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Abstract

Word-of-mouth, referral, or viral marketing is a highly
sought-after way of advertising. In this paper, we in-
vestigate whether such marketing can be encouraged
through incentive mechanisms, thus allowing an or-
ganisation to effectively crowdsource their marketing.
Specifically, we undertake a field experiment that com-
pares several mechanisms for incentivising social me-
dia shares in support of a charitable cause. Our exper-
iment takes place on a website promoting a fundrais-
ing drive by a large cancer research charity. Site visitors
who sign up to support the cause are asked to spread the
word about it on Facebook, Twitter or other channels.
They are randomly assigned to one of four treatments
that differ in the way social sharing activities are incen-
tivised. Under the control treatment, no extra incentive
is provided. Under two of the other mechanisms, the
sharers are offered a fixed number of points that help
take the campaign further. We compare low and high
levels of such incentives for direct referrals. In the fi-
nal treatment, we adopt a multi-level incentive mech-
anism that rewards direct as well as indirect referrals
(where referred contacts refer others). We find that pro-
viding a high level of incentives results in a statistically
significant increase in sharing behaviour and resulting
signups. Our data does not indicate a statistically sig-
nificant increase for the low and multi-level incentive
mechanisms.

Introduction

Within just a few years, we have seen a tremendous rise
of online social networks, which have made sharing infor-
mation easy and natural. A message that is shared on so-
cial networks can reach a large audience without the help
of traditional media outlets. Furthermore, the message may
be targeted towards the right audience, as people sharing it
are likely to have friends with similar interests (McPherson,
Smith-Lovin, and Cook 2001). A recent social experiment,
the DARPA Network Challenge (Defense Advanced Re-
search Projects Agency 2010), provided an example of how
powerful this method of sharing information can be: a seem-
ingly impossible task of locating 10 red weather balloons
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placed at secret locations throughout the US was solved
within 9 hours.

Reaching audiences through social media is particularly
important for organisations that do not have a large mar-
keting budget. For example, many charitable drives, crowd-
funding or crowdsourcing projects (Douceur and Mosci-
broda 2007) rely on existing participants to recruit new
donors or members. The Guardian1 reports that 22% of all
donations on a popular charitable giving platform, JustGiv-
ing, originate from posts current donors make on Facebook.

In this work, we ask the question of how to effectively
crowdsource marketing in this way, i.e., how to incentivise
the sharing of a particular message on social media. To this
end, we undertake a natural field experiment where we test
the performance of three incentive mechanisms. The com-
pared mechanisms encourage existing users of a website to
post a message on Facebook, Twitter or other channels, in
order to attract new users. The mechanisms offer a certain
reward for each new signup resulting from a user’s social
media post. This reward is expressed in terms of points and
differs between the various mechanisms as follows:

• 1 extra point for each contact who signs up (low treat-
ment),

• 3 extra points for each contact who signs up (high treat-
ment),

• 1 extra points for each contact who signs up, 1/2 for each
contact of a contact, 1/4 for each contact of a contact of a
contact and so on (recursive treatment),

• and a base case treatment providing no additional incen-
tive (control treatment).

The experiment is run in the domain of charitable crowd-
funding, where the goal of sharing a message is to gener-
ate support for a charitable cause described on a website
that we designed. The users that arrive at the website are
asked to sign up to “donate a click”. Each click generates 1
point that together with the points generated by our referral
mechanisms are used to measure the success of the fundrais-
ing campaign. Once a threshold of 1,000 points is reached,
£500 is donated to support the drive. Once the next target of
10,000 points is reached, another £500 is donated.

1http://gu.com/p/38mpx
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We include both the 1-point and the 3-point mechanisms
to test whether the exact amount of points matters for the re-
ferral activity. The recursive or multi-level incentive mecha-
nism offers stronger incentives than the 1-point mechanism
(as it offers the same number of points for direct referrals,
but also rewards indirect referrals). However, how it com-
pares to the 3-point mechanism depends on a user’s social
network. Indeed, either the recursive or the 3-point mecha-
nism may generate more points for the referrer. The recur-
sive mechanism is included to see if multi-level incentives
appeal to users. Furthermore, the recursive mechanism re-
cently generated a lot of attention as the winning strategy of
the DARPA Network Challenge (Pickard et al. 2011).

