiming
at establishing a mathematical model of the random pertur-
bation approach. It was not verified in a real experiment,
and it lost some generality because its analysis specialized
in the random perturbation approach. Little and Sun (2011)
and Chen et al. (2012) dealt with a human OCR task whose
objective was to digitize handwritten forms. They assumed
that each form could be decomposed into items perfectly us-
ing a template, and therefore, the methods lost some gener-
ality. In addition, they did not evaluate the privacy aspect of
their method. To summarize the existing work, there exists
no work evaluating the privacy aspect quantitatively in a real
crowdsourcing environment.

For research on instance-privacy preserving crowdsourc-
ing, it is crucial to evaluate performance of instance privacy
preservation protocols. Therefore, we propose a quantita-
tive analysis framework of instance-privacy preserving (IPP)
protocols. In general, an IPP protocol preserves instance
privacy in exchange for a task performance. For example,
adding perturbations to instances or decomposing a form
may preserve privacy while they may degrade the quality of
task results. Our framework evaluates the trade-off quantita-
tively using a real crowdsourcing platform, given definitions
of a task and privacy and an IPP protocol. Such a framework
allows us to check whether an IPP protocol works well for
the pair of a task and privacy or to choose a better protocol
among multiple ones.

As a case study, we investigate the properties of an in-
stance clipping (IC) protocol. The IC protocol preserves in-
stance privacy by clipping instances. It is a generalization of
the protocols proposed by Little and Sun (2011) and Chen
et al. (2012). The difference from the existing ones is that
the IC protocol does not utilize a template of an instance; it
clips instances by a window of a fixed size. From a qualita-
tive analysis, the protocol will work effectively for a pair of
a task and privacy such that the task can be processed using
local parts of instances, and the privacy cannot be invaded
through local parts of instances. To investigate the proper-
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ties quantitatively, we analyze the IC protocol by the pro-
posed framework using a real crowdsourcing platform. The
target task is a task to detect the area containing a head given
an image as a task instance, which we call a head detection
task. The target privacy is defined as contextual information
of a person in an image, especially his/her activities. The ex-
perimental results show that the IC protocol can balance task
performance and instance privacy preservation as expected
by a qualitative analysis. We also compare the proposed per-
formance measure with standard measures to show that the
proposed measure is consistent with the standard measures,
which validates the proposed measure.

In summary, this paper makes two contributions. First,
we propose a framework to evaluate an IPP protocol quan-
titatively. Second, we propose an IC protocol by extending
methods by Little and Sun (2011) and Chen et al. (2012)
and evaluate its performance empirically using the proposed
framework.

Terminology and Settings

There are a requester and a worker in crowdsourcing. A re-
quester has instance I ∈ I and wants to obtain result R ∈ R
of performing a task on instance I , where I and R are sets
of possible instances and results, respectively. For example,
when a task is to “give yes if an image contains a face, and
no otherwise,” the image corresponds to an instance, and the
label {yes/no} corresponds to a result. A worker performs
tasks to obtain a reward on the completion of the tasks.

We consider two processes in crowdsourcing. One is a
task execution process defined as follows. First, a requester
submits a task with instance I . Second, a worker performs
the task on instance I to generate result R. Third, the re-
quester receives result R and rewards the worker. The other
is a privacy invasion process. While a worker performs a
task, the worker, at the same time, extracts sensitive infor-
mation from the instance. We denote a set of possible sen-
sitive values as S and a sensitive value of instance I as
S ∈ S . Then, the privacy invasion process is defined as
follows. First, a requester submits a task with instance I .
Second, a worker extracts sensitive information S from in-
stance I . Note that the definition of the sensitive information
is assumed to be known, i.e., we know which information a
worker tries to extract.

Given the definitions of a task and privacy, the problem
setting of instance-privacy preserving crowdsourcing is to
propose a protocol in which the task can be processed while
the privacy cannot be invaded. We aim at proposing a frame-
work to evaluate such an instance-privacy preserving proto-
col quantitatively.

Quantitative Analysis Framework

The objective of this section is to introduce a framework to
evaluate an instance-privacy preserving (IPP) protocol given
a pair of a task and privacy. First, we give probabilistic mod-
els for the task execution process and the privacy invasion
process. Then, we formalize the two processes using the
models and define the IPP protocol. Finally, we propose per-
formance measures of it.

