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Abstract

Similarity comparisons of the form “Is object a more sim-
ilar to b than to c?” form a useful foundation in several
computer vision and machine learning applications. Unfortu-
nately, an embedding of n points is only uniquely specified by
n3 triplets, making collecting every triplet an expensive task.
In noticing this difficulty, other researchers investigated more
intelligent triplet sampling techniques, but they do not study
their effectiveness or their potential drawbacks. Although it is
important to reduce the number of collected triplets to gener-
ate a good embedding, it is also important to understand how
best to display a triplet collection task to the user to better
respect the worker’s human constraints. In this work, we ex-
plore an alternative method for collecting triplets and analyze
its financial cost, collection speed, and worker happiness as
a function of the final embedding quality. We propose best
practices for creating cost effective human intelligence tasks
for collecting triplets. We show that rather than changing the
sampling algorithm, simple changes to the crowdsourcing UI
can drastically decrease the cost of collecting similarity com-
parisons. Finally, we provide a food similarity dataset as well
as the labels collected from crowd workers.

Introduction

Recently in machine learning (Tamuz et al. 2011; Jamieson
and Nowak 2011; van der Maaten and Weinberger 2012;
McFee 2012), there has been a growing interest in collecting
human similarity comparisons of the form “Is a more sim-
ilar to b than to c?” These comparisons are asking humans
to provide constraints of the form d(a, b) < d(a, c), where
d(x, y) represents some perceptual distance between x and
y. We refer to these constraints as triplets. Each triplet pro-
vides a small unit of information about one point’s location
with respect to the other points in human perceptual space.

These triplets are useful for a variety of computer vision
problems. Collection is usually the first stage of a much
larger pipeline: first, researchers collect several thousand
triplets until they feel they “have enough triplets” or reach
their crowdsourcing budget. Then, an embedding algorithm
such as t-Stochastic Triplet Embedding (t-STE) (van der
Maaten and Weinberger 2012) embeds each entry of the
dataset into a space where Euclidean distances between
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Figure 1: Questions of the form “Is object a more similar to b
than to c?” are one useful way to collecti similarity compar-
isons from crowd workers. Traditionally, these comparisons
are collected individually using the UI shown at the top. In
this work, we collect triplets using a grid of n images and
ask the user to select the k most similar tasting foods to the
food on the left. This grid UI, bottom, allows us to collect 8
triplets whereas the individual triplet UI, top, only yields a
single triplet.

points approximates their perceptual similarity. Specific ap-
plications then use this embedding in different ways. Some
systems provide tools to search for images similar to an
imagined image in a user’s head (Ferecatu and Geman
2009). Other systems use triplet embeddings in conjunc-
tion with computer vision to aid classification of bird im-
ages (Wah et al. 2014). Still others use triplet embeddings
for metric learning (Frome et al. 2007), learning semantic
clusters (Gomes et al. 2011), and finding similar musical
genres and artists (van der Maaten and Weinberger 2012;
McFee 2012). The common idea behind all of this work
is that these authors must collect thousands of groundtruth
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Figure 2: Top: An example cuisine embedding, collected
with our 16-choose-4 grid UI strategy. The data for this
embedding cost $5.10 to collect and used 408 screens, but
yielded 19,199 triplets. The result shows good clustering be-
havior with desserts gathered into the top left. The meats
are close to each other, as are the salads. Bottom: An em-
bedding with 408 random triplets. The data for this em-
bedding also cost $5.10 to collect, but the result is much
dirtier, with worse separation and less structure. Salads are
strewn about the right half of the embedding and a steak
lies within the dessert area. From our experiments, we know
that an embedding of such low quality would have cost us
less than $0.10 to collect using our grid strategy. To see
these results in closer detail, visit our Food Embedding Ex-
plorer on our companion web site at http://cost-effective-
hits.mjwilber.org/.

triplets before they can solve their specific problem. That’s
where we come in: our main goal is to provide a more effi-
cient way to collect huge numbers of these constraints.

