
TRACCS: Trajectory-Aware Coordinated Urban Crowd-Sourcing

Cen Chen and Shih-Fen Cheng and Aldy Gunawan and Archan Misra
School of Information Systems

Singapore Management University

Koustuv Dasgupta and Deepthi Chander
Xerox Research Centre India

Abstract

We investigate the problem of large-scale mobile crowd-
tasking, where a large pool of citizen crowd-workers are
used to perform a variety of location-specific urban logis-
tics tasks. Current approaches to such mobile crowd-tasking
are very decentralized: a crowd-tasking platform usually pro-
vides each worker a set of available tasks close to the worker’s
current location; each worker then independently chooses
which tasks she wants to accept and perform. In contrast, we
propose TRACCS, a more coordinated task assignment ap-
proach, where the crowd-tasking platform assigns a sequence
of tasks to each worker, taking into account their expected
location trajectory over a wider time horizon, as opposed to
just instantaneous location. We formulate such task assign-
ment as an optimization problem, that seeks to maximize the
total payoff from all assigned tasks, subject to a maximum
bound on the detour (from the expected path) that a worker
will experience to complete her assigned tasks. We develop
credible computationally-efficient heuristics to address this
optimization problem (whose exact solution requires solving
a complex integer linear program), and show, via simulations
with realistic topologies and commuting patterns, that a spe-
cific heuristic (called Greedy-ILS) increases the fraction of
assigned tasks by more than 20%, and reduces the average
detour overhead by more than 60%, compared to the current
decentralized approach.

Introduction

Large-scale mobile crowd-tasking, where citizen volunteers
are incentivized to perform location-specific tasks, has re-
cently attracted strong commercial interest. Several compa-
nies/business visionaries now believe in the potential of such
a urban crowd logistics paradigm, where a participative pool
of urban “crowd-workers” are co-opted to perform (typically
in exchange for micro-payment based incentives) a variety
of last-mile tasks, such as performing frequent checks of the
display shelves at neighborhood stores, delivering packages
for consumers and reporting on the queuing wait times at
various restaurants and food courts. State-of-the-art mobile
crowd-tasking solutions (e.g., FieldAgent, GigWalk) largely
exhibit two characteristics: (a) they focus on a pull-based,
proximity-driven model of task selection, where each crowd-
worker selects tasks from a set of available tasks that are

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

near the worker’s current location, and (b) the task selec-
tion process is inherently decentralized, with each worker
opportunistically selecting one or more tasks that are most
appealing to her.

Absent from such approaches are the fundamental con-
cepts of (i) Large-scale Task Coordination, where the
crowd-tasking platform proactively recommends tasks to
each crowd-worker in a globally coordinated way, with the
objective of improving the acceptance and completion rate
of such tasks, and (ii) Predictive Crowd-Tasking, where the
recommendation or selection of tasks is not performed my-
opically (based on just the current location context of the
workers), but instead exploits an individual’s movement tra-
jectory over a longer time horizon (such as an entire day).
We believe that adoption of these two concepts can signifi-
cantly improve the efficacy of the crowd-tasking process:

• By providing better selection of tasks across tens
of thousands of urban crowd-workers, centralized
spatiotemporally-aware coordination is likely to increase
the overall task acceptance and completion rate. For ex-
ample, that given two tasks T1 and T2, of which T1 lies
very close to the travel routes of both Alice and Bob,
while T2 involves a short detour for Alice but is very
far from Bob’s travel path, the platform should recom-
mend task T1 to Bob instead of Alice, as this would
free Alice up to perform task T2. Current crowd-tasking
platforms fail to take advantage of such globally ad-
vantageous possibilities—e.g., FieldAgent displays tasks
around the current location of the worker, providing the
worker with no additional guidance on what tasks to se-
lect.

• Suggesting tasks, based on a longer time horizon of move-
ment trajectory (as opposed to instantaneous location),
is likely to increase the overall payoff for each individ-
ual crowd-worker, by making the best opportunistic use
of slack time during the day. For example, if the crowd-
tasking platform was aware of the commuting pattern of a
crowd-worker, it might recommend her multiple tasks that
are in vicinity of the two different bus stops where she has
to spend 6-7 minutes each waiting for bus transfers, and
which she might conceivably complete during those wait-
ing periods. In a purely pull-based mechanism, the worker
may not have been aware of these opportunities.

Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2014)

30

In this paper, we shall investigate such a Trajectory-
Aware Centrally-coordinated Crowd-Sourcing framework,
called TRACCS1, where the tasks proactively recommended
by the tasking platform take into account the predicted
trajectory (movement pattern) of the individuals. TRACCS
is motivated by the increasing availability of individual-
specific movement traces, both outdoors and indoors, cap-
tured by technologies such as GPS, Wi-Fi based location
tracking and inertial sensing on mobile devices. Such lo-
cation traces, combined with trajectory prediction/analysis
techniques, now makes it possible to predict the likely “reg-
ular” travel pattern of each individual–e.g., we can now au-
tomatically infer that Alice will leave her office in City Cen-
ter at approximately 5:30 on Thursday evening, then head
by bus to the book club gathering at her club at 6:30, then
take a train to the gym (located 6 blocks from her house)
around 8pm, before finally walking home along First Av-
enue around 9pm.

To develop this framework, we shall formulate task as-
signment as a constrained optimization problem, whose goal
is to maximize the total reward earned by all crowd-workers
over a specified time horizon–i.e., effectively maximize the
total amount of payoff resulting from all tasks completed
as per the task-specific requirements. To accommodate the
overheads of task execution, the optimization is subject
to a set of individual worker-specific detour constraints–
expressed as an upper bound on the maximum additional
time (or distance) that a worker can spend in completing
her assigned tasks, over and above that spent on her nor-
mal movement trajectory. This is based on the typical case,
where the worker’s regular trajectory is defined by her cus-
tomary (or routine) commuting pattern, and the completion
of a location-specific task (e.g., checking for the availabil-
ity of a product at the convenience store located near her)
requires her to deviate from her usual route (e.g., the walk
back from the gym to her home). We can generalize this op-
timization problem to accommodate a variety of real-world
inspired attributes for the tasks, such as differing coverage
requirements (how many duplicate workers are needed till
an appropriate level of task fidelity is reached?) or priority
(given limited workers, which tasks should be preferentially
assigned over others). While TRACCS may be viewed as part
of the general class of orienteering problems (Vansteenwe-
gen, Souffriau, and Oudheusden 2011), developing a prac-
tical solution requires us to tackle several important chal-
lenges.