Models

We give models of the task execution and the privacy inva-
sion, which share the same modeling approach.

Task Execution Model. A task can be represented as
a conditional probability distribution over the set of re-
sults given an instance, which we call a task execution
model (Def. 1). Then, the task execution process can be
modeled as a sampling from this model. We assume that
only a human can sample from the model, which is a basic
assumption in human computation.

Definition 1 (Task execution model). Let instance I and
result R be random variables whose ranges are I and R.
A task execution model is a conditional probability distribu-
tion pt(R | I). The execution of the task given instance I is
modeled as a sampling from pt(R | I).
Privacy Invasion Model. Privacy invasion is represented
in the same way as the task execution model by regarding a
sensitive value as a result, which we call a privacy invasion
model (Def. 2).

Definition 2 (Privacy invasion model). Let instance I and
sensitive value S be random variables whose ranges are I
and S. A privacy invasion model is a conditional probability
distribution pp(S | I). The privacy invasion given instance
I is modeled as a sampling from pp(S | I).
Validity of the Models. Modeling the process as a sam-
pling from a probability distribution can be justified con-
sidering that the quality of the results depends on the abili-
ties of workers and the difficulty levels of instances, as often
stated (Whitehill et al. 2009). We introduced a probability
distribution to capture these diversities. In fact, our model
is more general than standard models, e.g., that proposed
by Dawid and Skene (1979), in that the details of a process
such as the ability of a worker are not explicitly modeled.
The standard models can be regarded as a special case of
our model if we additionally assume a probability distribu-
tion of selecting workers. We would like to stress that the
generality has to be ensured in order to keep the applicabil-
ity of our performance measures introduced later, because
the performance measures are built on our models.

Protocols

Based on these models, the processes of crowdsourcing are
summarized as Protocol 1, which we call a Non-Privacy-
Preserving (NPP) protocol. The NPP protocol allows a re-
quester to obtain a sample from pt(R | I) and a worker to
obtain a sample from pp(S | I). It does not preserve instance
privacy because a worker receives a raw instance.

An instance-privacy preserving (IPP) protocol derived
from the NPP protocol is defined as a protocol that allows
a requester to obtain a sample from p′t(R | I) and a worker
to obtain a sample from p′p(S | I). The IPP and NPP proto-
cols share the random variables R,S, and I , but they have
different models because of a privacy preservation mecha-
nism.
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Protocol 1 Non-Privacy-Preserving (NPP) Protocol
Inputs: instance I , task execution model pt(R | I), and pri-
vacy invasion model pp(S | I).
Output of a requester: result R.
Output of a worker: sensitive information S.

1: The requester submits a task with instance I .
2: A worker samples result R from pt(R | I).
3: The worker returns result R to the requester.
4: The worker extracts sensitive information from pp(S |

I).

Performance Measures

We propose generally-applicable performance measures of
an IPP protocol. The performance should be measured from
two perspectives. The task execution model of the IPP pro-
tocol should be close to that of the NPP protocol. Also, the
privacy invasion model of the IPP protocol should give little
about the sensitive information. We introduce two perfor-
mance measures to capture these two aspects.

Task Information Loss. A task information loss is intro-
duced in Def. 3. It captures the information loss incurred by
using the IPP protocol instead of the NPP protocol. A small
task information loss indicates that the task performance is
preserved as compared to the NPP protocol.

Definition 3 (Task information loss). Given a task execu-
tion model of the NPP protocol pt(R | I) and that of the IPP
protocol p′t(R | I), the task information loss is defined as

Lt(p
′
t, pt) := Ep(I)[KL(pt(R | I) ‖ p′t(R | I))],

where KL(p ‖ q) is the KL divergence of q from p, and p(I)
is a probability distribution over I.

Privacy Information Gain. A privacy information gain
is introduced in Def. 4. It captures the information leakage
about the sensitive information from an instance when the
IPP protocol is used. Therefore, it captures the uninforma-
tiveness of an instance. A small privacy information gain
shows that an instance and a sensitive value are almost inde-
pendent, and therefore, the sensitive information cannot be
obtained from the instance.

