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Abstract

This paper studies a mechanism to incentivize agents who
predict their own future actions and truthfully declare their
predictions. In a crowdsouring setting (e.g., participatory
sensing), obtaining an accurate prediction of the actions of
workers/agents is valuable for a requester who is collecting
real-world information from the crowd. If an agent predicts
an external event that she cannot control herself (e.g., tomor-
row’s weather), any proper scoring rule can give an accurate
incentive. In our problem setting, an agent needs to predict
her own action (e.g., what time tomorrow she will take a
photo of a specific place) that she can control to maximize
her utility. Also, her (gross) utility can vary based on an eter-
nal event.
We first prove that a mechanism can satisfy our goal if and
only if it utilizes a strictly proper scoring rule, assuming
that an agent can find an optimal declaration that maximizes
her expected utility. This declaration is self-fulfilling; if she
acts to maximize her utility, the probabilistic distribution of
her action matches her declaration, assuming her prediction
about the external event is correct. Furthermore, we develop
a heuristic algorithm that efficiently finds a semi-optimal dec-
laration, and show that this declaration is still self-fulfilling.
We also examine our heuristic algorithm’s performance and
describe how an agent acts when she faces an unexpected sce-
nario.

Introduction

This paper considers a mechanism that gives an incentive
to a worker to predict her own future action and perform it
as she predicted. Recently, eliciting/aggregating information
about uncertain events from agents is becoming a common
research topic due to the expansion of prediction markets
and services based on the wisdom of crowds (Conitzer 2009;
Chen and Pennock 2010; Chen et al. 2011; Law and Ahn
2011; Wolfers and Zitzewitz 2004). Studies have designed
incentive mechanisms for quality control mechanisms for
crowdsourced tasks (Bacon et al. 2012; Cavallo and Jain
2013; Lin, Mausam, and Weld 2012; Sakurai et al. 2013;
Witkowski and Parkes 2012). These works utilize the results
obtained in the literature of mechanism design, which is a
subfield of game theory and microeconomics that studies
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how to design mechanisms for good outcomes even when
agents act strategically.

Prediction mechanisms aggregate probabilistic informa-
tion from agents to accurately predict uncertain events.
Proper scoring rules have been developed to incentivize an
agent to truthfully reveal her subjective probability/belief
(Brier 1950; Gneiting and Raftery 2007; Matheson and
Winkler 1976; Savage 1971). If an agent predicts an ex-
ternal event that she cannot control herself (e.g., tomor-
row’s weather), and its outcome does not affect her (ex-
cept for the reward she obtains from a correct prediction),
any proper scoring rule can give a correct incentive. Sev-
eral researchers have investigated more general cases where
the prediction and actions of an agent or a principal inter-
act with each other (Boutilier 2012; Chen and Kash 2011;
Othman and Sandholm 2010; Shi, Conitzer, and Guo 2009).
We discuss more details about the differences between these
works and our problem setting in the next section.

In a typical human computation/crowd sourcing setting, a
requester tries to obtain contributions from an online com-
munity. For example, recruiting workers is an important is-
sue in participatory sensing where a requester gathers real-
world information from the crowd (Reddy, Estrin, and Sri-
vastava 2010). If a worker declares the time she will work
in advance and completes her task as declared, the requester
benefits and can make an efficient recruiting plan. In this pa-
per, we consider the following situation. A requester asks
each worker to predict her action tomorrow (e.g., what time
tomorrow she will take a photo of an object at a specific
location). The worker declares her probabilistic prediction
(e.g., a 90% chance that she will work in the daytime and a
10% chance at night). We assume her predictions are prob-
abilistic, since her utility depends on an external event (e.g.,
tomorrow’s weather). Based on the prediction, the provider
plans a reward plan (e.g., a 20% bonus if she works in the
daytime). The next day, she learns the outcome of the exter-
nal event and decides her action based on the reward plan as
well as the external event.

