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Abstract

While temporal behavioral patterns can be discerned to un-
derlie real crowd work, prior studies have typically modeled
worker performance under a simplified i.i.d. assumption. To
better model such temporal worker behavior, we propose a
time-series label prediction model for crowd work. This latent
variable model captures and summarizes past worker behav-
ior, enabling us to better predict the quality of each worker’s
next label. Given inherent uncertainty in prediction, we also
investigate a decision reject option to balance the tradeoff
between prediction accuracy vs. coverage. Results show our
model improves accuracy of both label prediction on real
crowd worker data, as well as data quality overall.

Keywords: task routing, recommendation, time series

Introduction

For online crowd work (Kittur et al. 2013), effective task
recommendation and routing have potential to significantly
improve the quality of data collected and worker experience
by better matching workers to available work (Law, Bennett,
and Horvitz 2011; Li et al. 2014). Whereas preference-based
recommendation models varying worker interest for differ-
ent task types, performance-based recommendation models
varying worker accuracy as a function of task type (macro-
level worker-task matching) or specific examples (micro
quality prediction). Prior work in performance-based recom-
mendation has typically modeled behavior of crowd work-
ers as independent and identically distributed (i.i.d.) over
time (Yuen, King, and Leung 2012; Yi et al. 2013).

In practice, however, crowd worker behavior can be seen
to dynamically vary over time, as shown in Figure 1. A
worker may become tired or bored, or begin multi-tasking,
leading to decreased work quality. Alternatively, work qual-
ity may improve as a worker’s experience with a given task
accumulates (Carterette and Soboroff 2010). Regardless of
cause, temporal effects are clearly evident.

The closest prior work we are aware of on temporal mod-
eling of crowd work, by Donmez et. al. (2010), assumes that
workers are weak learners who behave according to simple
latent dynamics xt = xt−1 + εt. This approach, based en-
tirely on simulation, assumes a uniform offset and temporal

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The work quality of two crowd workers is seen to
vary over time. Gray area indicates correct responses while
black stripes denote errors. The running accuracy of each
(i.e., empirical accuracy up to a given response) is plotted in
red. The top worker’s accuracy is seen to decrease over time,
while the lower worker’s accuracy improves. Their tempo-
ral error patterns also differ: the top worker’s errors become
more frequent while the lower worker’s become less so.

correlation for the underlying dynamics, inconsistent with
what we see in real data, such as in Figure 1.

To more faithfully model such temporal behavior, we
present a time series-based label prediction model for crowd
workers’ behavioral patterns. This categorical time series
model uses a temporally-correlated latent variable which
captures and summarizes the past behaviors of a worker,
enabling us to better predict the quality of the next la-
bel. To efficiently estimate model parameters, we adapt a
recently developed technique (Park, Carvalho, and Ghosh
2014) to our crowdsourcing problem context. Given inher-
ent uncertainty in prediction, we also investigate a deci-
sion reject option to balance the tradeoff between predic-
tion accuracy vs. coverage (Bartlett and Wegkamp 2008;
Nadeem, Zucker, and Hanczar 2010).

We evaluate our time-series model on real worker data
from the NIST TREC Crowdsourcing Track (sites.google.
com/site/treccrowd/). Results show our model enables us to
better predict workers’ next labels. The decision reject op-
tion enables further accuracy improvement by sacrificing
coverage, providing a tuning parameter for aggressive vs.
conservative prediction given model confidence. Additional
simulation experiments show overall quality improvements
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achieved. We investigate the following research questions:
RQ1: Application of time-series modeling. How can we

apply and interpret time-series models of crowd work?
RQ2: Label prediction via a time series model. How ac-

curately does time-series prediction work in our context?
RQ3: Use of decision reject option for managing uncertainty

How effectively does the decision reject option let us
tradeoff our model’s prediction accuracy vs. coverage?

RQ4: Label quality improvement. To what extent can
time-series modeling yield overall improvement in quality
of crowdsourced labels?