Accordingly, our Key Challenges & Contributions are:

1. Capturing Diverse Optimization Objectives Precisely:
While the overall optimization objective is constant—
maximizing the sum of the rewards for all assigned tasks–
different movement patterns can impose different types of
detour constraints. To capture such diversity precisely, we
present two different integer linear program (ILP)-based
optimization models, that precisely solve the problem for
two separate scenarios: a detour-without-retrace model,
where the worker simply moves to the closest downstream
point in her yet-to-be completed routine trajectory after

1Pronounced as “tracks”

completing a task-driven detour (this represents the case
where Alice takes a detour during her walk home), and a
detour-with-rejoin model, where the worker must return
to the point on the routine trajectory where she started her
detour and resume the yet-to-be completed portion (this
represents that case where Alice must return to the bus in-
terchange to resume her journey after performing a task
while waiting there).

2. Handle City-Scale Worker Populations and Tasks: The
ILP-based formulations have exponential computation
complexity, and prove to be intractable as the number of
workers (or tasks) grows modestly, even to a few tens. To
make centralized task assignment feasible, even for tens
of thousands of workers and/or tasks, we define and eval-
uate multiple assignment heuristics (for both the “detour-
without-retrace” and “detour-with-rejoin” models), and
demonstrate that our heuristics provide good-quality and
fast task assignment (e.g., in 2 seconds, given a set of
1000 workers and 2000 tasks, it can devise a solution that
assigns 98.6% of the total tasks).

3. Practical Benefits in Realistic Situations: We are cur-
rently working towards a real-world deployment and test-
ing of TRACCS –this is of course, a formidable prac-
tical challenge. Meanwhile, to realistically quantify the
expected performance benefit, we test our Heuristic so-
lutions on large-scale synthetic movement traces (e.g.,
1000+ workers and 5,000+ tasks), generated over trajecto-
ries that mimic daily commuting patterns (including inter-
mediate transfer points) from one or more residential ar-
eas to a central business district. Our results show that: (i)
our Heuristic solutions scale quite well, in terms of both
computational complexity and assignment quality (com-
puting, in less than 0.3 seconds, assignments that cover
over 85% of the tasks) and (ii) by optimizing over a longer
time horizon (1 day), TRACCS can significantly outper-
form decentralized, instantaneous proximity-based task
selection (with ∼20% or higher increase in the number
of assigned tasks, and a ∼60% reduction in the average
detour overhead).

Related Work

Given the large amount of literature on crowd-sourcing in
general, we focus on describing the key prior results related
to the distinct themes of our research agenda.
Location-Aware Crowd-Tasking: Current mobile crowd-
sourcing platforms, such as FieldAgent, GigWalk, Neigh-
borFavor and mCrowd, utilize the current location of a
worker to provide her with a set of geographically proxi-
mate tasks. The worker is permitted to pull tasks that they
can perform, but has to figure out how to maximize the
earnings, even while amortizing travel costs and adhering to
the task deadlines. Kazemi and Shahabi provides a frame-
work whereby a crowd-sourcing server can prioritize the
tasks assigned to available workers using knowledge about
the worker’s current availability and location. More specifi-
cally, the workers in the vicinity of a specific task’s location
are queried to determine their willingness to accept the task;
however, different strategies may be used to determine the

31

order in which workers are queried (e.g. greedy, low location
entropy, or nearest neighbor priority). In all these mobile
micro-tasking environments, the onus of making the choice
of tasks and sequencing them so as to maximize utility to the
worker while ensuring task completion, lies solely with the
worker.
Optimizing Individual-Level Task Selection: There have
been a few influential studies that investigate how individ-
ual workers go about selecting tasks, when presented with
visibility into the location-dependence of these tasks. Us-
ing data from a real-world mobile crowd-tasking platform,
Musthag and Ganesan (2013) show how a very small set
(less than 10%) of workers, called super-agents, perform
the vast majority of such tasks; these super-agents experi-
ence travel detours that are more than double that of the
rest of the worker population, and are also adept at sequenc-
ing tasks efficiently to maximize their rewards. Clearly, the
job of selecting the best sequence of tasks, taking into ac-
count complex factors such as expected travel times and task
deadlines is a very non-trivial one, as evidenced by the poor
success rate of 90% of the worker pool. Additionally, prior
studies (e.g., see Kokkalis et al. (2013) and Talamadupula
et al. (2013)) also show that people tend to complete their
tasks better when they are provided with action plans (by
automated planning tools) to perform their tasks. These re-
sults provide strong implicit evidence for the promise of our
TRACCS framework. If a sequence of tasks could be auto-
matically recommended, and if such tasks were chosen so as
to impose minimal additional overhead (in terms of detours)
from an individual’s lifestyle-driven movement pattern, then
it is very likely that a larger fraction of the worker population
would perform a progressively larger set of the tasks.
Predicting Movement Trajectories: There has recently
been an explosion of research on both sensing and predict-
ing individual user movement, both outdoors and indoors.
In outdoor environments, such location trajectories can be
obtained and analyzed (e.g., Becker et al. (2013)) using cel-
lular data available to telecommunications companies. Al-
ternately, specialized location tracking technologies (e.g.,
PlaceLab (LaMarca et al. 2005)) have also been proposed
for ubiquitous location and movement tracking. Recent ef-
forts have focused on obtaining large-scale indoor move-
ment traces–e.g., the LiveLabs testbed (Misra and Balan
2013) is being progressively deployed to track the trajecto-
ries of thousands of individuals in a variety of urban public
spaces. In general, telecommunications companies are now
moving deliberately to monetize the location traces of their
subscribers–it is thus quite likely that a crowd-tasking plat-
form may obtain such network-based movement traces, es-
pecially if authorized by the individual crowd-worker.
Travel Itinerary Optimization: There has been signifi-
cant research, in the decision optimization field, on spa-
tiotemporal coordination of individual or group move-
ment trajectories–this is known as the orienteering prob-
lem (Vansteenwegen, Souffriau, and Oudheusden 2011; Lin
2013; Vansteenwegen et al. 2009). A practical example
of such a route-guidance based mobile App was recently
presented in (Lau et al. 2012) for a theme park setting.
The guidance algorithm solves a single-agent dynamic and