We evaluate mechanisms along three dimensions. First,
we look at the effectiveness of each treatment at encourag-
ing participants to make referrals, as measured by the num-
ber of treatment participants who clicked one of the share
buttons our website provides. The second dimension is the
number of referred visitors to the page, and the third one is
the number of those visitors who signed up.

Our main findings are that incentives make a difference in
this context, and the exact amount or magnitude of the incen-
tive is important. The 3-point incentive mechanism outper-
formed the control treatment on all of the metrics we consid-
ered. The recursive incentive mechanism was not any more
successful than a simple 1-point mechanism. One might ex-
pect that the presence of any kind of incentives to share
should be enough for most people, while further differentia-
tion into 1, 3, or recursive points should have little bearing.
However, our results suggest that offering 3 points results
in more engagement than offering 1 point or compensating
according to the recursive mechanism.

The paper is organised as follows. First, we cover related
work. Then, we give details of our experimental design and
the execution of our experiment. Finally, we present our re-
sults, followed by a discussion of our findings.

Related Work
There is little existing empirical work on comparing incen-
tives for referrals on social media. In a recent study, Castillo,
Petrie, and Wardell (2014) also conduct a field experiment
in the charitable giving context. The authors describe a field
experiment that compared mechanisms offering to donate a
fixed amount if a user posts about the cause on Facebook.
The authors find that offering $1 for posting on Facebook
encourages the action. However, a cost-benefit analysis re-
veals that under this referral program, each extra dollar do-
nated by referred users costs more than $1 in donations by
the company to incentivise referrals. Unlike our study, the
referral compensation money is donated based on the post-
ing action, and not based on the impact it generates through
donations from referred users. Also, our point-based com-
pensation does not directly map to money. The points col-
lected only result in a donation if a threshold is reached.

The question of referral schemes received a lot of inter-
est in the theoretical community. Kleinberg and Raghavan
(2005) study a model where incentives must be provided for
users to propagate a question until a node that knows the an-
swer is reached, and Cebrian et al. (2012) consider the use

of recursive mechanisms in this context. Naroditskiy et al.
(2012) provide a theoretical justification for the recursive
mechanism used in the DARPA Network Challenge, and
desirable properties of a referral scheme have been posed
in (Douceur and Moscibroda 2007). The question of sybil-
proofness of incentive schemes has been considered in a se-
ries of papers (Babaioff et al. 2012; Drucker and Fleischer
2012; Chen et al. 2013; Lv and Moscibroda 2013). However,
these papers concentrate on theoretical issues and do not in-
vestigate or compare referral mechanisms empirically with
real users.

Goel, Watts, and Goldstein (2012) analyze diffusion pat-
terns in seven online domains for the degree and depth
of propagation. They find that viral reach accounts for a
small fraction of users compared to the users reached di-
rectly through media or marketing. Furthermore, whatever
viral reach occurs is mostly limited to users just one re-
ferral away from the users reached directly through media.
In other words, referrals through referred audiences are ex-
tremely rare. Our findings confirm those results: our referred
users did not generate any successful referrals. While viral
reach is dreamed for by many, a more realistic goal is an
increased reach through one-step referrals. Our research is
helping choose the right incentives for this.

This paper contributes to the economics literature on char-
itable giving and fundraising, summarized in List (2011).
This literature has used field experiments to analyze the
effectiveness of various mechanisms used in fundraising,
ranging from incentives schemes like matching grants (Kar-
lan and List 2007) to social pressure (DellaVigna, List, and
Malmendier 2012) and social information (Shang and Cro-
son 2009). In a recent paper, Lacetera, Macis, and Mele
(2014) look specifically at online fundraising and show that
the effect of broadcasting donors’ activities on online net-
works is due to homophily rather than social contagion ef-
fects. Evidence that personal referrals are important in the
fundraising context is presented by Meer (2011). More gen-
erally, a number of studies have shown that peer pressure
has an impact on charitable giving (Frey and Meier 2004;
Shang and Croson 2005; Smith, Windmeijer, and Wright
2014).