Problem

On crowd work platforms such as Amazon’s Mechanical
Turk (MTurk), a task is usually self-selected by a worker.
Relatively few studies have investigated task routing for
micro-tasks, though work exists with other forms of crowd-
sourcing, such as Wikipedia (Cosley et al. 2007). Kamar et
al. (2012) studied the cooperative refinement and task rout-
ing among on-line agents. In addition, both Kamar et al. and
Dai et al. (2010) developed methods to predict the accu-
racy of the next label, but did not model workers’ individ-
ual temporal profiles in making these predictions. Bernstein
et al. (2012) investigated task routing in terms of real-time
crowdsourcing. These studies do not address finding strong
candidates for a particular task from the requester’s view-
point. Work on task markets seeks to chain together different
worker competencies (Shahaf and Horvitz 2010).

SFilter, proposed by Donmez et. al. (2010), is a Bayesian
time series model that captures crowd workers’ dynami-
cally varying performance. The authors do not learn the
parameters for the latent variable dynamics, but as men-
tioned earlier, assumed that an uniform offset and temporal
correlation for the underlying dynamics, with workers as-
sumed to be weak learners following simple latent dynam-
ics xt = xt−1 + εt. Based on the fixed parameters, the la-
tent variable is estimated using a variation of a particle filter,
cf. (Petuchowski and Lease 2014). This assumption does not
seem to hold on the real crowd data we have observed, as ev-
idenced in Figure 1.

In our paper, we attempt to relax special conditions (c = 0
and φ = 1) by proposing a general time series model
(xt = c + φxt−1 + εt). The principal difference is to cap-
ture and summarize the underlying dynamics of workers’
labeling more efficiently and accurately. Our goal is to pre-
dict the next label of a crowd worker by estimating the latent
variables governing the performance of the crowd worker. In
addition, we would like to use the latent variables to better
analyze the varying temporal performance of crowd work-
ers. We formally define our problem as follows:
Problem. Given an individual’s performance history, 1) es-
timate the probability of correct labeling for the next task
instance, and 2) provide meaningful summary statistics for
the behavioral pattern of the worker.

We begin with a binary label annotation problem in
crowdsourcing. The extension to multiple categorization is
straightforward by changing our temporal prediction model,

especially the link function. We first discuss the theoreti-
cal backgrounds of our approach and present our model in
the next Section. We aim to predict the next label of each
worker, using this information to identify the best workers
to which examples should be routed for labeling.

Method: Latent Autoregressive Model

Suppose that a worker has completed n task instances. The
correctness of the ith instance is denoted as yi ∈ {0, 1},
where 1 and 0 represent correct or not. Thus, the perfor-
mance of a worker can be represented as a sequence of bi-
nary observations, y = [y1 y2 . . . yn]. For example,
if a worker completed three task instances and erred on the
first only, then his binary performance sequence is encoded
as y = [0 1 1].

Assume that we have two workers, Alice and Bob, who
have each labeled 10 instances with performance as follows:

yAlice = [1 0 1 0 1 0 1 0 1 0]

yBob = [0 0 0 0 1 0 1 1 1 1]

While both achieve 50% accuracy with respect to the ground
truth, they exhibit quite different temporal profiles. Alice
provides incorrect labels immediately after she marks cor-
rect labels. On the other hand, Bob shows a poor perfor-
mance in the beginning, but he correctly labeled the last four
tasks in a row. We must go beyond measuring accuracy to
capture such temporal variation across workers.

Several statistical models can capture this kind of tem-
poral variation. In a broad sense, such models fall into
two classes depending on the use of latent variables: fully-
observed vs. latent variable models. Fully-observed mod-
els include Mixture Transition Distribution Model (MTDM)
(Raftery 1985), Markovian regression model (Kaufmann
1987; Zeger, Liang, and Albert 1988), and Discrete Au-
toregressive Moving Average model (DARMA) (Jacobs and
Lewis 1983). Latent variable models have been successfully
demonstrated in various applications such as decoding al-
gorithms (Viterbi 1967) and speech recognition (Juang and
Rabiner 1991). Such latent variable models can be further
grouped into two sub-categories based on the representa-
tion of latent variables: Hidden Markov Models (HMM)
(Zucchini and MacDonald 2009) use discrete latent vari-
ables, whereas State-Space Models (SSM) (Zhen and Ba-
sawa 2009) adopt continuous latent variables.