stochastic variant of the orienteering problem, generating
a route (i.e., sequence of attractions) which maximizes the
user’s rewards (tied to user preferences, wait times and travel
times) subject to his start time and end time constraints and
attraction wait time values. In our proposed TRACCS frame-
work, instead of deriving a complete route, our goal is to de-
vise a route (i.e., a sequence of location-centric tasks) that
minimizes the additional detour from a predefined, daily
lifestyle-based route. Moreover, we seek to derive opti-
mal choices for thousands of such detour-minimizing routes
jointly–creating, in effect, a sophisticated variant of the
team orienteering problem (Chao, Golden, and Wasil 1996;
Archetti, Hertz, and Speranza 2007; Chen, Cheng, and Lau
2013).
We do recognize that there is a large body of work focus-
ing on solving pickup and delivery problems (e.g., see Bal-
dacci, Bartolini, and Mingozzi (2011)) or dial-a-ride prob-
lems (e.g., see Cordeau and Laporte (2003)); both are simi-
lar to the mobile task assignment problem we intend to study
in this paper. However, all existing models in these areas as-
sume that a team of full-time staffs are employed and can
carry out any specific order. Such assumptions are in direct
conflict with the requirement that individual mobile work-
ers should follow their respective predicted trajectories, and
they could only spend limited amount of time deviating from
their routes to perform assigned tasks. As such, none of ex-
isting model can be utilized straightforwardly.

The TRACCS Architecture & Assumptions

The TRACCS vision is centered around the use of pre-
dicted location trajectories of users for city-scale coordi-
nated recommendation of tasks–this presupposes that the
Crowd-Tasking Platform has access to the historical move-
ment traces of individuals, so that it can create appropriate
predictions for individual movement vectors. Figure 1 shows
the overall architecture of the proposed TRACCS framework,
and illustrates the various individual components and their
interactions. The Worker Interaction Manager is responsi-
ble for handling interactions with individual workers via the
mobile App (such as providing a list of suggested tasks, cap-
turing user acceptance and completion of assigned tasks).
The Worker Profile Manager is responsible for managing
worker profiles (including tasks such as handling worker
registration and indicating expertise for specific task cate-
gories). The Task Manager handles the interactions with task
owners, allowing task owners to specify various attributes
for tasks (such as the completion deadline, the amount of
payment and the task location). The Expected Route Pre-
dictor utilizes historical traces of individual user movement
to develop a predictive trajectory profile. Finally, the Task
Assignment Planner is responsible for taking as inputs the
list of location-dependent tasks, and the predicted movement
profile of workers, and recommending an allocation of tasks
(which individual workers may or may not accept) to each
individual worker. To be upfront, this paper does not focus
on a real-world implementation, but instead studies the al-
gorithmic techniques needed by the Task Assignment Plan-
ner for scalable, good-quality coordinated task assignment.

32

Figure 1: Overall architecture of the TRACCS framework.

Limiting Assumptions

Given our focus on establishing the feasibility of the coor-
dinated allocation strategy, this paper makes the following
assumptions to limit its scope:

• We assume that the Expected Route Predictor provides
only a single routine trajectory (for the time interval
specified–e.g., for each day) for each individual worker.
In practice, each worker may have a small, but distinct
set, of probabilistic alternatives (e.g., on leaving office,
one can head for home, the gym or the club), resulting in
a stochastic formulation of the optimization problem (de-
ferred to future work).

• For the formulation considered here, we assume that each
worker will accept and perform (and thus get rewarded
for) all the tasks assigned to her, as long as the result-
ing detour overhead lies within her acceptable threshold.
Clearly, significant additional work (including empirical
studies) is needed to develop and incorporate “likelihood
of task acceptance” models into the Task Assignment
Planner.

• For our current work, we assume that tasks (and the asso-
ciated rewards) are independent of one another. In certain
scenarios, tasks may have certain group-based or sequen-
tial dependencies (e.g., both tasks T3 and T5 need to be
completed before individual workers can be rewarded, or
task T3 must be completed prior to the initiation of task
T5). Such constraints on the feasible set of task assign-
ments are not considered at present.

An Integer Linear Programming Model for

the Mobile Crowdsourcing Problem

In the Introduction section, we mentioned two different
modes of movement, detour-without-retrace and detour-
with-rejoin, for planning mobile crowdsourcing task alloca-
tion. In this section, we propose an integer linear program-
ming (ILP) model to capture the detour-with-rejoin model,
and argue that with minor modifications, it can also be used
for the detour-without-retrace model.

An ILP Model for Detour-with-Rejoin

We first define notations for model parameters:

• Let N be the set of all nodes, and M be the set of all
mobile workers (agents). Let tij , i, j ∈ N be the traveling
time from node i to node j.

• Let Nt ⊂ N be all task nodes. We assume that each task is
represented by a unique task node. For each task t ∈ Nt,
let st be the associated reward.

• Let Rm ⊂ N be the set of agent m’s routine nodes. For
each node i in Rm, its intended visit sequence is denoted
as pmi (e.g., if an agent’s routine route starts from node
10, stops at node 3, and ends at node 7, we should set
pm10 = 1, pm3 = 2, pm7 = 3). Finally, each agent m should
also specify the maximum detour time Tm.

The decision variables are:

• xm
i,j , i, j ∈ N , m ∈ M , where xm

i,j = 1 means that node i
is traveled by agent m immediately before j.

• zi, i ∈ N , where zi = 1 means that node i is visited by at
least one agent.

• um
a = {0, 1, . . . , N}, a ∈ {1, 2, . . . , 2(N − 1)}, m ∈

M , denotes the node to be visited by agent m at order a.
um
a = 0 is the special case where no node is visited at

order a.
The maximal number of nodes visited cannot exceed
2(N − 1). The number 2(N − 1) can be achieved if we
have one routine node and (N − 1) task nodes, and we
visit one task node and then come back to the routine node
immediately before visiting the next task node.