Crowdsoucing requesters who receive contributions from
workers are not the only people who want to know the future
behaviors of many people. Imagine that a service provider
wants to obtain a prediction about the future actions of his
customers. In this case, he can be considered a requester in
a human computation process that elicits information from
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the crowd. One major motivation for considering this setting
is that for a certain provider (e.g., electricity or shuttle bus
services for big events), providing adequate supply to meet
customer demand is crucial. If the provider prepares suffi-
cient resources in reserve, such a disaster can be avoided but
at a cost. The provider gladly offers incentives to customers
if he can accurately predict and save the expense of unnec-
essary reserves. If customers aren’t offered incentives, they
are probably unwilling to give accurate predictions to the
provider.

The above rather complicated problem settings introduce
several new research issues. First, an agent needs to compute
her optimal declaration and strategy to maximize her utility
by considering possible reward plans. This is a complicated
optimization problem. For requesters, it is not obvious what
kind of reward plans are effective to elicit truthful declara-
tions.

We first prove that if a mechanism utilizes a strictly proper
scoring rule, then it can elicit a self-fulfilling declaration, as-
suming an agent can find an optimal declaration that max-
imizes her expected utility and that her prediction of the
external event is correct. The declaration is self-fulfilling
if she acts to maximize her utility and if the probabilistic
distribution of her actions matches her declaration. Further-
more, we show that if a mechanism does not utilize a strictly
proper scoring rule, then there exists a case where the decla-
ration that maximizes an agent’s expected utility is not self-
fulfilling.

Next, we examine how an agent can solve her optimiza-
tion problem, which is very difficult, since there exist an infi-
nite number of possible strategies and declarations. We first
show that for each agent, declaring truthfully is always op-
timal. Furthermore, we show that an optimal strategy is al-
ways in a subclass of strategies and finite. Thus, she can ob-
tain an optimal strategy by enumerating this subclass. How-
ever, its size can be exponentially large to reflect the num-
ber of alternative actions and possible outcomes of exter-
nal events. We develop an iterative improvement type algo-
rithm for efficiently finding a semi-optimal declaration and a
strategy and show that this semi-optimal declaration remains
self-fulfilling.

We also examine the performance of our heuristic al-
gorithm, and describe by computational simulations how
an agent acts when she faces an unexpected scenario. Our
results illustrate that the expected utility obtained by the
heuristic algorithm is more than 92% of the optimal case
where the expected utility is maximized. The agent still be-
haves as expected in an unexpected scenario when the re-
ward provided by a rule is sufficiently large.

The rest of this paper is organized as follows. First, we
explain related works and introduce a model of our prob-
lem setting. Next, we characterize our mechanism in which
the requesters/principals ask each agent to predict her ex-
pected probability distribution over possible actions. Then,
we present our heuristic algorithm for a semi-optimal decla-
ration and provide simulation results for evaluating it.

Related works

There exists a vast amount of work related to proper scor-
ing rules in AI literature. Here, we explain several exist-
ing works that are related to our problem setting, i.e., those
considering the interaction between predicted events and ac-
tions. Shi, Conitzer, and Guo (2009) considered a situation
where experts, once they report their forecasts, can take ac-
tions to alter the probabilities of the outcomes in question.
In particular, they can take undesirable actions for the prin-
cipal, e.g., a worker intentionally delays a project’s comple-
tion time to fulfill her prediction. Unlike our model, the ex-
pert’s utility is determined exclusively by the payoff offered
by the principal.

Next, Othman and Sandholm (2010) provided the first ex-
plicit, formal treatment of a principal who makes decisions
based on expert forecasts. They addressed several key diffi-
culties that arise due to the conditional nature of forecasts.
Chen and Kash (2011) extended this model to a wider class
of informational settings and decision policies.

Boutilier (2012) considered a case where the principal de-
cides based on the prediction of experts, where the decision
affects the utility of the experts (e.g., a stockpiling medicine
policy as a safeguard against influenza benefits pharmaceu-
tical companies). Our model is different from these since we
assume that the principal wants to know the action of each
agent, whose utility is not affected by the actions of the prin-
cipal.

Model

In this section, we explain the model of our problem setting.