Definition 4 (Privacy information gain). Given a privacy
invasion model of the IPP protocol p′p(S | I), the privacy
information gain is defined as

Lp(p
′
p) := Ep(I)[KL(p′p(S | I) ‖ p′p(S))],

which is the mutual information of S and I .

This measure is closely related to the uninformative
principle (Machanavajjhala et al. 2007), especially the t-
closeness principle (Li, Li, and Venkatasubramanian 2007),
which were introduced in the research area of privacy
preserving data publishing. The uninformative principle
roughly states that published data should give little addi-
tional information beyond the background knowledge. The
privacy information gain penalizes even if a worker extracts
“wrong” sensitive information. This property is necessary to

evaluate privacy leakage because the malicious worker can
harm others using even the wrong information. The differ-
ence from privacy preserving data publishing is that, in our
setting, we cannot know the amount of privacy leakage from
published data I without human powers while in privacy
preserving data publishing it can be computed by machines.

Empirical Estimation. These performance measures can
be estimated empirically. We apply the plug-in estimation
of the performance measures using the empirical estimation
of distributions. We repeatedly execute a protocol M (∈ N)
times to obtain M samples {R(m)}m∈ZM

from pt(R | I)
and calculate an empirical probability distribution of pt(R |
I) using an additive smoothing as

p̂t(R = r | I) ∝ |{m ∈ ZM | R(m) = r}|+ τ,

for each r ∈ R, where τ (> 0) is a smoothing parameter,
and we denote ZM := {0, 1, . . . ,M−1}. Other distributions
can also be empirically calculated in the same way.

Discussions. We discuss the advantages of both the task
information loss and the privacy information gain, respec-
tively. The task information loss has two main advantages
over standard measures such as precision/recall and accu-
racy scores. First, the task information loss can be applied to
various types of task results with little modification. A task
result can be a multi-class label, an integer, or a real num-
ber depending on a task definition. The task information loss
can be calculated for them simply by changing the probabil-
ity distributions. On contrary, a standard measure is basically
task-specific, and therefore, it has little general applicability.
Second, it can even be applied to a survey task, where a re-
quester wants to collect subjective opinions of people. On
contrary, standard measures cannot be applied to a subjec-
tive task because the ground truths for subjective opinions
cannot be defined.

The privacy information gain is the first criterion to eval-
uate the amount of privacy leakage in a crowdsourcing set-
ting, to the best of our knowledge. Standard measures are
not suitable for privacy evaluation. They judge that privacy
is preserved even when a worker extracts a false sensitive
value from an instance. Considering that even a false sensi-
tive value can be harmful, such criteria are not appropriate
for privacy evaluation.

Case Study: Instance Clipping Protocol

As a case study, we examine the properties of an instance
clipping (IC) protocol, which is a generalization of the meth-
ods by Little and Sun (2011) and Chen et al. (2012). Intu-
itively, the IC protocol clips an instance by a fixed-size win-
dow. Limiting the information a worker obtains preserves
privacy. Figure 1 illustrates the IC protocol along with the
terminology introduced in this section. Below, we give for-
mal explanations of the protocol as well as the qualitative
properties of the protocol.

Assumptions of the Protocol

We make assumptions on a task and workers. We assume
that an instance consists of a D-dimensional array A, and
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Figure 1: Illustration of the IC protocol. (Left) An instance is a pair of array A and target window η, and a worker is asked to
check whether A[η] (the rectangle framed by magenta broken lines) contains a head or not. (Middle) Given instance I = (A, η),
a clipping window of size C (a rectangle framed by blue dotted lines) is moved in steps of C/2 so long as the clipping window
contains the target window. A clipping function clips the instance with the clipping window. (Right) All the sub-instances
obtained by clipping are used to submit a task.

a set of indices of the array η. An instance is denoted by
I = (A, η). We call A an array and η a target window. A
sub-array indexed by η is denoted by A[η]. In addition, we
assume that a result of a task is a label on the part of the array
indexed by the target window η. In other words, result R is
defined as a label on A[η]. Figure 1 (left) illustrates the ter-
minology using a head detection task. An array corresponds
to an image, a target window to a specific region of the im-
age (the rectangle framed by magenta broken lines), and a
result to a label indicating whether A[η] contains a head or
not. Note that annotations on the whole image can be ob-
tained by running the target window over the entire image,
and therefore, these assumptions are not restrictive.