There is also a connection to the literature on threshold
public goods, i.e., public goods that are provided only if
a stated threshold level of contributions is reached. In our
setting, there is a threshold in terms of points to release a
charitable donation and we vary how referrals contribute to
reaching the threshold. Related to this point, Cadsby and
Maynes (1999) find that a high threshold discourages provi-
sion, while high rewards significantly increase contributions
and provision, while Croson and Marks (2000) develop the
concept of step return, defined as the ratio of an individual’s
value of the public good to his share of the cost, and find that
a higher step return leads to more contributions.

In a business context, Albuquerque et al. (2012) observe
that referral activities of publishers on an online magazine
platform bring significant revenue to the platform. One of
the recommendations of the paper is to stimulate referral ac-
tivity with incentive schemes. Schmitt, Skiera, and Van den
Bulte (2011) find that referred customers are more valuable
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to a bank than non-referred customers. A reason for this is
the targeting ability of crowdsourced referrals. Since an ex-
isting customer has information about the bank and about
his friends, he only refers friends whose needs match what
the bank provides. Domingos and Richardson (2001) pro-
vide a framework for estimating the value of each customer,
taking into account the social influence that customer has on
his social network.

Our work also complements the growing literature
on crowdfunding, the solicitation of money or resources
through social media to support a particular project (Ger-
ber et al. 2014; Belleflamme, Lambert, and Schwienbacher
2013). Researchers typically focus on how to efficiently mo-
tivate the set of financial supporters (i.e., funders), who are
already in touch with the crowdfunding project, to increase
their support. In particular, Agrawal, Catalini, and Goldfarb
(2011) investigate how one should take into consideration
the geographical distance between the project owners and
the funders. Mitra and Gilbert (2014) study the language
and the phrases used in the description of the project, and
their impact on the success of the corresponding crowd-
funding project. Belleflamme, Lambert, and Schwienbacher
(2013) look at the compensations a project owner should
provide for funders (e.g., fixed, pre-ordered products, or
profit share), in order to increase the total amount of mone-
tary pledges. In a similar way, Ordanini et al. (2014) inves-
tigate how project owners should interact with the crowd to
improve the efficiency of the project.

On the other hand, referrals have the potential to signifi-
cantly expand not just the set of funders, but also raise the
general awareness of a particular project, both of which have
been identified as key motivators for project owners to par-
ticipate in crowdfunding (Gerber and Hui 2013). In related
work, the social capital of a project owner, measured by
the number of their Facebook contacts, is shown to be sig-
nificantly correlated with the success of a project (Giudici,
Guerini, and Rossi Lamastra 2013; Mollick 2014). Through
interviews, Hui, Gerber, and Gergle (2014) confirm that the
efficient exploitation of a project owner’s social network is
often instrumental to the success of a crowdfunding project
and highlight the importance of obtaining endorsement by
contacts that are influential within their own network. In this
paper, we build on these observations and investigate how
to effectively encourage such referrals, thereby reaching be-
yond the project owner’s direct contacts.

While crowdfunding is a particular application in which
project owners can benefit from using their social media
contacts, there have been more general studies on how users
access resources within their social networks. In a labora-
tory study, Jung et al. (2013) show that the specific type of
social capital a user has access to matters — those who re-
port that they have some close friends within their network
receive more responses to a simple favour than those who
do not. Surprisingly, the actual number of friends does not
matter, but those who frequently asked questions in the past
also receive more responses. The researchers also show that
a user’s rhetorical strategy for asking for a favour matters.
This study is complementary to our work, as it examines the
factors that contribute to an individual’s success at eliciting

a response from their social network. In contrast, we also ex-
amine how to incentivise users to post a message in the first
place.

In general, posting messages on social networks can incur
a social cost, as users do not want to waste the time or effort
of others and because they often care about how they are per-
ceived (Sleeper et al. 2013). Rzeszotarski and Morris (2014)
measure this social cost explicitly by offering users a mon-
etary reward for asking their followers on Twitter to answer
questions. They show that a higher monetary reward leads
to a higher probability of users asking these questions. How-
ever, in this work, we consider referrals rather than generic
questions, and we examine non-monetary incentives.

Field Experiment
In order to compare a range of mechanisms for incentivising
referrals, we partnered with Cancer Research UK (CRUK),
one of the UK’s largest charitable organisations, to carry out
a natural field experiment. To this end, we set up a website
to raise awareness of one of CRUK’s existing fundraising
campaigns. The website provided an indirect incentive for
visitors to engage with it by adding a point to an overall
total displayed on the website whenever a new user signed
up. This total was then used to release donations from an
outside donor to the CRUK campaign — whenever certain
point thresholds were reached, a new donation was made.