Definition 1 (Actions). An agent has set of actions M =
{1, . . . ,m} and must choose exactly one action i ∈ M the
next day.

M is a set of alternatives that the agent can choose. If she
is deciding what time tomorrow she will take a photo of an
object at a specific location, each i represents the possible
time slots she can choose: either “daytime” or “night.”

Definition 2 (Scenarios). There is set of scenarios N =
{1, . . . , n}. The nature chooses exactly one scenario j ∈ N
the next day.

A set of scenarios represents an external event, and each
scenario j ∈ N represents its outcome. For example, if the
external event is tomorrow’s weather, possible scenarios in-
clude “sunny,” “cloudy,” or “rainy.”

We assume an agent knows the probability distribution for
the set of scenarios.

Definition 3 (Scenario probability distribution). A sce-
nario probability distribution is a n-element column vector

p =

⎛
⎜⎝

p1
...
pn

⎞
⎟⎠ , where pj is the probability that scenario j

happens. ∀j, 0 ≤ pj ≤ 1 and
∑

j∈N pj = 1 hold.

Thus, p =

(
0.7
0.2
0.1

)
means that the agent considers the
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“sunny” probability to be 70%, the “cloudy” probability to
be 20%, and the “rainy” probability to be 10%.

We assume that the gross utility of an action is affected by
the choice of scenarios. The collection of these utility values
is represented as a matrix.
Definition 4 (Gross utility matrix). The gross utility of an
agent is defined as m× n gross utility matrix:

G =

⎛
⎜⎝

g1,1 . . . g1,n
...

. . .
...

gm,1 . . . gm,n

⎞
⎟⎠ ,

where gi,j is a real value that represents the gross utility
of taking action i when the scenario is j.

We also represent G as an array of column vectors, i.e.,
G = (g1, . . . , gn), where each gj represents the gross utility
vector when scenario j occurs.

Let us show an example of G in our participatory sensing
example:

sunny cloudy rainy
daytime 10 5 0

night 0 5 8
Here, the agent prefers taking photos in the daytime if the
weather is sunny, but she prefers working at night if it is
rainy. If the weather is cloudy, she has no preference be-
tween daytime or night.

We assume that an agent is risk neutral and that her utility
is quasi-linear, i.e., if her utility is the sum of (i) the gross
utility of an action and (ii) her reward from the requester.

Consider a m-element column vector

π =

⎛
⎜⎝

π1

...
πm

⎞
⎟⎠ ,

where ∀i, 0 ≤ πi ≤ 1 and
∑

i∈M πi = 1 hold. Thus, π
represents a probability distribution over M . Let Π denote
the set of all possible probability distributions over M .

Next, we define an agent’s strategy. For each scenario, the
agent needs to decide which action to choose. We assume the
choice of an action can be non-deterministic, i.e., flipping a
coin. A strategy for each scenario j is represented as sj ∈ Π.

The entire strategy for all scenarios is defined as follows.
Definition 5 (Strategy matrix). An agent’s strategy is de-
scribed as an array of column vectors

S = (s1, . . . , sn),

where each sj ∈ Π. As a whole, a strategy is represented as
an m× n matrix:

S =

⎛
⎜⎝

s1,1 . . . s1,n
...

. . .
...

sm,1 . . . sm,n

⎞
⎟⎠ .

Let S denote the set of all possible strategies. If the agent
commits to S, her expected probability distribution over the
possible actions is given as Sp.

Let us show an example of S in our participatory sensing
example.

sunny cloudy rainy
daytime 1.0 0.5 0

night 0 0.5 1.0

Here, the agent is planning to take photos in the daytime if
the weather is sunny, but at night if it is rainy. If the weather
is cloudy, she will flip a coin. Based on this S,

Sp = S

(
0.7
0.2
0.1

)
=

(
0.8
0.2

)
.

An agent can calculate an expected gross utility for strat-
egy S.

Definition 6 (Expected gross utility). We define G ⊗ S as
an n-element row vector,

G⊗ S = (v1, . . . , vn)

where vj = gj · sj . Here, each vj represents the gross utility
for strategy S when scenario j occurs. Therefore, (G⊗ S)p
gives the expected gross utility for strategy S.