For any set of n points, there are at most n3 unique triplets
(Kleindessner and von Luxburg 2014). Unfortunately, col-
lecting such a large amount of triplets from crowd work-
ers quickly becomes intractable for larger datasets. For this
reason, some research groups propose more intelligent sam-
pling techniques to better capture the same space with less
information (Tamuz et al. 2011; Jamieson and Nowak 2011).
However, the difficulty of collecting a large number of
triplets is also related to the time and monetary cost of col-
lecting data from humans. To investigate this relationship
more closely, we chose to study how the design of the triplet
collection Human Intelligence Task (HIT) affects not only
the time and cost of collecting triplets, but also the quality
of the embedding, which is usually the researcher’s primary
concern.

Traditionally, an MTurk task designed to collect triplets

would show crowd workers three images, labeled a, b, c.
The worker is then asked to select either image b or im-
age c, whichever looks more similar to image a. See the top
of Fig. 1 for an example. We call this the individual for-
mat because it samples triplets individually. Although this
is the most direct design to collect triplets, it is potentially
inefficient. Instead, we chose to investigate triplets collected
from a grid of images. In the grid format, a probe image—
analogous to image “a” in the triplet representation—is
shown next to a grid of n images. The crowd worker is then
asked to choose the k most similar images from the grid. We
are not the first to realize that a grid is more efficient for col-
lecting triplets—such techniques were also used by (Wah et
al. 2014; Tamuz et al. 2011) and studied by (Rao and Katz
1971) in the field of marketing research—but we believe we
are the first to investigate more thoroughly the effectiveness
of triplets collected with a grid. This is important because
previous authors do not quantify the efficiency gain and do
not acknowledge the potential drawbacks of the grid triplets
they rely on.

This paper outlines several UI modifications that allow
researchers to multiply the number of triplets collected per
screen for perceptual similarity learning. We show that sim-
ple changes to the crowdsourcing UI—instead of fundamen-
tal changes to the algorithm — can lead to much higher qual-
ity embeddings. In our case, using our grid format allows us
to collect several triplets per screen, leading to much faster
convergence than asking one triplet question at a time. Re-
searchers with tight deadlines can create reasonable embed-
dings with off-the-shelf algorithms and a low crowdsourcing
budget by following our guidelines.

Our contributions are:

• A set of guidelines to use when collecting similarity em-
beddings, with insights on how to manage the trade-off
between user burden, embedding quality, and cost;

• A series of synthetic and human-powered experiments
that establish our methods’ effectiveness;

• Evidence that each individual triplet sampled with a grid
may capture less information than a uniformly random
triplet, but that their quantity outweighs the potential qual-
ity decrease;

• A dataset of 100 food images, ingredient annotations, and
roughly 39% of the triplets that describe it. 1

Related Work

In our work, we collect human similarity measurements of
images in the form of triplets. The authors of (Heikinheimo
and Ukkonen 2013) proposed an algorithm for collecting
triplets from humans as well. However, in that work, the
triplets that were collected did not have a probe image be-
cause they formulated the question differently. Similarly, (Yi
et al. 2013) focuses on estimating user preferences from
crowd sourced similarity comparisons. However (Yi et al.
2013) uses pairwise comparisons where triplets are gener-
ally more stable (Kendall and Gibbons 1990).

1See http://cost-effective-hits.mjwilber.org/
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Figure 3: Random triplets have a different distribution
than grid triplets. The top histogram shows the occurrences
of each object within human answers for “Grid 16 choose
4” triplets from our human experiments. The bottom his-
togram shows a histogram of sampling random triplets indi-
vidually. 59520 triplets were collected for both histograms.
Each object occurs in our answers about μ̂ = 1785 times,
but the variation when using grid triplets (top) is much wider
(σ̂ ≈ 187.0) than the variation when sampling triplets uni-
formly (bottom, σ̂ = 35.5). This effect is not recognized in
the literature by authors who use grids to collect triplets. We
study its impact in our experiments.