We adopt a latent autoregressive (LAR) model for cate-
gorical time series. The model is a state-space model for a
categorical time series that has been less popular than HMM
and SSM. This is partly because such continuous latent vari-
ables are notoriously difficult to reconstruct from categori-
cal observations. However, the use of the LAR process pro-
vides two substantial advantages: interpretability and exten-
sibility. Indeed, the AR process has a rich history with par-
simonious theoretical results (Canova and Cicarelli 2013;
Litterman 1984). The interpretation on stationarity and spec-
tral analyses (Burg 1967) can be smoothly applied to the la-
tent AR processes. Moreover, the latent VAR process can
be easily extended to cover variants of the AR models such
as ARMA (Box, Jenkins, and Reinsel 1994), Autoregressive
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Conditional Heteroskedasticity (ARCH) (Engle 1982), and
Generalized ARCH (GARCH) processes.

We hypothesize a latent factor xt that governs the worker
performance. This latent factor evolves over time depending
on the previous value in the sequence. The sequence dynam-
ics of the latent factors is described by a set of parameters
θ = {c, φ}. In essence, our model is described as follows:

(Latent AR) xt = c+ φxt−1 + εt (1)

(Observation) p(yt = 1) = logit−1(xt) (2)

(Noise model) εt ∼ Normal(0, σ2) (3)

where y = [yt]
T
t=1 with yt ∈ {0, 1}, and p(yt = 1) indicates

the probability that yt = 1.
Returning to our Alice and Bob example, we show that

this LAR model captures the illustrated temporal patterns.
For Alice’s case, let us take c = 0.1, φ = −0.9, and
x0 = −1 (initial latent state). Ignoring the effect of noise,
the latent variables propagate as follows:

x1 = c+ φx0 = 0.1− 0.9×−1 = 1

x2 = c+ φx1 = 0.1− 0.9× 1 = −0.8

x3 = c+ φx2 = 0.1− 0.9×−0.8 = 0.82

...

where the sequence of latent variables oscillate. As a result,
the probability of correct labeling also oscillates over time.
On the other hand, for Bob’s case, let us assume that the pa-
rameters are c = 0.1, φ = 0.9, and x0 = −1. The temporal
sequence of the latent factors are given as:

x1 = c+ φx0 = 0.1 + 0.9×−1 = −0.5

x2 = c+ φx1 = 0.1 + 0.9×−0.5 = −0.35

x3 = c+ φx2 = 0.1 + 0.9×−0.35 = −0.215

...

As can be seen, the probability of correct labeling improves
over time. To estimate maximum likelihood parameters, we
use a method known as Low-resolution augmented Asymp-
totic Mean Regularized Expectation Maximization (LAM-
ORE) (Park, Carvalho, and Ghosh 2014).

Estimating the parameters from a categorical sequence
involves several challenges. First, unlike continuous time
series, categorical time series contain only finite bits of
information. Categorical outputs can be viewed as lossy-
compression from an information theoretic perspective, thus
the reconstruction of the continuous latent variables suffers
from a low signal-to-noise ratio. Furthermore, this noisy re-
construction increases the uncertainty of the estimated pa-
rameters, especially in the alternating minimization frame-
work. As a result, classical alternating minimization tech-
niques such as Expectation-Maximization become suscep-
tible to various factors, including noisy reconstruction and
multiple local optima of the log-likelihood function. LAM-
ORE combines Method of Moments and Monte-Carlo Ex-
pectation Maximization algorithms to stabilize parameter
estimation. The method can be extended to general categor-
ical time series, e.g. tertiary categorical time series.

Adaptation to Crowdsourcing

We next discuss how to use our time-series framework in
the context of crowdsourcing [RQ1]. Prior to applying this
framework, we first discuss the semantics of our time series
model in crowdsourcing. We then present our label predic-
tion algorithm based on this understanding of the semantics.

Interpretation of Parameters

Our time series framework takes a sequence of observa-
tions as input and generates four types of output values:
latent variables φ, c, xt and an observable variable y =
logit−1(xt). As input, we use the worker’s binary perfor-
mance sequence, as illustrated by the earlier Alice and Bob
examples from the previous section.