Thus, we obtain: G⊗ S = (10, 5, 8),

and G⊗ S

(
0.7
0.2
0.1

)
= 8.8.

In our problem setting, the principal asks each agent to
predict her expected probability distribution over the possi-
ble actions. She selects π ∈ Π and declares π to the princi-
pal, who rewards to her based on her declaration π and her
action choice determined by a reward function.

Definition 7 (Reward function). Reward function r(·)
takes a declaration as input and returns a reward vector:

r(π) =

⎛
⎜⎝

r1
...
rm

⎞
⎟⎠ , where each ri is a real value that repre-

sents the reward for taking action i when declaring π.

We assume reward function r(·) is fixed, which an agent
knows when she determines her declaration.

Next, we explain strictly proper scoring rules and apply
them as a reward function to satisfy the following condition.

Definition 8 (Strictly proper scoring rule). r(·) is a
strictly proper scoring rule, if ∀π, π′, if π �= π′, the fol-
lowing condition holds:

π · r(π) > π · r(π′).

Here, π ·r(π′) represents the expected reward of an agent,
when she declares π′ and the principal presents reward vec-
tor r(π′), but she expects her actual action probability to
be π. The above definition of a strictly proper scoring rule
means that an agent can maximize her expected reward by
truthfully declaring her expectation.

There exists a variety of strictly proper scoring rules.
Here, we describe two representative examples. First, a
spherical proper scoring rule is defined by

ri = α
πi√∑

1≤k≤m π2
k

.
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Second, a quadratic proper scoring rule is defined by

ri = α(2πi −
∑

1≤k≤m

π2
k + 1).

Here, α indicates the maximum amount of the scores.

Assume the agent declares π =

(
0.8
0.2

)
, and the prin-

cipal applies a spherical proper scoring rule with α = 5,

r(π) =

(
4.85
1.21

)
.

Next, we calculate the expected (net) utility of a strategy
and a declaration.
Definition 9 (Expected Utility). Let u(S, π) denote the
agent’s expected utility, when she declares π and commits
to strategy S, which is calculated as follows:

u(S, π) =
∑
j∈N

pj(gj · sj + r(π) · sj)

=
∑
j∈N

pj(gj · sj) +
∑
j∈N

pj(r(π) · sj)

= (g1 · s1, . . . , gn · sn)p+ (
∑
j∈N

pjsj) · r(π)

= (G⊗ S)p+ (Sp) · r(π).

Thus, the expected (net) utility can be divided into two
parts, the expected gross utility and the expected reward. In
our participatory sensing example,

u(S, π) = 8.8 +

(
0.8
0.2

)
·
(

4.85
1.21

)
= 12.92.

Here, we introduce the properties related to declarations
and strategies.
Definition 10 (Truthfulness). S and π are truthful if Sp =
π holds.
Definition 11 (Self-fulfillingness). π is self-fulfilling if
there exists strategy S, such that S and π are truthful and
∀j ∈ N, ∀s′j ∈ Π,

gj · sj + r(π) · sj ≥ gj · s′j + r(π) · s′j
holds.

If π is self-fulfilling, the agent has no incentive to move
from S even after she learns the outcome of tomorrow’s ac-
tual scenario. Thus, on average, she is going to act as she
predicted; her actual action probability distribution becomes
Sp, which matches her declaration π = Sp.

In our participatory sensing example, it is clear that S and

π =

(
0.8
0.2

)
are truthful, but π is not self-fulfilling. For

example, if the weather is cloudy, the net utility becomes(
5
5

)
+

(
4.85
1.21

)
=

(
9.85
6.21

)
.

Thus, the agent prefers to take photos in the daytime rather
than flipping a coin.

Let us formally state the goals of the agent and the princi-
pal in our model.