The objective of our formulation is to maximize the to-
tal value obtained from visiting routine nodes (to ensure all
agents stay on their respective courses) and task nodes:

max
∑
t∈Nt

stzt. (1)

The first group of constraints focus on enforcing routine
routes and monitor the execution status of tasks, and are de-
fined for all m ∈ M :∑

i∈N

xm
n,i ≥ 1, n ∈ Rm

1 , (2)

∑
i∈N

xm
i,n ≥ 1, n ∈ Rm \Rm

1 , (3)

∑
i∈N

xm
i,n =

⎧⎨
⎩

∑
i∈N xm

n,i − 1, n ∈ Rm
1 ,∑

i∈N xm
n,i + 1, n ∈ Rm

2 ,∑
i∈N xm

n,i, n ∈ N \ {Rm
1 ∪Rm

2 },
(4)

zt ≤
∑
m̂∈M

∑
i∈N

xm̂
i,t, t ∈ Nt, (5)

∑
i,j∈N

tijx
m
i,j ≤ Tm, (6)

where agent m’s origin and destination nodes are denoted re-
spectively as two singleton sets Rm

1 = {q|q ∈ Rm, pmq = 1}
and Rm

2 = {q|q ∈ Rm, pmq = |Rm|}. With (2) and (3),

33

agent m is required to visit every routine node at least once.
(4) ensures the flow conservation for origin, destination, and
all other nodes. (5) sets the task execution flag zn by ag-
gregating all agent’s traces. As zn appears in the objective
function, and this is a maximization problem, zn will be set
to 1 whenever possible.

Although the visit to routine nodes is guaranteed via the
first group of constraints, the sequence of visit to routine
nodes are not enforced. As such, the second group of con-
straints focus on constructing the order of traversal from
the binary decision variable xm

i,j , after which the desired se-
quence of visits to all routine nodes is then enforced. For the
following set of constraints, we again assume that they are
defined for all m ∈ M :

um
1 = n, n ∈ Rm

1 , (7)
(a+ 1)− b ≤ K(1− xm

um
a ,um

b
), ∀a, b, (8)

b− (a+ 1) ≤ K(1− xm
um
a ,um

b
), ∀a, b, (9)

where K is a large constant, and both a and b represent the
order of visits. (7) ensures that the first node visited is always
the origin node in agent m’s routine route. The purpose of
(8) and (9) is to ensure that xm

i,j cannot be set to 1 unless b
is right after a (i.e., b = a + 1). This can be achieved since
the only way to set right-hand sides to zero (i.e., set xm

um
a ,um

b

to be 1) while satisfying both (8) and (9) is to set left-hand
side to zero as well (i.e., let b = a+ 1).

Finally, we need to preserve the partial order defined on
all routine nodes. In other words, if one node i is originally
specified to be in front of another node j, the new order gen-
erated by our formulation should also preserve this order. In
our formulation we achieve this by making sure that for any
pair of routine nodes visited at orders a and b, the difference
of a and b is at least as large as the difference in the original
route:

a− b ≥ pmum
a
− pmum

b
, ∀um

a , um
b ∈ Rm, a > b . (10)

Note that (8)–(10) are all nonlinear constraints (since de-
cision variables appeared as indices in problem data), and
we have to linearize them so that the whole problem can be
solved linearly.

Linearization To linearize (8)–(10), we need to define the
following additional decision variables:

• βm
i,l, where βm

i,l = 1 if agent m visits node i at order l, and
βm
i,l = 0 otherwise.

• αm
i,j,l, where αm

i,j,l = 1 if agent m visits nodes i and j at
orders l and l + 1 respectively. In other words, αm

i,j,l =
βm
i,l · βm

j,l+1.

(8) and (9) are first replaced by the linear constraints below
(we again assume that the following constraints are defined

for all m ∈ M):

xm
i,j =

2N−3∑
l=1

αm
i,j,l, ∀i, j ∈ N, (11)

∀i, j ∈ N, l = 1, . . . , 2N − 3 :⎧⎪⎨
⎪⎩

αm
i,j,l ≤ βm

i,l,

αm
i,j,l ≤ βm

j,l+1,

αm
i,j,l ≥ βm

i,l + βm
j,l+1 − 1,

(12)

∑
i∈N

βm
i,l ≤ 1, l = 1, . . . , 2(N − 1), (13)

um
l =

∑
i∈N

i · βm
i,l, l = 1, . . . , 2(N − 1). (14)

With (11)–(14), we can then proceed with the linearization
of (10).

a− b ≥
∑
i∈Rm

pmi (βm
i,a − βm

i,b), (15)

where b = 1, . . . , 2N − 3, a = b+ 1, . . . , 2N − 2,m ∈ M .

The Detour-without-Retrace Variant

For the detour-without-retrace model, the ILP formulation is
almost identical, except that we don’t allow multiple visits
to the same routine node (i.e., the ‘≥’ should be replaced
by ‘=’ in (2) and (3)). This significantly simplifies the ILP
model, as each node can now be associated with a unique
visit order. The implication of this is that we can replace
decision variables um

a with vmi , which is the visit order of
node i for agent m.

The collection of constraints (7)–(10) can thus be replaced
by the following corresponding constraints (m ∈ M):

vmn = 1, n ∈ Rm
1 , (16)

(vmi + 1)− vmj ≤ K(1− xm
i,j), i, j ∈ N, (17)

vmj − (vmi + 1) ≤ K(1− xm
i,j), i, j ∈ N, (18)

vmi − vmj ≥ pmi − pmj , i, j ∈ Rm, pmi > pmj . (19)

Despite the similarity between (7)–(10) and (16)–(19), do
note that (16)–(19) are already linear, thus no further lin-
earization would be necessary. The resulting ILP formula-
tion for the detour-without-retrace model is therefore much
more compact and can be solved more efficiently. However,
even with this much smaller and efficient formulation, solv-
ing the ILP formulation exactly becomes intractable even for
numerical instances of moderate sizes (the largest instance
we managed to solve with CPLEX consists of 15 agents and
100 nodes, and it took more than 7 hours to finish). As an
exploratory approach, we implemented simple greedy and
local search heuristics, and for small-scale problems, they
performed very well both in terms of execution time and so-
lution quality (for the same numerical instance above, our
simple heuristic took less than a second to finish, while get-
ting almost identical allocation result). As such, we have
put most of our developmental efforts on designing efficient
heuristics.