After signing up, users were randomly assigned to one of
a set of referral mechanisms. Here, some of the users were
able to add further points to the common total by success-
fully referring their social contacts to the website. This al-
lowed us to test whether such additional incentives can in-
crease the probability of a successful referrals, and, by test-
ing various mechanisms, whether the magnitude of the re-
ward is significant and whether recursive schemes offer a
benefit in this setting.

In the following, we describe the setup of our field exper-
iment and the tested referral mechanisms in more detail.

Website

Our website, http://outruncancer.co.uk/, was set up in
September 2013 in consultation with CRUK and provided
visitors with information about oesophageal cancer and
a particular CRUK fundraising campaign, “The Cancer
Marathon”. This campaign was initiated by six medics at
the Southampton General Hospital, who were participating
in the New York Marathon in November 2013 to raise money
for research on oesophageal cancer.

The stated purpose of our website was to support the cam-
paign by spreading awareness about it and thereby attract
further donations from the public. To achieve this and en-
courage engagement with our site, visitors could contribute
one point to a total amount prominently displayed on the
website simply by signing up. This did not incur a financial
cost for them and involved either entering an email address
and password, or signing in through existing Facebook or
Twitter accounts. Importantly, we pledged to make several
donations of £500 each to CRUK’s fundraising campaign,
as soon as certain thresholds in the total number of points
generated by all users were reached:
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Figure 1: Main panel of the landing page.

1. £500 when 1,000 points were reached in total

2. £500 when 10,000 points were reached in total

3. £500 when 50,000 points were reached in total

4. £500 when 100,000 points were reached in total

We chose this scheme, in order to cope with varying to-
tal amounts of visitors to our site. The first threshold was
relatively low, in order to be able to generate at least one do-
nation, while the next thresholds were spaced increasingly
further apart, to ensure that the experiment did not have to
terminate due to running out of money for donations.

Figure 1 shows the main part of the initial landing page
(the full page is shown in Figure 9 in the appendix). Here,
a prominent box displayed the current progress to the next
donation, a summary of how the website works and a regis-
tration panel. Below this (see Figure 9), there were expand-
able sections offering more details about the campaign and
the website. Importantly, as the experiment was designed as
a natural field experiment, the website did not disclose that
(anonymised) data from users would support research on re-
ferral incentives. This was crucial, because knowledge of the
research could have altered the users’ referral behaviour.

Apart from the dynamically updated total number of
points, all visitors to the website received exactly the same
information, and there was no explicit mention of referrals.
This was done to avoid any priming of the visitors, and to
mitigate self-selection bias regarding referral behaviour. The
only varying parameter – the total number of points – did not
affect our results as we only used observations from the peo-
ple who participated after the first target of 1,000 points had
been reached and when the next target of 10,000 was very far

away (the experiment ended with the total number of points
just over 2,000).

Referral Mechanisms

Once a visitor signed up to the website, they were presented
with a page thanking them for their contribution and sug-
gesting a number of ways they can help the fundraising cam-
paign (Figure 2 shows the main part of this page, while the
full page is shown in Figure 10 in the appendix). In par-
ticular, they were asked to invite their friends via a range
of channels: by copying and sending a personalised link, by
sharing a link on Facebook or Twitter, or by sending an email
with the link.

Here, we provided some users with additional incentives,
depending on the treatment they were randomly allocated to.
This random allocation took place on signup and used a sim-
ple blocked randomisation scheme, whereby the allocation
mechanism repeatedly cycled through random permutations
of the available treatments (thus ensuring a near-balanced
allocation to treatments).

The treatments we considered were as follows:
• Control: Users on this treatment were offered no addi-

tional referral incentives.
• Low: Users on this treatment were told that 1 additional

point would be added to the total when they successfully
referred someone else to the website (in addition to the
signup point generated by that contact).

• High: Similar to Low, but users were offered 3 additional
points.