Agent:

Today: Based on G, p, r(·), an agent finds

π∗ = argmax
π∈Π

(max
S∈S

u(S, π)),

and declares it to the principal.
Tomorrow: Based on r(π∗) and gj , where j is the sce-

nario chosen by the nature, an agent finds

s∗j = argmax
sj∈Π

(gj + r(π∗)) · sj ,

and acts based on s∗j .
Principal:

• The principal must determine appropriate reward func-
tion r(·), such that if the agent can find optimal decla-
ration π∗, then π∗ is self-fulfilling.

• Even if the agent is unable to find an optimal dec-
laration since her computational capability is limited,
there exists an efficient way for the agent to find semi-
optimal π′, where π′ is self-fulfilling.

Characteristics of Reward Mechanism

Next, we investigate the characteristics of our mechanism,
in which the principal asks each agent to predict her ex-
pected probability distribution over tomorrow’s possible ac-
tions. The principal rewards her based on her declaration
and her actual action, assuming the principal uses a strictly
proper scoring rule. Furthermore, we examine the problem
each agent must solve to obtain an optimal strategy and dec-
laration.

As described in the previous section, an agent first must
find optimal declaration π∗, such that

π∗ = argmax
π∈Π

(max
S∈S

u(S, π)).

For each agent, finding π∗ is not easy. If we fix π, the net
utility for each action is determined. Thus, for each possible
scenario j, finding optimal strategy sj ∈ Π is easy; finding
maxS∈S u(S, π) is also easy. However, since there exists an
infinite amount of π, we cannot exhaustively check all of
them.

Assume an agent can somehow obtain π∗. Also, she
chooses

S∗ = max
S∈S

u(S, π∗).

Now, we can prove that this declaration is self-fulfilling with
strategy S∗.
Theorem 1. If reward function r(·) is a strictly proper scor-
ing rule, then π∗ = argmaxπ∈Π(maxS∈S u(S, π)) is self-
fulfilling for any agent.

Proof. First, we show that S∗ and π∗ are truthful. By con-
tradiction, assume that S∗p �= π∗ holds. Then, consider
the utility of u(S∗, S∗p); i.e., the agent’s utility when us-
ing strategy S∗ but declaring S∗p instead of π∗. Then, we
obtain the following inequality by applying the property of
strictly proper scoring rules.

u(S∗, S∗p)− u(S∗, π∗)
= (S∗p) · r(S∗p)− (S∗p) · r(π∗) > 0
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As a result, we obtain u(S∗, S∗p) > u(S∗, π∗). This con-
tradicts how we chose π∗ and S∗.

Next, by contradiction, assume j ∈ N and sj ∈ Π, such
that gj · sj + r(π∗) · sj > gj · s∗j + r(π∗) · s∗j holds. Then
consider another strategy S which is basically the same as
S∗, but its j-th column is replaced by sj . Then, u(S, π∗) >
u(S∗, π∗) holds. This contradicts how we chose S∗.

We can also prove that if π∗ is a self-fulfilling declaration,
then a reward function is a strictly proper scoring rule.
Theorem 2. If reward function r(·) is not a strictly proper
scoring rule, then there exists an agent such that π∗ =
argmaxπ∈Π(maxS∈S u(S, π)) is not self-fulfilling.

Proof. First, we assume rewards are non-negative and their
maximum amount is bounded by α. Since r is not a strictly
proper scoring rule, ∃π′ �= π′′ such that

π′ · r(π′) ≤ π′ · r(π′′)

holds. WLOG, we can assume

π′′ = argmax
π∈Π

π′ · r(π).

Now, consider a case with m scenarios whose probabilities
are given as p = π′. The gross utility is given as G, where G
is an m×m matrix where each diagonal element is C >> α
and the other elements are 0. It is clear that for any π, best
strategy S∗ does not change, where S∗ is an m×m identity
matrix. It is clear that

π′′ = argmax
π∈Π

u(S∗, π) = π∗.

However, since S∗p = π′ �= π′′, π′′ is not truthful. As a
result, π′′ is not self-fulfilling.

These theorems show that a reward function can elicit a
self-fulfilling declaration if and only if it is a strictly proper
scoring rule.