We also assume that workers do not collude for simplic-
ity, i.e., workers do not communicate with each other outside
the protocol. This assumption ensures the amount of infor-
mation each worker obtains throughout the protocol. It can
be relaxed to some extent, which will be discussed later.

Protocol

The IC protocol clips an instance using a clipping function. It
restricts the information a worker obtains from the instance.
We will introduce the formal definitions of the clipping func-
tion and the IC protocol below.

Given instance I = (A, η), a clipping function generates a
sub-instance by clipping an instance with a clipping window
of size C. The clipping window is required to include the
target window η. Definition 5 formalizes the notion of the
clipping function.
Definition 5 (Clipping function). Given instance I =
(A, η), for index set θ such that θ ⊇ η, a clipping function
φ(I; θ) is defined as

φ(I; θ) := (A[θ], η) (=: I[θ]).

We call θ a clipping window, A[θ] a sub-array, and I[θ] =
(A[θ], η) a sub-instance.

Protocol 2 Instance Clipping (IC) Protocol
Inputs: instance I , task execution model pt(R | I), privacy
invasion model pp(S | I), and size of a clipping window C.
Output of a requester: a set of results.
Output of a worker: sensitive information.

1: ΘC ← ∅.
2: for clipping window θ defined in steps of C/2 do
3: if θ ⊇ η then
4: ΘC ← ΘC ∪ {θ}.
5: end if
6: end for
7: The requester submits |ΘC | tasks with {φ(I; θ)}θ∈ΘC

.
8: for θ ∈ ΘC do
9: A worker is randomly selected.

10: The worker samples result R(θ) from pt(R | φ(I; θ)).
11: The worker returns result R(θ) to the requester.
12: The worker extracts sensitive information from

pp(S | φ(I; θ)).
13: end for
14: The requester regards {R(θ)}θ∈ΘC

as samples of R.

Then, the IC protocol can be described as follows. At first,
a requester has instance I = (A, η) and fixes window size C.
Then, the requester moves a clipping window of size C over
array A in steps of C/2, and applies the clipping function
when clipping window θ contains target window η. Finally,
the requester submits a task using all of the sub-instances
and regards the results as a sample from p′t(R | I). The
formal description of the IC protocol is given in Protocol 2.

The reason why the clipping window is moved in steps
of C/2 is to ensure that the resultant sub-instances have
overlapped areas. Figure 1 (right) shows that all the sub-
instances have overlaps around the target window. The over-
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laps are necessary because, without them, a target object can
be divided into two sub-instances, which can degrade the
task performance severely. For example, in a head detection
task, a head can be divided into two without overlaps, while
that does not happen so often with overlaps.

Discussions

We discuss five topics of the IC protocol.

Qualitative Property. We analyze the performance of the
IC protocol qualitatively. First, its task performance preser-
vation capability depends on the locality of a task, i.e., the
number of elements on which a result probabilistically de-
pends. In an extreme case, if result R (a label on A[η]) de-
pends only on sub-array A[η], the task performance is not
degraded in the IC protocol, because clipping with a clipping
window θ (⊇ η) does not reduce the information to complete
the task. In another extreme case, if result R depends heavily
on the entire array A, the task performance will be severely
degraded because clipping removes the information that is
necessary to determine a result. Thus, the IC protocol will
be effective for local tasks. The same logic can be applied to
the instance privacy preservation capability. To prevent pri-
vacy invasion by the IC protocol, the privacy invasion should
not have locality. In summary, the IC protocol is suitable to
a pair of a local task and a global privacy definition.

Examples. We give three examples for which the IC pro-
tocol is suitable according to the previous observation. The
first example is a task to detect heads in images. Sensitive
information can be defined as the associations between per-
sons in images and their contexts, i.e., their location, activi-
ties, companions, etc. The task often has the locality because
the area of a head is usually small. The privacy invasion will
not have the locality because the association of persons and
their contexts often requires a large part of an image to infer.
This example is used in the experiment.