34

Extensions to Handle Additional Constraints

The basic ILP formulation above can be extended to capture
several other variants of interest:

• Multi-Worker Task Coverage: In crowd-sourcing scenar-
ios, it is commonplace to require that a particular task be
performed by multiple workers, with task’s final result be-
ing determined statistically (e.g., by majority voting) from
all the assigned workers. If a task t requires τt workers to
perform the task (i.e., visit the task node) before it can be
considered completed, we can handle it by modifying (5)
as:

zt ≤
∑
m̂∈M

∑
i∈N

xm̂
i,t − τt + 1, t ∈ Nt, (20)

i.e., zt (the flag indicating successful execution of task t)
can only be set to 1 if

∑
m̂∈M

∑
i∈N xm̂

i,t is at least τt.

• Prioritizing Tasks: To handle situations where certain
tasks are deemed more important than others, this ILP for-
mulation can be modified to assign higher rewards st for
higher priority tasks. While this does not provide strict
priority guarantees, in practice, the reward maximizing
formulation causes the worker detours to be biased in fa-
vor of tasks that offer higher rewards.

To focus on the key properties of our proposed framework,
within the specified space constraints, we do not explore
these relatively minor variants further in this paper. Instead,
we present the heuristics we developed, as well as large-
scale numerical experiments that are close to the kind of
scale we would anticipate in real-world deployment.

Designing Efficient Heuristic for TRACCS
The ILP formulations we proposed for the detour-without-
retrace model and the detour-with-rejoin model are shown
to be intractable even for small problems. For our purpose of
scheduling mobile crowd-sourcing tasks, we not only want
to solve the problem well, we also expect to have stringent
limits on execution time. In practice, most crowd-workers
would want to see recommendations prepared for them
within a few seconds after they turn on their App; similarly,
task owners would like their tasks to be assigned shortly af-
ter they’ve been submitted to the crowd-tasking platform. To
support such low-latency assignment, our heuristic design is
divided into two phases: we first construct an initial solution
as fast as possible by using a greedy heuristic; the quality of
the initial solution is then improved iteratively by an iterated
local search (ILS) when time permits.

Greedy Construction Heuristic

The greedy construction heuristic, outlined in Algorithm 1,
is an intuitive heuristic for building an initial solution. As a
start, all agents are assigned their full routine nodes follow-
ing given orders. After that, a task node with the least travel
time from any available agent (i.e., an agent whose detour
threshold has not been exhausted) will be inserted into that
agent’s route. Task nodes without positive values will not be
inserted. The above process is repeated until either all task
nodes are assigned or no task can be feasibly inserted.

Algorithm 1 Greedy Construction Heuristic
procedure GREEDY(Nt, M , Rm, D)

while Nt �=Ø or no task t can be assigned do
for each task t ⊂ Nt do

cost*t ← a very large number
for each agent m in M do

costmt ← COMPUTELEASTCOST(Rm, t)
if remaining detour time for m ≥ costmt then

A ← ADDTOFEASIBLESET(m, t);
if costmt < cost*t then

UPDATEFEASIBLELEASTCOSTROUTE(A);
end if

end if
end for

end for
{m, t} ← PICKFEASIBLELEASTCOSTROUTE(A);
UPDATEROUTE(t, Rm);

end while
return solution set Rm

end procedure

Iterated Local Search (ILS)

ILS improves a complete solution generated by the greedy
construction heuristic. This solution is initially treated as
BESTFOUND. We consider four different operations, the
swap, move, insert and replace operations (Table 1).

Notations Descriptions

SWAP Exchange two tasks between two routes.
MOVE Move one task from one route to another route.
INSERT Insert unassigned task into the routes.
REPLACE Replace one assigned task with one unassigned

the task.

Table 1: Notations and descriptions.

The first random improvement strategy is applied for the
SWAP operation. Two agents with two task nodes are se-
lected randomly. SWAP is executed if it increases the to-
tal remaining detour time for both agents. MOVE opera-
tion is performed by reallocating one randomly scheduled
task from one agent to another agent with the highest re-
maining detour time. This task is then inserted to a node
with the least time incurred. INSERT operation is started by
choosing one unassigned task with the highest utility/reward
score. We then select one agent with the highest remain-
ing detour time and insert the unassigned task node with
the least time incurred. REPLACE operation is used to re-
place one assigned task with one unassigned task. The oper-
ation is started by selecting one unassigned task with the
highest utility score. An agent is then randomly selected.
We examine all possible insertions by considering the feasi-
bility and the highest ratio between OVERALLUTILITYIN-
CREMENT/DETOURTIMEINCREMENT. The entire process
is repeated until it exceeds MAXLOOP iterations. The so-
lution would be updated if a better solution is obtained.
Finally, the algorithm returns the best known solution ob-
tained, BESTFOUND. The ILS can be seen in Algorithm 2.

35

Algorithm 2 Iterated Local Search Algorithm
procedure ILS(Nt, M , Rm, D)

BESTFOUND ← GREEDY(Nt, M , Rm, D);
LOOP = 0;
while LOOP < MAXLOOP do

SWAP(Nt, M , Rm, D);
MOVE(Nt, M , Rm, D);
INSERT(Nt, M , Rm, D);
REPLACE(Nt, M , Rm, D);
if SOLUTION better than BESTFOUND then

Update BESTFOUND;
end if
Loop++;

end while
return BESTFOUND

end procedure

Experimental Results and Insights

In this section, we report a comprehensive suite of exper-
imental results that help evaluate the TRACCS framework
and our heuristic algorithms. The results evaluate perfor-
mance metrics such as: the Task Completion Ratio, which in-
dicates the fraction of tasks that have been successfully allo-
cated to a crowd-worker (and thus implicitly serves as an in-
dicator of the cumulative reward gained by all workers), the
Detour Overhead, which measures the total time/distance
overheads that the assigned tasks will impose on the work-
ers, and the Computation Time, which measures the total ex-
ecution time for each task assignment algorithm. To make
our results meaningful, we first use a custom-built Instance
Generator to create multiple instances of realistic urban tra-
jectories and task locations, incorporating one or more sub-
urban and central business locations. All experiments re-
ported here were run on a 3.2 GHz Intel (R) Core (TM)
Windows 7 machine, with 12GB of RAM. Unless otherwise
mentioned, all results are computed as the average of 5 sep-
arate runs, each with distinct random seeds.