Note that an agent maximizes her expected net utility
(i.e., her expected gross utility + rewards), but not neces-
sarily her gross utility. Thus, our mechanism incurs some
efficiency loss. However, as shown in Theorem 2, since a
strictly proper scoring rule must be used to obtain a self-
fulfilling declaration, such efficiency loss is inevitable. We
guarantee that it is bounded by maximum reward α. At the
end of this section, we show an example where an agent
chooses an action that does not maximize her gross utility,
since the provider gives a reward to incentivize her for mak-
ing a self-fulfilling declaration.

We can generalize Theorem 1 as follows.
Theorem 3. ∀S ∈ S, ∀π, if Sp �= π, the following condition
holds:

u(S, Sp) > u(S, π).

Proof. We obtain

u(S, Sp)− u(S, π) = (Sp) · r(Sp)− (Sp) · r(π).
Since the property of strictly proper scoring rules guarantees
that this difference exceeds 0, we can obtain u(S, Sp) >
u(S, π).

Theorem 3 means that if an agent commits to strategy
S, she can automatically find the best declaration; truth-
ful declaration is optimal. Instead of searching for π∗ =
argmaxπ∈Π(maxS∈S u(S, π)), the agent can search for
S∗ = argmaxS∈S u(S, Sp). However, since |S| is infinite,
it is impossible to enumerate all strategies.

To overcome this problem, we consider a subclass of S,
which consists of finite strategies.
Definition 12 (Deterministic strategy). Strategy vector sj
is deterministic if it contains exactly one element whose
value is 1, and the others are 0. S is also deterministic if
all of its strategy vectors are deterministic.

Let Sd be the set of all possible deterministic strategies.
The following theorem holds.

Theorem 4. ∀S ∈ S, ∀π, ∃S′ ∈ Sd, such that the following
condition holds:

u(S′, π) ≥ u(S, π).

Proof. When we fix π, the net utility (i.e., gross utility plus
rewards) is determined. Then we can create S′ as follows.
For each j ∈ N , choose i so that i-th element of gj + r(π)
is maximal. Set sj as a deterministic strategy where the i-
th element is 1 and the others are 0. Set S′ to (s1, . . . , sn).
Clearly, u(S′, π) is at least as good as u(S, π) for any S.

In our participatory sensing example, for π =

(
0.8
0.2

)
,

deterministic strategy S′, which is defined as follows, out-
performs original non-deterministic strategy S.

sunny cloudy rainy
daytime 1.0 1.0 0

night 0 0 1.0

Here, u(S′, π) = 8.8+

(
0.9
0.1

)
·
(

4.85
1.21

)
= 13.29, is

larger than u(S, π) = 12.92.
This theorem means that, the agent does not need to use

a non-deterministic strategy when her declaration is fixed.
However, it is not obvious whether we can restrict our at-
tention to deterministic strategies when we search for S∗ =
argmaxS∈S u(S, Sp), since the choice of S affects Sp, i.e.,
the optimal declaration for S. The choice of Sp affects the
reward. Thus, perhaps by choosing a non-deterministic strat-
egy, the agent can choose a better declaration and improve
her expected utility.

The following theorem shows that this is not the case; an
agent can restrict her attention to deterministic strategies to
obtain S∗.
Theorem 5. Let Ŝ = argmaxS∈Sd

u(S, Sp). Then, ∀S ∈
S, ∀π, and the following condition holds:

u(Ŝ, Ŝp) ≥ u(S, π).

Proof. By contradiction, assume that for S and π,
u(Ŝ, Ŝp) < u(S, π) holds. From Theorem 4, there exists
S′ ∈ Sd such that u(S′, π) ≥ u(S, π) holds. From Theo-
rem 3, we obtain u(S′, S′p) ≥ u(S′, π). From these facts,
we derive u(S′, S′p) > u(Ŝ, Ŝp), contradicting the defini-
tion of Ŝ.
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Heuristic algorithm

1. Arbitrarily select initial π.
2. For each j ∈ N , choose i so that the i-th element

of gj + r(π) is maximal.
Set sj as a deterministic strategy where
the i-th element is 1 and the others are 0.
Set S to (s1, . . . , sn).