The second example is a task to transcribe an audio
recording of a meeting, and the third is a task to digitize a
handwritten document. Sensitive information is the abstract
of the meeting or the document, which cannot easily be in-
ferred from a local part of the recording or the scanned im-
age. By contrast, the task can be processed even with clipped
arrays if a clipped array (a segment of an audio file or a
document) contains a few words. Note that, in practice, it is
necessary to align the results obtained in the protocol (texts
consisting of a few words) to create a sentence. The latter
two examples are left for future research.

Selecting Clipping Window Size C. The IC protocol has
parameter C that controls the trade-off between task perfor-
mance and privacy preservation capabilities. To select the
parameter, it is necessary to prepare a test dataset to evalu-
ate the performances. By setting the maximum tolerable task
information loss, one can select clipping window size C so
that the privacy information gain is minimized.

Non-Collusion Assumption. We assumed that workers do
not collude in the IC protocol. By choosing workers ap-
propriately, the assumption ensures that each worker ob-
tains no more than one sub-instance of C × C for every

instance. In fact, the assumption can be relaxed to some ex-
tent by evaluating the risk that a collusion by a group of
workers succeeds. We consider that a collusion by a group
succeeds if a group obtains at least two sub-instances gen-
erated from the same instance. We also assume that when
a requester submits tasks with n sub-instances generated
from one instance, the requester chooses n workers from
N workers randomly. Then, the probability that a collu-
sion by a group of J workers succeeds can be calculated
as 1− (

N−J
n

)
/
(
N
n

)− (
N−J
n−1

) · (J1
)
/
(
N
n

)
, which is negligible

if N is large enough as compared to J .

Extensions. The IC protocol can be further extended in
several directions. It is possible to replace the clipping func-
tion with any instance transformation function, which trans-
forms an instance to preserve privacy. For example, a func-
tion to add noise on an instance or that to blur an image in-
stance will be suitable. Another direction is to select the clip-
ping window size adaptively. For example, a protocol starts
with a small clipping window and expands as necessary un-
til workers can perform tasks. We leave these extensions as
future research.

Experiments

We conduct experiments to show that the IC protocol works
well on a suitable pair of a task and privacy. First, we in-
troduce a dataset, a task definition, and a privacy definition.
Then, we show the evaluation results of the task performance
preservation capability using both the proposed measure and
the standard measures, and those of the privacy preservation
capability using the proposed measure.

Task and Privacy Definitions and Dataset

We chose a task, a privacy definition, and a dataset to which
the IC protocol was expected to be suitable according to the
qualitative analysis provided in the previous section.

Dataset. We used the Stanford 40 Action Dataset (Yao et
al. 2011), which contains images of humans performing ac-
tions belonging to forty classes. We selected ten classes:
cooking, fishing, running, throwing frisby, watching TV,
feeding a horse, playing guitar, texting message, using a
computer, and writing on a book. For each class, we selected
fifty images in which all the humans were engaged in the
action. Therefore, we used 500 pairs of images and action
labels. All the images were resized to fit in 500×500 pixels.

Task Definition. We employed a head detection task
where an instance was an image, and a task was to detect
areas containing human heads in images. We converted the
task as a set of labeling tasks as follows. First, we divided
an image into blocks of S × S pixels as shown in Fig. 1,
where blocks are illustrated by lattices of black lines.2 Then,
we created a set of labeling tasks by regarding each block
as a target window. The labeling task is, given an image
and a target window (one block of S × S pixels), to judge
whether the target window contains human heads (R = 1)

2We set S = 25 pixels in this study.
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Figure 2: Combination of sub-arrays of
C×C pixels used to execute the IC proto-
col at low cost. A worker is asked to anno-
tate all the blocks of S×S pixels by click-
ing blocks that contain a part of heads.

Figure 3: Task information losses for dif-
ferent clipping window sizes. The x-axis
corresponds to the clipping window size,
and the y-axis to the task information
loss.

Figure 4: Privacy information gains for
different clipping window sizes. The x-
axis corresponds to the clipping window
size, and the y-axis to the privacy infor-
mation gain.

or not (R = 0). This conversion allows us to apply the IC
protocol.

Privacy Definition. We defined the sensitive information
as the associations between humans and their actions. By
assuming that humans are identifiable by their heads, the in-
stance privacy is preserved when a worker cannot infer the
action context from a sub-array that contains heads. For ex-
ample, if the worker cannot infer the action context running
from a clipped image containing a head of a woman who is
actually running, then the instance privacy is preserved.