• Recursive: Users were told that 0.5n−1 additional points
would be added to the total when they successfully re-
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Figure 2: Referral options after signing up (control treatment shown).

ferred someone else to the website, including through in-
direct referrals, where n is the distance to the user.2 Thus,
if the user successfully referred another contact, 1 addi-
tional point would be added to the total. If that referred
contact successfully referred someone else, 0.5 additional
points would be added, and so on.
The wordings of these treatments, as shown to the users,

are summarised in Figure 3. Referrals were tracked through
a unique ID that was allocated to each user and then included
in the referral links generated through the four referral meth-
ods on the website (direct link, Facebook, Twitter or email).
These links also encoded which of the four methods was
used, allowing us to track, for each referred user, who they
were referred by and through which referral method. Over-
all, we recorded the following three key metrics for each
user:
• Number of channels used: How many of the four referral

methods were initiated by the user on our website. We
record this when the user clicks on one of the buttons (or
the referral link) shown after signing up.3

• Number of resulting visits: How many visits were sub-
sequently generated by people following the user’s unique
referral link (but did not necessarily sign up).

• Number of resulting signups: How many new users sub-
sequently signed up through the user’s referral link (this
2We say user A indirectly referred B, if B was not (directly)

referred by A, but by another user C, which was either referred by
A or is also an indirect referral of A. The distance between A and
B is the length of the resulting referral chain (a direct referral has
distance 1).

3Note that this is not an exact measure of referral messages
posted, as users may still cancel the message on the social media
website before posting or may never share the link.

is number of the user’s direct referrals).
Note that for all four treatments, there is an implicit incen-

tive for users to refer contacts to the website, as all signups
generate 1 point towards the total. The low, high and recur-
sive treatments add an additional incentive on top of this.
The first two of these, low and high, are simple schemes that
we chose to investigate whether the magnitude of this in-
centive is relevant — in the first case, it is equivalent to the
original incentive offered to the user for signing up; in the
second case, it is significantly higher than the original in-
centive. We included the recursive scheme, because it has
been used successfully in previous crowdsourcing applica-
tions (as described in Related Work) and because it may
encourage users to specifically target contacts with a wide
social reach. From a user’s perspective, it dominates the low
scheme, because it also awards 1 additional point for each
direct referral, but may generate further points through sub-
sequent indirect referrals. However, the relative attractive-
ness of recursive and high depends on the user’s social net-
work. For example, a user who has only one friend who
is very well-connected, prefers the recursive scheme as he
will be rewarded half a point on each signup of the well-
connected friend’s friends.

Users were able to log back into the website at any time to
view how many of their contacts had signed up and (except
for the control treatment) how many additional points had
been generated through this. We also gave users the option
to donate directly to the Cancer Marathon campaign, which
we matched one-to-one (up to £10 per user).

Subject Recruitment

The website went live in September 2013 and over the next
two months, 1,577 unique users signed up, generating a to-
tal of 2,051 points (one point was generated on signup; the
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(a) low treatment (b) recursive treatment

Figure 3: Explanatory texts for low and recursive treatments. Text for high treatment is identical to low except for the number
of additional points (3).

Figure 4: Email to invite participants.

remaining 474 points were generated for successful refer-
rals) and an additional £418 in user donations. As a result
of meeting the first threshold, we donated £500, as well as
£408 in matching donations (this is slightly lower than the
total amount donated by the users due to the £10 limit per
user).

Initial users were recruited from a range of sources. Some
publicity was generated by CRUK and the medics run-
ning the Cancer Marathon, including through Twitter mes-
sages and a local radio interview. However, the bulk of the
users were attracted through emails within the University of
Southampton, sent to staff and student mailing lists. This
email did not mention that the website was part of a research
project and did not identify the academics involved in it (see
Figure 4).

During the course of the experiment, we received feed-
back from users, indicating that the points mechanism was
not explained clearly and succinctly enough. For this reason,
we made a number of changes to the website in mid-October
2013 — primarily to highlight the current points collected to
date at the top of the page and to emphasise their purpose. As

the experimental conditions changed at that time, we focus
only on the 412 participants recruited after the change in the
remainder of this paper. These are mainly students from the
Faculties of Humanities, Social Sciences, and Health Sci-
ences and their referred contacts, as we emailed their inter-
nal mailing lists after the change (and had not previously
contacted them). Changing the experiment half-way did not
present any complications as far as the analysis of the re-
sults goes. Restarting midway can be viewed as starting the
experiment at the midpoint as the first part was simply ig-
nored and there was no contamination from it.