3. If Sp = π, return S.
Otherwise, set π ← Sp and go to 2.

Figure 1: Heuristic Algorithm

Theorem 5 means that Ŝ = S∗ and π∗ = S∗p hold. Since
Sd is finite, we can enumerate all of the elements in Sd and
find Ŝ = S∗. The size of |Sd| is given as mn. Intuitively,
when a strictly proper scoring rule is used, assuming that
an agent acts as she declares, her reward is always better if
her declaration is more “concentrated.” Thus, using a non-
deterministic strategy does not improve her expected utility.

In our participatory sensing example, the above S′ and a
truthful declaration based on it, i.e.,(

0.9
0.1

)
turn out to be optimal,

where u(S′, S′p) = 8.8 +

(
0.9
0.1

)
·
(

4.97
0.55

)
= 13.33.

In this example, our mechanism does not incur any effi-
ciency loss. However, as we mentioned before, there exist
cases where it might lead to efficiency loss. Here, we con-
sider another example where the situation is identical as our
participatory sensing example except we set α = 10. In
this setting, we calculated the optimal expected utility by

u(S∗, π∗) = 8 +

(
1
0

)
·
(

10
0

)
= 18, where an agent’s

optimal declaration is done by π∗ =

(
1
0

)
, and optimal

strategy S∗ is as follows:

sunny cloudy rainy
daytime 1.0 1.0 1.0

night 0 0 0

According to π∗ and S∗, an agent takes pictures during the
daytime regardless of tomorrow’s weather. When the fore-
cast says rain, an agent’s net utility is 10, but her gross util-
ity is 0. In this case, the amount of efficiency loss becomes
8. However, that loss is less than the maximum amount of
reward 10.

Heuristic Algorithm

In this section, we propose a heuristic algorithm to find a
semi-optimal strategy. Although it is possible to find S∗ (as
well as π∗) by exhaustively checking each element in Sd,
when m and n become too large, finding Ŝ becomes time
consuming. The agent can utilize the heuristic algorithm de-
scribed in Fig. 1 to find a semi-optimal strategy.

The following theorem holds.

Theorem 6. The heuristic algorithm terminates after a finite
number of iterations. Declaration S′p is self-fulfilling with
strategy S′.

Proof. Assume a sequence of π, i.e., π1, π2, . . . and a se-
quence of S, i.e., S1, S2, . . ., are obtained in the heuris-
tic algorithm. The following inequalities hold: u(S1, π1) <
u(S1, π2) ≤ u(S2, π2) < u(S2, π3) ≤ u(S3, π3) < . . .
since Skp = πk+1 holds. Each S1, S2, . . . , is an element of
Sd. Therefore, this sequence’s length must be finite since Sd

is a finite set.
By definition, declaring Sp and acting by S are truthful.

Sp is self-fulfilling, since if there exists j ∈ N and s′j ∈ Π
such that such that gj · s′j + r(Sp) · s′j > gj · sj + r(Sp) · sj
holds, then the algorithm does not terminate at S.

Even if the agent uses the heuristic algorithm because her
computational capability is limited, the principal can still ob-
tain an accurate prediction since the obtained result remains
self-fulfilling.

In our original participatory sensing example where α =

5, if we choose initial π as
(

0.8
0.2

)
, the algorithm chooses

the first S as S′. Since S′p �= π, it sets π = S′p =

(
0.9
0.1

)
,

and goes to 2. Next, it chooses the second S as S′. Since
S′p = π, it terminates and returns S′.

To simplify, this paper’s theoretical analysis, we assume a
participant declares an entirely accurate probabilistic distri-
bution. In practice, however, we can use a much simplified
input space. For example, for several time slots, a participant
chooses an answer from a small number of candidates (e.g.,
very likely, perhaps, unlikely).

Experimental results

In this section, we evaluate the performance of our heuristic
algorithm and examine how an agent acts when her predic-
tion of an external event includes error. We assume a situa-
tion where an unexpected scenario can happen.