Task Performance Preservation Capability

We first introduce the experimental setting for executing the
IC protocol. Then, we evaluate the task performance preser-
vation capability through the task information loss and stan-
dard measures.

Setting. We aim at investigating the relationship between
the task performance preservation capability and clipping
window size C. We repeatedly executed the IC protocol,
varying C from 50 pixels to 300 pixels in steps of 50 pixels,
and for each C, we obtained annotations of all the images
and calculated the performance measure using all the anno-
tations. In the implementation, we applied two ideas to re-
duce costs. First, we combined sub-arrays (clipped images)
generated from different images as shown in Fig. 2 and sub-
mitted a task using the combined image. We combined the
sub-arrays so that the size of a combined image was roughly
500× 500 pixels. Second, we asked workers to annotate all
the blocks of S × S pixels in a combined image. We al-
located one worker per combined image, and therefore, the
large parts of images were labeled by four workers.3 A re-
ward of 0.5 cents was given for the completion on a task
with a combined image.

We also executed the NPP protocol using all the instances.
In the implementation, we applied the second idea, i.e., one

3As shown in Fig. 1 (right), each instance generates four sub-
instances in general.

worker gave annotations for all the blocks of S × S pixels
of an image. We assigned one worker per image and gave a
reward of one cent per image.

Experiment Using Proposed Measure. We first evalu-
ated the task performance preservation capability by the task
information loss. The loss was estimated empirically using
two smoothing parameters, τ = 0.1 and 0.01. For each C,
we calculated the task information loss using all the results.
The experimental results are shown in Fig. 3. Although the
values of the task information losses were different on dif-
ferent smoothing parameters, they showed the same trend.
The results show that the task information loss was almost
the same when C was larger than 100 pixels. Therefore, we
conclude that the IC protocol can mostly preserve task per-
formance. This result matches the intuition that the head de-
tection task is a local task.

Experiment Using Standard Measures. We also eval-
uated the task performance preservation capability using
standard measures: precision, recall, and the F-measure. By
comparing the results of the proposed measure with those of
the standard measures, we investigated the validity of its use.
We repeatedly stress that, although we can apply the stan-
dard measures for a binary labeling task, we have to devise
other measures for other tasks, or sometimes, it is almost im-
possible to devise other measures, e.g., for a subjective task.

In order to apply the standard measures, it was necessary
to aggregate multiple labels given to each instance. We used
three popular label aggregation methods.
OR method: Multiple labels are aggregated by taking their
logical disjunction. The aggregated label is 1 if there is a la-
bel 1 in the multiple labels and 0 if all the labels are 0.
Majority Voting (MV) method: Multiple labels are aggre-
gated by majority vote. Ties are broken uniformly randomly.
Latent Class (LC) method: This is a standard method for
aggregating multiple labels given by workers with differ-
ent abilities. We used the method proposed by Dawid and
Skene (1979), where the labeling processes of workers are
modeled using their ability parameters. The aggregated la-
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bels are obtained by inferring the true labels in the model.
For each C, we calculated the standard measures on the

aggregated labels of all the instances by regarding the results
of the NPP protocol as the ground truths.

Results. The results are shown in Fig. 5. First, the trends
of all the scores were almost the same as those of the pro-
posed measure shown in Fig. 3, including the outlier value at
C = 200 pixels. Therefore, we conclude that the proposed
measure is consistent with the standard measures, which
supports the validity of its use.

Then, we investigated the precision score failure at C =
200 pixels when we applied the OR and MV methods. This
can be explained by the workers’ abilities. Figure 6 shows
the estimated abilities of workers in the LC method. The
top frame in Fig. 6 shows the probability of each worker
assigning label 1 when the estimated true label is 1, which
is related to the recall scores. We denote the probability of
worker j by αj . The middle frame shows the probability of
each worker assigning label 0 when the estimated true label
is 0, which is related to the precision scores. We denote the
probability of worker j by βj . In the middle frame, while
most of the workers had high abilities, the ability of worker
19 was quite low at C = 200 pixels. Considering that the
number of labels 0 is much bigger than the number of la-
bels 1 in this task, worker 19 gave a significant amount of
labels 1 to sub-instances that should have been labeled 0.
Therefore, we conclude that the failure was caused by the
low precision of worker 19. The LC method could handle
the low quality labels by taking the estimated workers’ abil-
ities into account, while the other methods could not handle
them, which led to the results.