Instances Generated

The results in this study are based on two different types
of topologies that share a fundamental commuting pattern
(coming in from residential suburbs to a central business dis-
trict in the morning, and performing the reverse commute in
the evening), and differ principally in the number of distinct
residential suburbs.

• OneOrigin: Here multiple workers travel from the same
residential area to a single major business hub. The in-
stances are generated with varying values of the follow-
ing parameters: number of agents |M | (individual crowd-
workers), number of nodes |N | (total number of distinct
locations in the topology) and the task-to-worker ratio
|Nt|/|M | (where |Nt| indicates the number of location-
dependent tasks). Moreover, each worker has an associ-
ated detour threshold D (expressed as a percentage of the
overall commuting distance), that indicates the maximum
amount of task-related detour that the worker can toler-
ate. In general, D can be expressed either in distance or
time; for our studies, we assume that the traveling speed

is uniform, and thus express the detour threshold purely
in terms of the additional travel distance. For example, a
uniform value of D = 0.1 implies that each of the M
workers can accept tasks as along as the total detour does
not exceed 10% of the distance between its source and
origin. The tasks are generated uniformly across the en-
tire topology.

• MultipleOrigins: Here, the topology is generalized to in-
corporate multiple residential areas, with each worker
traveling from her own individual residential area to reach
the central business hub. Moreover, in this case, we also
assume that (i) the workers pass through various inter-
mediate points (corresponding to transfer points such as
bus transfer stations or subway junctions), and that (ii) the
tasks are not confined to just each residential area or the
central business hub, but can be located at these interme-
diate transfer points as well. The distribution of tasks is
expressed as a tuple of the form (pr, pi, ph), where pr, pi
and ph represent the ratio of tasks in the residential area,
intermediate points and the business hub, respectively. For
the results reported in this paper, we use two standard sce-
narios: pr = 50%,pi = 30%, ph = 20% and pr = 60%,pi =
20%, ph = 20%, reflecting our expectation that a majority
of the tasks will be associated with the central business
hub.

Algorithms Compared

As we have already established that the accurate ILP-based
formulation is computationally infeasible, except for very
small instances (tens of workers and tasks), we compare the
performance of three heuristics:

1. Greedy: The iterative algorithm that assigns each task to
a worker who will experience the smallest possible addi-
tional detour, as a result of accepting this task.

2. Greedy+ ILS: The enhanced version of Greedy, that
performs additional randomized changes in task assign-
ments, to overcome local minima.

3. Myopic: In this baseline algorithm, the task assignment
is performed sequentially, across workers, depending on
their arrival time at specific locations. At any location, an
arrival worker checks the list of all nearby available (unas-
signed tasks), and is assigned the maximum possible set
of tasks that she can perform, without violating her de-
tour threshold. Note that, in this approach, it is possible
for some workers to corner the lion’s share of the tasks,
and also potentially to exhaust the total detour slack very
early, even before reaching the destination area. The my-
opic baseline is designed to mimic the current practice of
most mobile crowd-sourcing platform providers.

Task Completion and Detours Experienced

We first study the overall task completion rate and the av-
erage detour overhead experienced by the workers, for both
the OneOrigin and MultipleOrigins models (both instances).
For these studies, we varied the detour threshold D (assumed
to be uniform for all workers) between 5-20% of each indi-
vidual worker’s regular commuting distance. Figures 2 and 3

36

Figure 2: Plot of the task completion ratio.

Figure 3: Plots of the average detour overheads.

show, respectively, the Task Completion Ratio and the Av-
erage detour overheads (averaged across all workers, and
expressed as a percentage of the detour threshold) for all 3
heuristics, with the number of task workers |M | equal to 10,
the number of total nodes (|N |) equal to 100 and the number
of task nodes (|Nt|) equal to 30.

While Figure 2 only shows the average values (and not the
variation in the task completion ratios) across different in-
stances, we additionally performed the paired t-Test (at 0.05
significance level) between each pair of algorithms, at every
value of the detour threshold. We found the differences to be
statistically significant (between Greedy+ILS and Myopic)
for all values of D–i.e., Greedy+ILS alway clearly outper-
forms the Myopic strategy. Moreover Greedy+ILS is statis-
tically better than simple Greedy in most cases, except for
small values of D–if the detour threshold is too small, the
set of detour opportunities is too limited for the additional
randomized task swapping heuristics to make a significant
difference.

From the figures, we can see that the Greedy+ILS scheme
offers the best performance, assigning 100% of the tasks
if the detour threshold is 10% or higher in the OneOrigin
case and reaching close to 80% for thresholds of 10% and
higher (for the SingleOrigin scenarios). The Greedy+ILS
performs as much as 10-15% better, compared to the Greedy
heuristic, with the performance gap increasing as D in-
creases (i.e., as more flexibility in re-routing is permitted).
More importantly, by looking at task assignment opportu-
nities over a longer time-horizon (i.e., over the entire com-
muting itinerary), our heuristics outperform the typical My-
opic alternative (often by 20% or higher), with this perfor-
mance gap observable across both low and large values of
D. This illustrates the biggest advantage of the TRACCS
framework–by better coordinating task assignment across

multiple workers, we are able to complete an appreciably
larger fraction of the total tasks, resulting in greater cumu-
lative rewards for all the task workers.

As expected, our heuristics also result in larger detour
overheads as D increases–clearly, a larger value of D al-
lows each worker to be assigned a larger set of assigned
tasks, with corresponding longer detour overheads. How-
ever, note that the detour overheads for Greedy+ILS are sig-
nificantly smaller than those for the Myopic approach, even
though Greedy+ILS has a 20% or higher task assignment
rate! Clearly, the TRACCS framework is not only able to
assign more tasks to more workers, but is also better at re-
ducing the per-worker detour overhead.