Our work bears much similarity to Crowd Kernel Learn-
ing (Tamuz et al. 2011) and Active MDS (Jamieson and
Nowak 2011). These algorithms focus on collecting triplets
one at a time by sampling the best triplets first. The idea
behind these systems is that the bulk of the information in
the embedding can be captured within a very small number
of triplets since most triplets convey redundant information.
For instance, Crowd Kernel Learning (Tamuz et al. 2011)
considers each triplet individually, modeling the information
gain learned from that triplet as a probability distribution
over embedding space. Active MDS (Jamieson and Nowak
2011) considers a set of triplets as a partial ranking with
respect to each object in the embedding, placing geometric
constraints on the locations where each point may lie. In our
work we focus on altering UI design to improve speed and
quality of triplet collection.

Method

Instead of asking “Is a more similar to b or c?”, we present
a probe image and n other images to humans. We then ask
“Select k images that are most similar to the probe,” as in
Fig. 1. This layout allows us to collect k images that are
more similar to the probe image than the remaining n − k
images, yielding k(n−k) triplets per answer. We can change
the number of triplets per grid answer by varying n and k,
but this also affects the amount of effort a crowd worker
must exert to answer the question. However, it allows crowd
workers to avoid having to wait for multiple screens to load,
especially in cases where one or more of the images in the
queried triplets does not change, and allows crowd work-
ers to benefit from the parallelism in the low-level human
visual system (Wolfe 1994). Since many of these observa-
tions involve human issues, we conclude that the right way

of measuring embedding quality is with respect to human
cost rather than the number of triplets. This human cost is
related to the time it takes crowd workers to complete a task
and the pay rate of a completed task. Our goal is to formalize
their intuitive notions into hard guidelines.

It is important to note that the distribution of grid triplets
is not uniformly random, even when the grid entries are
selected randomly and even with perfect answers. To our
knowledge, no authors that use the grid format acknowledge
this potential bias even though it deteriorates each triplet’s
quality, as we will show in our experiments. Figure 3 shows
a histogram of how many times each object occurs in our
triplet answers of our synthetic experiments mentioned be-
low. When using the grid format, some objects can occur far
more often than others, suggesting that the quality of certain
objects’ placement within the recovered embedding may be
better than others. The effect is less pronounced in random
triplets, where objects appear with roughly equal frequency.
This observation is important to keep in mind because the
unequal distribution influences the result.

Synthetic Experiments
Our proposed use of grid triplets impacts the collection pro-
cess in two ways: first, the distribution of grid triplets is
fundamentally different than the distribution of uniformly
random triplets, which may impact the embedding quality.
Second, the new question format imposes a different kind
of burden on the worker. Since it is best to investigate these
issues separately, we chose to run synthetic experiments to
investigate the quantitative differences in triplet distributions
in addition to our human experiments to investigate the hu-
man impacts of our proposed framework.

We aimed to answer two questions: Are grid-format
triplets of lower quality than triplets acquired individually?
Second, even if grid-format triplets are lower quality, does
their quantity outweigh that effect? To find out, we ran
synthetic “Mechanical Turk-like” experiments on synthetic
workers. For each question, we show a probe and a grid
of n objects. The synthetic workers use Euclidean distance
within a groundtruth embedding to choose k grid entries
that are most similar to the probe. As a baseline, we ran-
domly sample triplets from the groundtruth embedding us-
ing the same Euclidean distance metric. After collecting the
test triplets, we build a query embedding with t-STE (van der
Maaten and Weinberger 2012) and compare this embedding
to the groundtruth. This way, we can measure the quality of
our embedding with respect to the total number of worker
tasks. This is not a perfect proxy for human behavior, but it
does let us validate our approach and should be considered
in conjunction with the actual human experiments that we
describe later.

Dataset. We evaluate our system on the music similar-
ity dataset from (van der Maaten and Weinberger 2012) The
music dataset’s groundtruth contains 9,107 human-supplied
triplets for 412 artists.