After the redesign, we contacted 17,686 University of
Southampton students via email. There were 1,042 unique
visits that resulted in 412 signups. In terms of the effective-
ness of various social media channels, Twitter was respon-
sible for generating 55% the referred traffic while Facebook
brought 36% of referred page visits. However, the number of
page visits that turned into signups is much higher for Face-
book: 62% compared to Twitter’s 8%. The remaining visits
and signups were generated by sharing a link without the use
of the social media buttons.

There were too few donations to perform meaningful sta-
tistical analysis of differences across treatments, but we re-
port them here for completeness. After the redesign, the to-
tal of £40 was donated by 6 users. Five donors were in the
High treatment donating the total of £30 and one user who
donated £10 was in the Low treatment.

Results

Table 1 summarises the total number of times all channels
were used under each treatment, the number of resulting vis-
its, and the number of resulting signups. We observe that the
3-point treatment resulted in higher totals across the board.
There is no other clear dominance across treatments. Some-
what of an outlier is a low ratio of recursive treatment’s vis-
its and signups. There were 103 visits but only 2 signups
resulting in a 2% signup ratio. The corresponding ratios for
the control, low, and high treatment are 14%, 6%, and 11%
respectively. Given the limited number of observations, we
could not test for whether there is an association between
ratio and treatment.

We present details of visits and signups in Figures 5 and 6.
The histogram in Figure 6 shows how many referrers signed
up exactly 1 friend, 2 friends, . . . , 8 friends. For the high

176



Control Low High Recursive Total
Channels used 13 15 32 28 88
Resulting visits 37 98 218 103 456
Resulting signups 5 6 24 2 37

Table 1: Total outcomes per treatment.

Figure 5: Histogram of visits generated per user.

treatment, there were 6 referrers who signed up 1 friend, 3
referrers who signed up 2 friends, 1 referrer who signed up
4, and 1 referrer who signed up 8 friends. The histogram
of visits in Figure 5 should be read in a similar manner: the
first set of bars shows how many referrers generated between
1 and 7 referred visits, the second set of bars shows how
many referrers generated between 8 and 14 referred visits,
etc. For example, between 8 and 14 visits were generated by
zero referrers in the control treatment, by 1 referrer in the
low treatment, by 3 referrers in the high treatment, and by 5
referrers in the recursive treatment.

Next, we evaluate the results we obtained from our ex-
periment. In particular, we focus on both the extensive and
intensive margins of the behaviour under investigation. The
extensive margin uses binary (0/1) indicators that reflect
whether a certain success measure is achieved. In our case,
relevant indicators are whether or not a referrer generated a
visit and whether or not she generated a signup. The inten-
sive margin quantifies the degree of success by looking at
the number of visits and signups generated by each referrer.

Extensive Margin

In this section we examine whether there are differences in
the outcomes of interest in the extensive margin. We fo-
cus on three binary outcomes: (i) whether a referral chan-
nel was taken; (ii) whether at least one visit was generated;
(iii) whether at least one signup was generated. All results
regarding these three outcomes are summarised in Table 2.

With regards to referral channels, we see in the first sec-

Figure 6: Histogram of signups per user.

tion of Table 2 that people in our sample used some of the
tools we provided to refer other potential participants in 16%
of the cases (65 of the total 412). With no incentives, this
happened in only 10% of the cases, while the percentage is
always higher when referral incentives are present. In par-
ticular, the high incentive treatment is successful in eliciting
a referral through some channel among 21% of the people,
while for the low incentive treatment the corresponding fig-
ure is 14%. The recursive treatment is in between, with a
figure of 18%. The p-value of a chi-squared test is, at 0.106,
which does not allow us to reject the null hypothesis of in-
dependence between the likelihood of undertaking some re-
ferral channel action and the various treatments.

Out of the 16% of people who used some of the refer-
ral tools, 75% were successful in generating some visits to
the website. That is, out of 65 people who used a referral
channel, 46 resulted in at least one new user visiting the
website (see the second section of Table 2). The effect of
incentives in generating additional traffic is even more evi-
dent, with only 6% of the people in the control group gen-
erating some visits, while the figure for the high incentive
group, at 18%, is three times higher. Again, the low incen-
tives are less successful (9%) and recursive incentives are
positioned in between (12%). Figure 7 displays the percent-
ages along with 95% confidence intervals. A chi-squared test
rejects the null hypothesis of independence between the like-
lihood of generating some visits and the various treatments
(p-value=0.028).