Figure 2: Relation over time between asymptotic accuracy
and running accuracy (RA), where RA= # correct labels

# submitted labels .

Latent Variable (xt). The interpretation of xt has an im-
portant meaning with regard to the analysis of workers’ per-
formance. First, xt indicates the probability of making a cor-
rect label at a time point t. In our model, a link function,
logit−1(xt), transforms this probability to a soft label rep-
resenting the polarity of a worker’s next label. With regard
to task routing, this soft label is used as a criteria to judge
an optimal candidate. If a soft label, logit−1(xt), is close to
0 or 1, it indicates that the next label of this worker is likely
to be confident. On the contrary, a label around 0.5 suggests
that the confidence of the worker’s next value is relatively
low since the polarity of the label is weak.

Second, the dynamics of xt is an autoregressive process
with one lagged variable, AR(1). If the absolute value of the
temporal correlation parameter φ is less than 1 i.e. |φ| < 1,
the underlying AR(1) process is a stationary ergodic pro-
cess. The asymptotic theory of autoregressive process pro-
vides that the asymptotic mean of xt is given as x∞ = c

1−φ .
This can be obtained by solving E[xt] = E[c]+E[φxt−1]+
E[εt] = c+φE[xt]. Since yt is fully determined by xt in our
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model, we can extend the concept of the asymptotic mean to
“asymptotic accuracy” which is defined as follows:

y∞ = logit−1(x∞) =
exp(x∞)

1 + exp(x∞)
(4)

Provided modeling assumptions are met, the estimated
asymptotic accuracy should converge to the sample accu-
racy (i.e. ergodicity). Figure 2 empirically demonstrates the
convergence of these two values over time where the data
comes from a randomly selected worker. This suggests that
our modeling assumptions fit well to the actual data.

Temporal Correlation (φ). Temporal correlation φ indi-
cates how frequently a sequence of correct/wrong observa-
tions has changed over time. A worker having φ = −0.8
tends to follow a temporal pattern of regularly alternating
between the correct and the wrong. On the other hand, an-
other worker having φ = 0.8 tends to follow a consistent
pattern without a frequent switching irrespective to the cor-
rect or the wrong. Between these extremes, φ ≈ 0 indi-
cates no temporal dependencies between sequential labels; a
worker of having φ ≈ 0 does not show any regular temporal
pattern. In sum, φ helps to characterize a worker’s behav-
ioral pattern and understand its underlying dynamics.

Figure 3: Relation between c and φ vs. asymptotic accuracy.

Offset (c). The sign of offset c navigates the direction be-
tween correct and wrong. For example, if c is positive, at
each time, the latent variable of a worker is drifted toward
the positive direction, which implies better a correct rate. On
the other hand, if c is negative, the latent variable is drifted
toward the negative direction, implying that the performance
of a crowdworker will degrades over time. The size of offset
c combined with φ determines the asymptotic accuracy of
a crowdworker. Figure 3 shows the relationship between c
and φ vs. asymptotic accuracy logit−1( c

1−φ ). When offset
c is positive, the higher φ indicates the higher accuracy. On
the contrary, the lower φ indicates the higher accuracy when
offset c is negative. This suggests that a worker of a higher

temporal correlation φ shows the extreme polarity with re-
gard to her accuracy. In the mean time a worker of a low φ
value rather shows relatively concentrated around 0.5 indi-
cating less confidence in a worker’s label.

Prediction with Reject Option

For a real application of a time series model to crowdsourc-
ing, we first consider workers’ label predictions over time.
The output of the proposed time series model can be eas-
ily applied toward label prediction as follows. A value of
logit−1(xt) can be used as a probabilistic label (soft label)
indicating the strength of one direction, positive or negative.
For label generation, we may use this value in two ways.
First, it is straightforward to use a given soft label without
any transformation. Second, we generate a hard label based
on the value of a given soft label. For instance, in terms of
predicting a binary label, if a predicted soft label is 0.76, we
then generate a binary label of 1 since the value of the given
soft label is greater than 0.5.