Metrics. Since our goal is to evaluate the impact that
different UIs have on the embedding quality, we evaluate
each embedding’s quality using two metrics from (van der
Maaten and Weinberger 2012): Triplet Generalization Error,
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Figure 4: Over the course of a synthetic experiment, we collect triplets, either randomly one at a time (thick black line) or in
batches using our grid UI (colored lines). When the embedding quality is viewed as the number of triplets gathered (top two
graphs), it appears that sampling random triplets one at a time yields a better embedding. However, when viewed as a function
of human effort, grid triplets create embeddings that converge much faster than individually sampled triplets. Here, quantity
outweighs quality as measured by Leave-One-Out NN Error (left graphs) and Triplet Generalization Error (right graphs).

which counts the fraction of the groundtruth embedding’s
triplet constraints that are violated by the recovered em-
bedding; and Leave-One-Out Nearest Neighbor error, which
measures the percentage of points that share a category label
with their closest neighbor within the recovered embedding.
As pointed out by (van der Maaten and Weinberger 2012),
these metrics measure different things: Triplet Generaliza-
tion Error measures the triplet generator UI’s ability to gen-
eralize to unseen constraints, while Leave-One-Out Nearest
Neighbor error reveals how well the embedding models the
(hidden) human perceptual similarity distance function.

Results. Our experiments show that even though triplets
acquired via the grid format converge faster than triplets ac-
quired via the individual format, each grid-format triplet is
of lower quality than an individual random triplet. Figure 4
shows how the music dataset embedding quality converges
with respect to the number of triplets. If triplets are sampled
one at a time (top two graphs), individual triplets converge
much faster on both quality metrics than triplets acquired via
grid questions. However, this metric does not reveal the full
story because the grid UI yields multiple triplets at once.
When viewed with respect to the number of screens (hu-
man task units), as in the bottom two graphs in Figure 4, we
now see that the grid triplets can converge far faster than in-
dividual triplets with respect to the total amount of human
work. This leads us to conclude that “quality of the embed-
ding with respect to number of triplets” is the wrong metric
to optimize because framing the question in terms of triplets
gives researchers the wrong idea about how fast their embed-
dings converge. A researcher who only considers the inferior
performance of grid triplets on the “per-triplet” metric will
prefer sampling triplets individually, but they could achieve

much better accuracy using the grid format even in spite of
the reduced quality of each triplet. In other words, efficient
collection UIs are better than individual, random sampling,
even though each triplet gathered using such UIs does not
contain as much information.

Why does this happen? In all cases, the 12 images within
the grid were chosen randomly; intuitively, we expect a uni-
form distribution of triplets. However, because certain ob-
jects are more likely than others chosen as “Near” by hu-
mans, certain objects will appear in triplets more often than
others. This leads to a nonuniform distribution of correct
triplets, as shown in Fig. 3. Here, we can see that the non-
uniformity may create a difference in performance.

Human Experiments

The synthetic experiments validate our approach but cannot
capture any human considerations which are also paramount
in any crowdsourcing task (Kittur et al. 2013). In partic-
ular, we must consider the burden the two UIs impose on
our workers, both in terms of the time it takes to complete
each task and how much money they can make per hour—
metrics that are impossible to gather via synthetic means. To
verify that these approaches build better embeddings even
when humans provide inconsistent triplets, we ran Mechani-
cal Turk experiments on a set of 100 food images sourced
from Yummly recipes. We only use images that contain
roughly one entree. For example we avoid images of sand-
wiches alongside soups. Some sample images are shown in
Fig. 5. For each experiment, we allocated the same amount
of money for each HIT, allowing us to quantify embedding
quality with respect to cost. This dataset and the human an-
notations are available for download at our companion web-
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Figure 5: Example images from our dataset. The images in
our dataset span a wide range of foods and imaging condi-
tions. The dataset as well as the collected triplets are avail-
able on our companion website.

site, http://cost-effective-hits.mjwilber.org/.
Design. For each task, we show a random probe and a grid

of n random foods. We ask the user to select the k objects
that “taste most similar” to the probe. To study the effects of
different grid size, we varied n across (4, 8, 12, 16) and var-
ied k across (1, 2, 4). We ran three independent repetitions
of each experiment. We paid $0.10 per HIT, which includes
8 usable grid screens and 2 catch trials. To evaluate the qual-
ity of the embedding returned by each grid size, we use the
same “Triplet Generalization Error” as in our synthetic ex-
periments: we gather all triplets from all grid sizes and con-
struct a reference embedding via t-STE. Then, to evaluate
a set of triplets, we construct a target embedding and count
how many of the reference embedding’s constraints are vio-
lated by the target embedding. Varying the number of HITs
shows how fast the embedding’s quality converges.