The percentage of people who generated additional
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Control Low High Recursive Total
At Least One Channel Used?

Yes 10 (9.8%) 14 (13.5%) 22 (21.4%) 19 (18.4%) 65 (15.8%)
No 92 (90.2%) 90 (86.5%) 81 (78.6%) 84 (81.6%) 347 (84.2%)

Resulting Visits?

Yes 6 (5.9%) 9 (8.7%) 19 (18.4%) 12 (11.7%) 46 (11.2%)
No 96 (94.1%) 95 (91.3%) 84 (81.6%) 91 (88.3%) 366 (88.8%)

Resulting Signups?

Yes 2 (2%) 5 (4.8%) 11 (10.7%) 1 (1%) 19 (4.6%)
No 100 (98%) 99 (95.2%) 92 (90.3%) 102 (99%) 393 (95.4%)

Total Participants 102 104 103 103 412

Table 2: Referral channels, visits and signups per treatment (extensive margin).
The p-value of a chi-squared test for independence is 0.106, 0.028 and 0.004 for channels used, visits and signups, respectively.

Figure 7: Percentage of participants whose referrals brought
at least one website visitor. 95% confidence intervals are
shown.

signups is 4.6% (see the third section of Table 2). Again,
our referral treatments seem to be effective in boosting this
number. Only 2% of people assigned to the control group
generated additional signups, while in the high incentives
case, the figure is much higher, at 11%. Low incentives are
less effective (5%), while the recursive treatment is the least
effective (1%). Figure 8 displays the percentages along with
95% confidence intervals. Again, a chi-squared test rejects
the null hypothesis of independence between the likelihood
of generating additional signups and the various treatments
(p-value=0.004).

These results are confirmed by a regression analysis (Ta-
ble 3), where it is evident that the high incentives treatment
is effective in generating significantly more referral actions,
more visits, and more signups than the control group.4 For

4We present regression analysis here and not ANOVA because
it allows for pairwise comparisons between each of the treatments
and the control, which is our primary interest.

Figure 8: Percentage of participants whose referrals resulted
in at least one signup. 95% confidence intervals are shown.

the other treatments, the coefficients are generally positive
but not statistically significant. Note also that with regards
to signups, the difference between the high incentives and
the recursive treatment is also statistically significant (p-
value=0.007), while the difference between high and low is
marginally not (p-value=0.116). Finally, for visits, we find
a significant difference between the coefficients of the high
versus the low treatment (p-value=0.04).

The model we use for the analysis is a standard probit,
where we fit the following equation: Pr(signups = 1) =
Φ(b0 + b1 ∗ High + b2 ∗ Low + b3 ∗ Recursive). Φ is the
cumulative normal distribution. High is a variable taking the
value of 1 if observation is in High treatment, 0 otherwise.
Low is a variable taking the value of 1 if observation is in
Low treatment, 0 otherwise. Recursive is a variable taking
the value of 1 if observation is in Recursive treatment, 0 oth-
erwise. The omitted treatment is Control and, therefore, for
that treatment we report the coefficient on the constant, b0.
The asterisks indicate the significance of tests on whether
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Control Low High Recursive
Referral channels -1.293*** (0.17) 0.188 (0.23) 0.499** (0.22) 0.394* (0.22)
Visits -1.565*** (0.20) 0.202 (0.27) 0.666*** (0.25) 0.372 (0.26)
Signups -2.062*** (0.29) 0.398 (0.36) 0.818** (0.33) -0.276 (0.47)

Table 3: Regression analysis of the treatments.
Probit regression — robust standard errors are given in parentheses. *** [**] (*) denote significance at 1, [5], (10) % level.

the coefficients are different from 0.

Intensive Margin

In this section we examine whether there are differences in
the outcomes of interest in the intensive margin. We focus
again on three outcomes: (i) number of channels used; (ii)
total number of visits generated; (iii) total number of signups
generated (as described in the Referral Mechanisms Sec-
tion).