To illustrate the differences between the algorithms, Fig-
ure 4 plots the 3 trajectories (for two representative workers)
computed on a specific topology instance, by each of the 3
heuristics.

Fairness Across Workers

To further investigate the finer details of task allocation of-
fered by our heuristics, we carefully studied the detour over-
heads experienced by each worker. As an illustrative exam-
ple of our result, Figure 5 plots the box-plots of the total
detour overhead (as a percentage of the total detour thresh-
old) for each worker, for the 3 different assignment strate-
gies, for three distinct values of D (5%, 10% and 15%,
respectively). It is clear that Greedy+ILS has the lowest
variation among different workers, while Myopic results in
the largest inter-worker variance. Clearly, our assignment
algorithms not only offer higher cumulative rewards, but
also provide a more equitable sharing of the detour burden
among the workers. This may mitigate the poor mass adop-
tion of crowd-sourcing pointed out by Musthag and Gane-
san (2013), and make mobile crowd-tasking more widely

37

Figure 4: Routine trajectory & detour illustrated.

Figure 5: Inter-worker variance in detour overheads.

adopted by a larger share of urban workers.

The Need for Global Coordination Our proposed
TRACCS framework assigns tasks to multiple workers in
a coordinated fashion. This should result not just in lower
unfairness among workers (as shown above) but also bet-
ter overall rates of task completion. To isolate the impact
of such global vs. independent coordination, we also imple-
mented an additional, more-sophisticated, decentralized al-
gorithm called Independent.

In this Independent approach, we perform task allocation
sequentially (i.e., one worker at a time), but unlike Myopic,
each worker assigns itself the best set of tasks while tak-
ing into account her entire trajectory. More specifically, one
worker will be randomly drawn from the work force and
she will be assigned the maximum possible available set of
tasks (i.e., more specifically, the tasks that maximize her cu-
mulative reward) that can be performed, without violating
the detour threshold. This process continues iteratively (one
worker at a time), with successive workers maximizing their
rewards from only the set of currently un-allocated tasks.

By incorporating the notion of limited detours from the
routine trajectory, Independent helps us isolate the benefit
of performing task allocation in a coordinated fashion. We
studied its performance versus Greedy+ILS and discovered
that, in many topologies, Independent approach can lead to
very sub-optimal task allocations, where some workers pref-
erentially pick the set of tasks that could have been per-

Figure 6: Independent and Greedy+ILS.

formed by other workers, thereby leaving these other work-
ers with a residual set of mostly infeasible tasks. Figure 6 il-
lustrates one such scenario, for a topology with (pr, pi, ph) =
(0.1, 0.7, 0.2)–i.e., where most tasks are distributed in the in-
termediate commuting regions. We see that the task comple-
tion ratio of Independent (around 0.7) is significantly lower
than that achieved via the centralized Greedy+ILS approach
(around 0.8).

Scalable Growth in Complexity

To demonstrate the ability of our heuristics to scale to large
numbers of either crowd-workers or location-sensitive tasks,
we performed extensive experimental studies, with various
values of |M | and the task-to-worker ratio (|Nt|/|M |). Ta-
ble 2 summarizes the total assignment computation time,
and the task completion ratio, taken by the Greedy+ILP
heuristic, for different values of |M | and the task comple-
tion ratio, for a representative topology instance: MultipleO-
rigins(0.5,0.3,0.2), with D = 10%.

We can see that the assignment algorithm takes no more
than 7.73 seconds to compute for even relatively large sizes
(1000 workers and 3000 tasks). Moreover, we see that the
growth in computation time is sub-linear in the number of
workers |M | (a 50-fold increase in |M | from 20 to 1000
results in only a 5-fold increase in the computation time,

38

from 0.4 to 2.0 secs). Moreover, in each case, we see that
the Greedy+ILS is able to achieve task completion rates of
0.68 or higher, and maintains its high task completion rates
even as the size of the problem increases. While real-world
studies will definitely be more conclusive, our results lead us
to believe that our heuristics can handle urban-scale crowd-
tasking problems (involving, several thousands of crowd-
workers and location-sensitive tasks).

Handling Worker Diversity

To demonstrate that our heuristics can handle heterogeneous
worker populations, we also ran experiments with multi-
ple worker classes, characterized by their respective detour
threshold limits D. To measure the impact of D on task as-
signments to different worker classes, we define per-worker
task assignment ratio for each worker, which is computed as
the ratio of the number of assigned tasks over the fair assign-
ment (the fair assignment is number of tasks per worker, i.e.,
|Nt|/|M |). By computing the averages of per-worker task
assignment ratio for each worker classes, we can quickly es-
timate the relative dominance of a worker class in receiving
task assignment.

As an illustrative example, we use a multi-origin network
with parameters (pr = 0.6, pi = 0.2, ph = 0.2), and let
|Nt| = 30 tasks and |M | = 10 workers, where we have 2
classes of 5 workers each, one with D = 10% and another
with D = 20%. Based on earlier discussion, the fair assign-
ment in this case should be 3. The average per-worker task
assignment ratios for all three sets of heuristics are plotted in
Figure 7. For Myopic, Greedy, and Greedy+ILS heuristics,
numbers of assigned tasks are 20, 24, and 28 respectively.
And in all cases, as expected, the worker class with higher
detour limit (D = 20%) has higher ratios than the other
worker class (with D = 10%), and the advantages of 20%
class over 10% class are 50%, 67%, and 111% respectively.

Figure 7: Greedy+ILS with two heterogeneous worker
classes: D = 10% and D = 20%. The network instance
is multi-origin with parameters: (pr = 0.6, pi = 0.2, ph =
0.2). |Nt| = 30 tasks and |M | = 10 workers.

We can see that the Greedy+ILS heuristic is again capa-
ble of finding better solution, and it achieves so by better

utilizing detour limits offered by different worker classes.