Baseline. Since we wish to show that grid triplets pro-
duce better-quality embeddings at the same cost as ran-
dom triplets, we should collect random (a, b, c) comparisons
from our crowd workers for comparison. Unfortunately, col-
lecting all comparisons one at a time is infeasible (see our
“Cost” results below), so instead, we construct a groundtruth
embedding from all grid triplets and uniformly sample ran-
dom constraints from this reference embedding. This is un-
likely to lead to much bias because we were able to collect
39% of the possible unique triplets, meaning that t-STE only
has to generalize to constraints that are likely to be redun-
dant. All evaluations are performed relative to this reference
embedding.

Results

Two example embeddings are shown in Fig. 2.
Cost. Across all experiments, we collected 14,088 grids,

yielding 189,519 unique triplets. Collecting this data cost
us $158.30, but sampling this many random triplets one at
a time would have cost us $2,627.63, which is far outside

Figure 6: We show the median time that it takes a human
to complete one grid task. The time per each task increases
with a higher grid size (more time spent looking at the re-
sults) and with a higher required number of near answers
(which means more clicks per task). Error bars are 25 and
75-percentile.

our budget2. If we had used the 16-choose-4 grid strategy
(which yields 48 triplets per grid), we would be able to sam-
ple all unique triplets for about $140—a feat that would cost
us $6,737.50 by sampling one at a time.

Grid n choose k Error at $1 Time/screen (s) Wages ($/hr)
n: 4, k: 1 0.468 3.57 $10.09

k: 2 0.369 3.45 $10.45
n: 8, k: 1 0.400 3.04 $11.85

k: 2 0.311 5.79 $6.22
k: 4 0.273 7.65 $4.71

n: 12, k: 1 0.406 4.17 $8.64
k: 2 0.294 6.78 $5.31
k: 4 0.235 8.67 $4.15

n: 16, k: 1 0.413 6.72 $5.36
k: 2 0.278 8.84 $4.07
k: 4 0.231 9.59 $3.76

Random 0.477 – –
CKL 0.403 – –

Table 1: Results of our actual Mechanical Turk experiments.
We ask workers to choose the k most similar objects from
a grid of n images. We invest $1 worth of questions, giving
us 100 grid selections. When n and k are large, each answer
yields more triplets. Large grids require more time to com-
plete, but many of our tasks (bold) still pay a respectable
wage of more than $6 per hour.

Quality. As we spend more money, we collect more
triplets, allowing t-STE to do a better job generalizing to
unseen redundant constraints. All embeddings converge to
lower error when given more triplets, but this convergence
is not monotonic because humans are fallible and there is

2There are 100 · 99 · 98/2 = 485, 100 possible unique triplets
and each triplet answer would cost one cent. We additionally need
to allocate 10% to Amazon’s cut and 20% of our tasks are devoted
to catch trials.
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Figure 7: Results of our human experiments on the food dataset. Left graph: Triplet generalization error when viewed with
respect to the total number of triplets. Right: The same metric when viewed with respect to the total cost (to us) of constructing
each embedding. The left graph implies that a randomly-sampled embedding appears to converge faster. However, when quality
is viewed with respect to cost, we find that an embedding generated using a 16-choose-4 grid cost $0.75, while an embedding
with random triplets of similar quality costs $5.00. It is clear that the grid UI saves money; in this case, by over a factor of 6.

randomness in the embedding construction. See Fig. 7 for
a graphical comparison of grids with size 4,8,12, and 16.
When viewed with respect to the number of triplets, random
triplets again come out ahead; but when viewed with respect
to cost, the largest grid converges more quickly than oth-
ers, and even the smallest grid handily outperforms random
triplet sampling.

Unlike our synthetic experiments, we now observe a large
separation between the performance of various grid sizes.
Grid 16-choose-4, which yields 4 · 12 = 48 triplets per an-
swer, uniformly outperforms the rest, with Grid 12-choose-4
(at 4 ·8 = 32 triplets per answer) close behind. Both of these
outperform 8-choose-4 (16 triplets/answer) and 4-choose-2
(4 triplets/answer).