Table 4 presents averages for the various outcomes across
the four treatment groups. It is evident that the high incen-
tives treatment achieves the highest average in all measures,
and in particular, with regards to the number of signups.
In fact, t-tests of differences in means of the various out-
comes between participants in the high and the control group
indicate statistically significant differences in all cases (p-
values are 0.008 for channels, 0.018 for visits and 0.069 for
signups).

Finally, when we perform nonparametric tests (Mann-
Whitney test) of differences in the distribution of the vari-
ous outcomes between participants in the high and the con-
trol group we find statistically significant differences in all
cases (p-values are 0.018 for channels, 0.005 for visits and
0.012 for signups). When comparing high to low treatment,
we find significance differences for visits (p=0.04), while
for sign-ups the p-value is 0.11. Also, the difference in the
distribution of sign-ups of high and recursive treatments is
significant (p-value=0.003).

Discussion

Word-of-mouth, referral, or viral marketing is a highly
sought-after way of advertising. Ideally, it would occur or-
ganically because people find the promoted message of high
value. It is however notoriously difficult to design viral mes-
sages. In this paper we attempt not to optimise the message,
but to find out how sharing of a given message can be stim-
ulated.

Our finding that the 3-point mechanism is more effective
than the 1-point mechanism points to the need to choose the
level of compensation carefully. This is contrary to the intu-
ition that it is not the exact level, but rather the presence of
some form of incentives, which has the most effect. Consis-
tent with this intuition, Castillo, Petrie, and Wardell (2014)
find little difference in referral activity between a mecha-
nism that pays $1 and $5 for a sharing action. The corre-
sponding sharing rates are 37% and 39%.

One might expect incentives to not matter at all in the con-
text where points do not directly correspond to donations,
but only matter if a sufficient number of points is reached.
This is even more plausible if the threshold number of points

does not appear to be within easy reach. This was the case
in our experiment. All of the observations used in the data
analysis came from the users who signed up after the first
target of 1,000 points was reached, and when the second tar-
get of 10,000 points was far away. Indeed, the total number
of points at the end of the experiment was just above 2,000.
No user could reasonably expect that their friends would
bring 8,000 points no matter which treatment they were part
of. The result that users still reacted to the 3-point treatment
more than to the 1-point or recursive treatments is even more
interesting given this context.

Our mechanisms reward successful referrals and they are
complementary to the mechanisms that reward referral ac-
tions (i.e., simply sharing a message about the cause, re-
gardless of whether this attracts new signups). Cost-benefit
analysis of paying for referral actions results in cautionary
lessons (Castillo, Petrie, and Wardell 2014). We conjecture
that the mechanisms considered in our work can be more
cost-effective. In particular, one could guarantee an arbitrary
cost-benefit ratio by offering the reward as a fraction of the
actual donation made by the referred donors.

From an organisation’s point of view, encouraging social
media shares is crowdsourcing marketing activities. Taking
a broad view on this line of research, we are after learn-
ing how to encourage existing participants or customers to
do marketing for the project or business. In future work,
we plan to investigate this question of how to balance the
benefits of an incentive scheme with its related costs. We
will also explore whether gamification mechanisms, includ-
ing leaderboards or badges, are effective in this context, and
we will carry out further experiments in other domains, such
as crowdsourcing projects and commercial websites.

As in any empirical research, and in particular in an ex-
perimental setting, there is a concern about generalizability.
Do our findings apply beyond the charitable context? Would
we find similar results with a different population or are uni-
versity students somehow special, for instance because their
social network has specific characteristics? The fact that we
use a control group implies that differences between students
and non-students related, for instance, to the average num-
ber of friends or the likelihood to use social networks do not
matter. Nor do differences, to make another example, in the
general propensity to respond to a charitable versus a non
charitable cause. What our results show is a differential re-
sponse to the various incentive mechanisms we test and to
assess the robustness of this finding in different contexts and
with different populations we are currently conducting fur-
ther studies.
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Control Low High Recursive Total
Action channels used 0.1 0.14 0.26 0.23 0.18
Resulting visits 0.36 0.94 2.12 1 1.11
Resulting signups 0.05 0.06 0.23 0.05 0.09

Table 4: Average outcomes per treatment.
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Figure 9: The landing page shown to new visitors.
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Figure 10: Call to action after signing up (control treatment shown).
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