Conclusions

We have presented TRACCS, a new centrally-coordinated
approach for assigning mobile crowd-sourced tasks in ur-
ban environments. We formulated the assignment problem
as one of large-scale optimization, which seeks to maximize
the cumulative rewards for all assigned tasks, while ensuring
that each individual’s task-related detour (from their nor-
mal movement trajectory) stays within a specified bound.
Having established the computational difficulty of the ex-
act spatiotemporal optimization problem, we then presented
two heuristic approaches for scalable task assignment. De-
tailed experimental studies show that, for our synthetically-
generated, but realistic, topologies and movement patterns:
(i) our proposed Greedy+ILS heuristic is able to typically as-
sign over 85-90% of the total tasks when workers are willing
to tolerate detours that are no higher than 10% of their nor-
mal commuting time or distance, and, more importantly, (ii)
our centrally-coordinated heuristics significantly outperform
the present Myopic approach of independent, opportunistic
selection by individual crowd-workers, achieving not just
20% or higher task assignment rates, but providing fairer
task allocation across all workers and reducing the average
detour overhead per worker by 60% or higher.

While these results are quite promising, there are sig-
nificant opportunities for further improvement and refine-
ment of the TRACCS framework. To make the task assign-
ment algorithms applicable to a wider variety of problem
settings, the algorithms have to be enhanced to deal with
not just additional constraints (such as sequential dependen-
cies among tasks, or finer-grained time separation require-
ments for recurring tasks), but to also incorporate the statis-
tical forecasting uncertainty about the specific trajectory of
each worker. To empirically establish the performance gains
with this approach, we are presently working to build and
deploy an experimental mobile crowd-tasking App (contain-
ing implementations of our task-assignment heuristics) to a
pool of over 1000 participants in a real-world urban setting.
Only such real-world deployments can reveal whether task-
workers will adopt this paradigm, and how their task accep-
tance and completion rates will be affected by our strategy
of providing them a sequence of tasks ahead of time.

Acknowledgment

This material is based on research sponsored in part by the
Air Force Research Laboratory, under agreement number
FA2386-14-1-0002. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors.

References

Archetti, C.; Hertz, A.; and Speranza, M. G. 2007. Meta-
heuristics for the team orienteering problem. Journal of
Heuristics 13(1):49–76.

39

agents nodes task ratio=2 task ratio=3

Computation time (in seconds) Task completion ratio Computation time (in seconds) Task completion ratio

10 100 0.367 0.75 0.322 0.68
20 200 0.382 0.885 0.382 0.75
250 1250 0.952 0.997 1.626 0.914
500 2500 0.974 1 3.29 0.947

1000 5000 2.029 0.986 7.72 0.857

Table 2: Scalability of the Greedy-ILS heuristic.

Baldacci, R.; Bartolini, E.; and Mingozzi, A. 2011. An Exact
Algorithm for the Pickup and Delivery Problem with Time
Windows. Operations Research 59(2):414–426.
Becker, R.; Cáceres, R.; Hanson, K.; Isaacman, S.; Loh,
J. M.; Martonosi, M.; Rowland, J.; Urbanek, S.; Varshavsky,
A.; and Volinsky, C. 2013. Human mobility characterization
from cellular network data. Communications of the ACM
56(1):74–82.
Chao, I.-M.; Golden, B. L.; and Wasil, E. A. 1996. The team
orienteering problem. European Journal of Operational Re-
search 88(3):464–474.
Chen, C.; Cheng, S.-F.; and Lau, H. C. 2013. The multi-
agent orienteering problem. In Tenth Metaheuristics Inter-
national Conference.
Cordeau, J.-F. o., and Laporte, G. 2003. The Dial-a-Ride
Problem (DARP): Variants, modeling issues and algorithms.
Quarterly Journal of the Belgian, French and Italian Oper-
ations Research Societies 1(2):89–101.
FieldAgent. http://www.fieldagent.net/. Accessed April
2014.
GigWalk. http://gigwalk.com/. Accessed April 2014.
Kazemi, L., and Shahabi, C. 2012. Geocrowd: enabling
query answering with spatial crowdsourcing. In Twentieth
International Conference on Advances in Geographic Infor-
mation Systems, 189–198. ACM.
Kokkalis, N.; Köhn, T.; Huebner, J.; Lee, M.; Schulze, F.;
and Klemmer, S. R. 2013. Taskgenies: Automatically
providing action plans helps people complete tasks. ACM
Transactions on Computer-Human Interaction 20(5):27.
LaMarca, A.; Chawathe, Y.; Consolvo, S.; Hightower, J.;
Smith, I.; Scott, J.; Sohn, T.; Howard, J.; Hughes, J.; Pot-
ter, F.; Tabert, J.; Powledge, P.; Borriello, G.; and Schilit, B.
2005. Place lab: Device positioning using radio beacons in
the wild. In Third International Conference on Pervasive
Computing, PERVASIVE’05.
Lau, H. C.; Yeoh, W.; Varakantham, P.; Nguyen, D. T.; and
Chen, H. 2012. Dynamic stochastic orienteering problems
for risk-aware applications. In Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, 448–458.
Lin, S.-W. 2013. Solving the team orienteering problem
using effective multi-start simulated annealing. Applied Soft
Computing 13(2):1064–1073.
mCrowd. https://crowd.cs.umass.edu/. Accessed April
2014.

Misra, A., and Balan, R. K. 2013. Livelabs: Initial reflec-
tions on building a large-scale mobile behavioral experimen-
tation testbed. SIGMOBILE Mobile Computing and Com-
munications Review 17(4):47–59.
Musthag, M., and Ganesan, D. 2013. Labor dynamics in a
mobile micro-task market. In SIGCHI Conference on Hu-
man Factors in Computing Systems, 641–650.
NeighborFavor. http://www.crunchbase.com/company/
neighbfav. Accessed April 2014.
Talamadupula, K.; Kambhampati, S.; Hu, Y.; Nguyen, T. A.;
and Zhuo, H. H. 2013. Herding the crowd: Automated plan-
ning for crowdsourced planning. In First AAAI Conference
on Human Computation and Crowdsourcing, 70–71.
Vansteenwegen, P.; Souffriau, W.; Vanden Berghe, G.; and
Van Oudheusden, D. 2009. Iterated local search for the
team orienteering problem with time windows. Computers
& Operations Research 36(12):3281–3290.
Vansteenwegen, P.; Souffriau, W.; and Oudheusden, D. V.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research 209(1):1–10.

40