In terms of label prediction, there exists a room for im-
proving the quality of label prediction by taking account of
prediction confidence. For instance, if a soft label is close
to 0.5, it fundamentally indicates very low confidence in
terms of the polarity. Therefore, we may avoid the risk of
getting noisy predictions by adopting a decision rejection
option (Pillai, Fumera, and Roli 2013). In this study, predic-
tion with decision a reject option is defined as follows.

l(xt) =

{
logit−1(xt) if x < 0.5− δ or x ≥ 0.5 + δ
null if x ≤ 0.5− δ and x < 0.5 + δ

where δ is a parameter to control the limits of decision re-
ject option, and δ ∈ [0, 0.5]. High δ indicates a conservative
label prediction which increases the range of decision re-
jection while sacrificing coverage. On the other hand, low δ
allows label prediction in a permissive manner, decreasing
the threshold of decision rejection and increasing coverage.

Evaluation

In this section, we describe the experimental evaluation and
provide our observations. We have tested the proposed time-
series label prediction model under various conditions of de-
cision reject options with a real crowdsourcing dataset.

Experimental Settings

Dataset. We use a subset of a public dataset created for
the NIST TREC crowdsourcing Track 2011 Task 2. The
dataset contains binary relevance judgments from work-
ers rating the relevance of different Webpages to differ-
ent search queries (Buckley, Lease, and Smucker 2010;
Grady and Lease 2010). We processed this dataset to extract
the original order of the workers’ labels. We include only
examples which have ground truth labels, and we exclude
workers making < 20 judgments to ensure stable estimation.
Moreover, since the goal of our work is to be able to route
work to specific workers, it is only worth modeling a given
worker’s behavior if we believe that worker will continue to
do more work in the future, as suggested by their having al-
ready performed some minimal amount of work. We extract
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73 sequential label sets, one per crowd worker. The average
number of labels (i.e., sequence length) per worker is 163.
The standard deviation is large (259) due to three workers
having each submitted over 600 relevance judgments.

Models. We evaluate our proposed time series model (TS-
prediction model) under various conditions of decision re-
ject options. Our initial model uses no decision reject option,
setting δ = 0. In order to examine the effect of decision re-
ject options, we vary δ ∈ [0, 0.25] by 0.05 step-size.

For label prediction, we use the first 10 observed labels
for training and measure the performance of prediction with
the rest of sequential labels. For instance, if a worker has 50
sequential labels, our prediction model takes the first 10 cor-
rect/wrong observation from the labels and then predicts the
following 40 labels in a sequential manner. The prediction
algorithm generates only the next label since we focus on
only short-term prediction in this study.

As a baseline, we compute a worker’s running accuracy
at time t (RAt) as her observed accuracy up to time t, then
use this value as the probability of the worker’s next label
being correct. While running accuracy eventually converges
to asymptotic accuracy, this baseline cannot capture shorter-
term dynamics of workers’ behavioral patterns.

Metrics. We evaluate with two types of predicted labels.
Firstly, we use probabilistic labels (soft labels) produced
by our time series prediction model. Secondly, we also re-
port evaluation with rounded binary labels (hard labels). We
compute the following evaluation metrics, where tp denotes
the number of true positive classifications, fp the false pos-
itives, tn the true negatives, and fn the false negatives:

Precision (P) =
tp

(tp+ fp)
Accuracy =

tp+ tn

n

Recall (R) =
tp

(tp+ fn)
F1 =

2PR

P +R

LogLoss = − 1

n

n∑
i=1

log qi(IsRelevant?(doci))

Computing these metrics for Table 1 examples would yield:

Instance Prediction Truth tp fn fp tn
1 0.7 1 0.7 0.3
2 0.6 0 0.6 0.4
3 0.2 1 0.2 0.8
4 0.1 0 0.1 0.9

Table 1: Simple examples of predictions made on four in-
stances, given ground truth labels indicating relevance (1) or
non-relevance (0), and resulting tp, fn, fp, and tn values.

Precision =
0.9

0.9 + 0.7
≈ 0.56 Accuracy =

0.9 + 1.3

4

Recall =
0.9

0.9 + 1.1
= 0.45 F1 =

2 ∗ 0.45 ∗ 0.56
0.45 + 0.56

LogLoss = − log(0.7) + log(0.4) + log(0.2) + log(0.9)

4

While accuracy is the simplest measure of label quality,
it is less meaningful when the underlying class distribution
is skewed. In such cases, the harmonic mean of precision
and recall (F1) is typically more appropriate if a single mea-
sure of quality is required. In addition, we report average
LogLoss with respect to each worker’s predicted labels. The
log function emphasizes penalties for being both confident
and wrong. In the worst case, 100% confidence in a wrong
label will add negative infinite error.