We also compare our performance with the adaptive
triplet sampling strategy of (Tamuz et al. 2011). CKL picks
triplets one-at-a-time but attempts to select the best triplet
possible to ask by maximizing the information gain from
each answer. In our experiments, it did not outperform ran-
dom sampling; further analysis will be future work.

Though catch trials comprised 20% of the grid answers
we collected, we found that the results were generally of
such high quality that no filtering or qualification was re-
quired.

Time. Fig. 6 shows the time each human takes to answer
one grid question. Our smallest task was completed in 3.5
seconds on average, but even our largest grid (16 choose 4)
can be completed within 10 seconds. Times vary widely be-
tween workers: our fastest worker answered 800 questions
in an average of 2.1 seconds per grid task for 8-choose-1
grids.

Worker Satisfaction. In this work we discussed ways to
optimize the cost of collecting triplets from crowd work-
ers. Clearly, we can save money by paying our crowdwork-
ers less money while having them do more work. However,

there is no reason for us to believe that crowd workers would
continue to complete our HITs under these conditions. In
order for us to avoid underpaying our workers and collect
a large amount of triplets at a reasonable cost, we closely
monitored Turker responses to our hits.

Across all of our experiments, we received no com-
plaints from “Turkopticon” or from Amazon itself. Our
tasks were featured on multiple HIT aggregators includ-
ing Reddit’s HitsWorthTurkingFor community and
the “TurkerNation” forums as examples of bountiful HITs.
This tells us that our workers did not feel exploited in spite
of the increased burden of grid triplets. According to the
HitsWorthTurkingFor FAQ 3, the “good HITs” fea-
tured on that page generally pay at least $6/hour . Although
it is not clear if Turkers truly enjoyed working on our HITs,
it did seem that they felt they were being compensated rea-
sonably for their efforts. See Tab. 1 for a tabular comparison.

Because we were featured in forums such as
HitsWorthTurkingFor, our HITs were visible to
a very large audience of potential skilled Turkers. Though
high payouts mean higher cost, in our case, the benefit
outweighed the drawback. We feel that in order to truly
optimize the interaction between computer algorithms and
humans, it is important to understand the perspective of the
Turker.

Guidelines and conclusion

Throughout this paper, we show that taking advantage of
simple batch UI tricks can save researchers significant
amounts of money when gathering crowdsourced perceptual
similarity data. Our recommendations can be summarized as
follows:

• Rather than collecting comparisons individually, re-

3http://reddit.com/r/HITsWorthTurkingFor/wiki/index
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searchers should use the grid format to sample compar-
isons in batch, or should use some other UI paradigm ap-
propriate to their task. However, researchers should not
assume that such “batch” comparisons are of identical
quality to uniformly random sampling—this is a trade-off
that should be considered.

• If cost is an issue, researchers should consider quanti-
fying their results with respect to dollars spent rather
than the number of units of information gathered, because
simply choosing the UI format that leads to the highest
quality-per-triplet will lead researchers to prefer inferior
collection methods.

• Researchers should continuously monitor the human
effort of their tasks, so that they can calculate an ap-
propriate target wage and stand a better chance of being
featured on “Good HIT” lists and be seen by more skilled
Turkers.

• When using grids to collect triplets, researchers should
consider the trade-off between size and effort. Consider
that an n-choose-k grid can yield

k(n− k) (1)

triplets per answer. Since this has a global maximum at
n = 2k, one appropriate strategy is to select the largest n
that yields a wage of $6/hour and set k equal to n/2.
There are several opportunities for future work. First, we

should better quantify the relationship between n, k, and
task completion time to build a more accurate model of hu-
man performance. Second, we should continue investigating
triplet sampling algorithms such as “CKL” as there may be
opportunities to populate grids adaptively so as to converge
faster than random, giving us advantages of both strategies.

Acknowledgments

We especially thank Jan Jakeš, Tomáš Matera, and Edward
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