Instance Privacy Preservation Capability

We evaluate the instance privacy preservation capability us-
ing the proposed measure. We could not compare the pro-
posed measure with other measures because ours is the first
performance measure to the best of our knowledge.

Setting. We investigated the relationship between the in-
stance privacy preservation capability and clipping window
size C. We repeated the following procedure, varying C
from 50 pixels to 300 pixels in steps of 50 pixels.

We used ten-choice questions to simulate the privacy in-
vasion. A worker was given a sub-array and ten choices of
action labels and was asked to assign an appropriate label
to the sub-array. For each action label, we randomly chose
twenty-five sub-arrays from the sub-arrays that were judged
to contain heads in the previous experiments. Thus, we had
250 sub-instances in total. We assigned fifty workers to each
question. A reward of 0.2 cents was given to a worker for an-
swering one question. We calculated the privacy information
gain using two smoothing parameters, τ = 0.1 and 0.01.

Results. The results are shown in Fig. 4. The scores of
the privacy information gain on different smoothing param-
eters showed the same trend. The privacy information gain
increased monotonically as C increased. This matches intu-
ition: a privacy invasion is easy for large sub-instances. The

remarkable result is the speed of the incline as compared
to the task information loss. As we increased C, we found
that the task information loss saturated more quickly than
the privacy information gain. This result indicates that the
privacy invasion is a global task as compared to the head de-
tection task. As a result, we conclude that the IC protocol is
effective in this setting.

Related Work

Human computation is a research area to solve problems
harnessing human intelligence (Law and von Ahn 2011).
Despite the widespread use of many human computation-
based services, including reCAPTCHA (von Ahn et al.
2008) and Foldit (Cooper et al. 2010), many problems have
arisen. One of the most well-known problems is the qual-
ity control problem. The quality of computation performed
by humans is variable because of the difficulty of the com-
putation and the ability of the human. The basic strat-
egy for addressing the problem is to obtain multiple com-
putation results and aggregate them to estimate a reliable
result using majority voting (Sheng, Provost, and Ipeiro-
tis 2008) or probabilistic models (Dawid and Skene 1979;
Whitehill et al. 2009; Welinder et al. 2010).

In contrast, research on the privacy preservation prob-
lem in crowdsourcing has begun only recently. Little and
Sun (2011) and Chen et al. (2012) proposed human OCR
systems that preserved the sensitive information in doc-
uments. These systems decompose, for example, medical
charts into items using a template, which prevents workers
from extracting the sensitive information. The proposed pro-
tocol is more general than these systems because it does not
require a template. Varshney (2012) proposed a mathemat-
ical model of the random perturbation approach. However,
the model was not evaluated in a real crowdsourcing plat-
form. Lasecki, Teevan, and Kamar (2014) raised the problem
of the information extraction by workers. However, they did
not propose a concrete protocol to address the problem. In
addition, Harris (2011) discussed several unethical uses of
crowdsourcing, including information extraction by work-
ers, which supports our claim that our problem setting is
quite important.

Conclusion

This paper proposed the framework of evaluating instance
privacy preserving protocols and studied properties of a gen-
eralization of existing protocols as a case study. We intro-
duced models of task execution and privacy invasion and
proposed two performance measures of task performance
preservation and instance privacy preservation capabilities
based on the models. We also extended existing methods
to derive an instance clipping protocol and investigated its
properties by experiments in a real environment. The results
showed that the instance clipping protocol was effective for
a pair of a locally-executable task and a globally-dependent
instance privacy.
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Figure 5: Precision (left), recall (middle), and the F-measure scores (right) for different window sizes.

Figure 6: Estimated abilities of workers. The top and mid frames show the abilities of workers αj and βj . The x-axis corresponds
to worker IDs j, the y-axis corresponds to tasks with specific window sizes, and each element corresponds to the value of αj

or βj at each C. The bottom frame shows a colormap. The white elements indicate that the worker did not perform tasks.
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