Experiment 1 (RQ2): Prediction without Rejection

How accurately does our time series prediction model infer
the next label of workers? We first measure prediction per-
formance of our proposed model (TS-based prediction) and
running accuracy-based prediction model (RA-based predic-
tion) over actual workers’ correct/wrong observations with-
out considering any decision reject option. Figure 4 shows
the difference between two models across 73 workers with
respect to three metrics. In most cases, TS-based predic-
tion outperforms the performance of RA-based prediction.
In particular, Figure 4 (c) indicates that the proposed model
makes better predictions for all but 7 workers. In the case of
hard labels, overall patterns across 73 workers are identical
to this plot, and thus we omit those plots.

Note that this prediction performance comparison does
not consider any decision rejection options. In other words,
both prediction algorithms use all predicted labels even
though there exist many fewer confident predictions. In the
following experiments, we investigate the effect of decision
reject options on the prediction performance of models.

Experiment 2 (RQ3): Prediction with Rejection

To what extent do decision reject options influence the qual-
ity of predicting workers’ next label? We conduct two exper-
iments to examine the influence of varying the parameter δ
representing a decision reject option. In this experiment, we
also consider workers’ actual correct/wrong observations as
ground truth and measure the prediction performance over
it. The score is individually computed for each worker, then
averaged over all workers.

Figure 5 shows the effect of decision reject options on
prediction performance along with varying original workers’
accuracies. The original worker accuracy represents each
worker’s final running accuracy at the time point which each
worker completed all the labeling task instances. The x-axis
indicates the workers running accuracies; the y-axis shows
F1-score of label prediction. With no rejection (when δ = 0,
the upper left figure), prediction performance is proportional
to the increase of actual worker accuracy. It suggests that the
prediction performance (F1 score) of both prediction models
exceeds 0.8 for highly accurate workers (>0.7) while predic-
tion is worse for relatively inaccurate workers (≤0.7).

The other sub-figures in Figure 5 suggest that the increase
of δ improves the performance of TS-based label predictions
while no significant performance improvement is reported
in RA-based label predictions. Decision rejection options
get rid of label predictions with less confidence. Therefore,
overall prediction performance improves with increased re-
jection parameter δ. In terms of the correlation between per-
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Figure 4: Predictions of workers’ next labels are evaluated by Accuracy, F1, and LogLoss. Our time series(TS)-based prediction
outperforms the running accuracy (RA)-based prediction for most workers across all three metrics.

formance predictions and actual workers’ accuracies, deci-
sion reject options improve the prediction performance of
less accurate workers (having accuracy between 0.5 and 0.7)
more efficiently than the RA-based predictions.

RA-based prediction performance does not improve since
the running accuracy does not reflect the dynamics of work-
ers’ correct/wrong patterns. In other words, the oscillation
of running accuracy becomes smaller over time and thus
the RA-based prediction is not able to capture the dynam-
ics. On the contrary, TS-based prediction consider workers’
correct/wrong pattern at each time point and therefore this
model is able to predict a short-term label more accurately
than the RA-based predictions. In addition, decision rejec-
tion options even lead to the further improvement of pre-
dicted label quality by the predicted time series model.

Finally, this experiment demonstrates that decision reject
options significantly improve the quality of TS-based pre-
dicted labels by avoiding the risk of less confident predic-
tions. The RA-based prediction does not achieve similar im-
provement as the TS-based prediction even though decision
reject options are applied. We only report the prediction per-
formance of label prediction vs. original workers’ accuracies
across varying decision reject options since the results mea-
sured by F1 and LogLoss also show similar patterns.

While further improvement of label predictions can be
achieved by decision reject options, more conservative de-
cisions not to predict naturally decrease the number of pre-
dictions made, as Figure 6 shows. Without decision rejec-
tion, the number of predicted labels are 163 across all the
workers. However, increasing δ decreases the number of pre-
dictions since there are many ambiguous logit−1(xt). For
instance, in case of δ = 0.05, two prediction models re-
ject their predictions if 0.45<logit−1(xt)<0.55. Therefore,
the increase of δ naturally decreases the number of predic-
tion labels. However, the accuracies substantially increase

by rejecting uncertain predictions. In terms of accuracy,
the proposed TS-based prediction improves its performance
from 0.65 to 0.82 while the RA-based prediction does not
achieve any performance improvement. Besides, our pro-
posed model shows similar quality improvement in terms of
F1 score except with the highest setting of δ = 0.25.