Performance of approximate algorithm

First, we evaluate the performance of our heuristic algo-
rithm. We set n = m and vary n (and m) from 4 to 8. The
probability that each scenario occurs is set to 1/n. We gener-
ated 100 problem instances for each n. In each instance, we
generated G by randomly selecting each gi,j from [0, 100].
We applied a spherical proper scoring rule (SPSR) as a re-
ward function, where we set parameter α to 25, 50, and 100.
Since each gross utility is at most 100, if we set α = 100, the
maximal reward value is comparable to the maximal gross
utility. Initial π is obtained from a deterministic strategy that
optimizes the expected utility assuming no reward is pro-
vided.

We compared the expected utility of the obtained strate-
gies (and declarations) by the heuristic algorithm against the
agent’s maximal expected utility, which is obtained by enu-
merating all of the deterministic strategies (Fig. 2). We also
examined the number of iterations of this algorithm (Fig. 3).
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Figure 2: Utility ratio of heuristic algorithm

Figure 3: Required iterations of heuristic algorithm

The heuristic algorithm’s expected utility always exceeds
92% of the optimal value. The heuristic algorithm is very
efficient; the average number of iterations is around 2. If
we increase α, the ratio becomes relatively small and the
required iterations becomes relatively large. By increasing
α, we assume that the optimal or semi-optimal declarations
move far from the initial π used in the heuristic algorithm.

Handling unexpected scenarios

Next, we examine how an agent acts when an unexpected
scenario happens. The parameter settings are basically the
same as in the previous subsection, but we chose m = 8 and
n = 4. Based on this knowledge, an agent obtains/declares
optimal or semi-optimal declaration π. However, the next
day, we assume the agent faces an unexpected scenario,
where the gross utilities of each action are randomly selected
from [0, 100]. Then, she chooses the best action to maximize
her net utility.

Action i is supported in π when πi > 0. As long as the
agent chooses a supported action, we assume that the choice
is acceptable for the principal, since he was prepared for it.
However, if the action is not supported, he faces difficulty. A
scenario is acceptable for the principal if the agent chooses
a supported action. We generated 100 unexpected scenarios
and calculated the ratio of acceptable scenarios (Fig. 4).

We also show the ratio of supported actions. When α = 0,

Figure 4: Ratio of acceptable scenarios ((a): action, (s): sce-
nario)

i.e., when no reward is given, a scenario is acceptable only
if the action, whose gross utility is optimal, is supported by
chance. By increasing α, the agent is more likely to choose a
supported action (though its gross utility is sub-optimal). As
a result, the ratio of acceptable scenarios increases. On the
other hand, the number of acceptable actions decreases ac-
cording to the reward increases, since a proper scoring rule is
convex and she can increase her utility by reducing the num-
ber of possible actions. Interestingly, the ratio of acceptable
scenarios is larger when the agent uses an approximate algo-
rithm because the ratio of the supported actions is larger.

Conclusions

We studied a mechanism to incentivize agents who predict
their own future actions and truthfully declare their predic-
tions. We addressed how a reward mechanism affects an
agent’s behavior and elicits a self-fulfilling declaration. To
the best of our knowledge, this is the first study that shows
that strictly proper scoring rules can solve to this question.

First, we proved that if a mechanism utilizes a strictly
proper scoring rule, then it can elicit a self-fulfilling dec-
laration, assuming an agent can find an optimal declaration
that maximizes her expected utility and that her prediction
of the external event is correct. Furthermore, we examined a
method through which an agent finds an optimal declaration
and proved that she can find a pair that consists of an optimal
declaration and an optimal strategy by enumerating a finite
set of deterministic strategies. We also developed an approx-
imate algorithm to find a semi-optimal declaration, which is
still self-fulfilling.

Future work will clarify the complexity of finding an op-
timal strategy. We believe that it must be NP-hard, but we
have not proved it yet. We also want to extend our model
to handle more complex situations, such as cases where the
gross utility of one agent is affected by the actions of other
agents.
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