Experiment 3 (RQ4): Label Quality Improvement

Predicion method TS RA Original Label

LogLoss 0.31** 0.42* 3.65
F1 score 0.79** 0.65* 0.62
Accuracy 0.79** 0.71* 0.59

Table 2: Label quality over ground truth. Decision rejection
option was set δ = 0.2. (**) indicates that TS-based predic-
tion method outperforms the other two methods with high
statistical significance (p<0.05). (*) indicates that SA-based
method outperforms the quality of original labels with high
statistical significance (p<0.05).

The previous two experiments showed our temporal
model better predicting the next label of each worker than
the baseline (RA-based prediction). Moreover, we demon-
strated that decision reject options further improve the pre-
diction performance by avoiding less confident predictions.

Next, we conduct an experiment on the quality of crowd-
sourced labels over ground truth generated by expert anno-
tators. We measure three metrics (LogLoss, F1, and accu-
racy) in order to compare the quality of actual labels gen-
erated by two prediction methods (TS-based prediction vs.
RA-based prediction) to original labels collected from work-
ers without any task recommendation. For the experiment,
we use soft (i.e., probabilistic) labels for LogLoss and hard
(i.e., rounded, binary) labels for F1 and accuracy for proper
scoring rules (Gneiting and Raftery 2007). In addition, we
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Figure 5: The benefit of predicting workers’ next labels vs. simply relying on workers’ running accuracies across different
rejection strategies (varying δ ∈ [0, 0.25] by 0.05 step-size). As a tradeoff, by predicting only above a certain confidence level,
increasing delta naturally increases prediction quality but decreases coverage (the number of predictions made). Increasing
δ with TS-based prediction for medium-quality workers (near 0.5 accuracy) improves predictions substantially. RA-based
prediction does not achieve similar improvement since it does not capture dynamicity of workers’ labeling patterns.

conduct a paired-sample t-test in order to confirm a signifi-
cance difference between prediction methods. A decision re-
ject option (δ = 0.2) is used for this experiment. Each score
indicates average prediction score across all workers. For
simplicity, we do not consider any aggregation methods.

Table 2 shows prediction scores of each method with re-
spect to ground truth. Temporal modeling is seen to out-
perform the baseline (SA-based prediction) by 10-20% and
significantly improve upon original labels by 20-30%. This
suggests that label generation via our time-series prediction
model leads to quality improvement of crowdsourced labels.

Conclusion and Future Work

Predicting the best workers can helpfully support successful
task recommendation in crowdsourcing. While the existing
studies make i.i.d. assumptions in terms of analyzing crowd
workers’ behavioral patterns for finding the best worker, we
present a time-series prediction model in order to take ac-
count of the dynamics of workers’ temporal behavioral pat-
terns. Our experiments demonstrate that the proposed model
not only predicts the actual workers’ label more accurately
but also improves the quality of crowdsourced labels over
ground truth. This study presents a promising direction of
time-series modeling to improve crowd work quality.

One direction to extend this study is to design an on-
line time series prediction models. Although our param-
eter estimation algorithm is more efficient than a generic

EM algorithm, it still requires several iterations to converge.
To implement a real-time (e.g. millisecond time window)
task recommendation system, however, our estimation al-
gorithm can be a bottleneck. If we sacrifice the granular-
ity of estimated parameters, however, the parameters can
be estimated in a single pass of data. The basic idea is
to restrict our parameters to be from finite sets e.g. c ∈
{−1,−0.9, . . . , 0.9, 1}. Then, our particle filter could be ap-
plied with a finite set of parameter combinations in parallel,
and we pick the parameter set that provides the maximum
pseudo-likelihood of the time series. This large-scale, real-
time implementation is worth investigating in future work
to empirically verify the trade-off between parameter reso-
lution and worker recommendation performance.
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