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Abstract

We describe a system which monitors the performance
of labor channels within a crowdsourcing platform in
an online manner. This allows us to automatically de-
termine if and when to switch between labor channels
in order to improve overall performance of crowd tasks.

Introduction

Most crowdsourcing platforms, either implicitly or explic-
itly, hire different pools of workers with varying geogra-
phies, demographics, and skill sets. We call each such (po-
tentially overlapping) pool a labor channel. The quality of
work for a given task can vary widely across different chan-
nels (Dasgupta et al. 2013), yet the requestor is rarely privy
to this information. Some crowdsourcing platforms provide
the flexibility for the requestor to choose a specific labour
channel either explicitly, or by selecting different settings
(e.g., geography or worker accuracy rating), however plat-
forms do not

e provide a characterization of the performance of these la-
bor channels,

e automatically route tasks to appropriate labour channels
based on the requirements of the requester, or

e adapt to performance changes or switch tasks between
channels.

Therefore, the requestor is left to guess by trial and error the
best labour channel that suits her requirements. This leads to
loss of time, revenue, and quality.

In this paper, we fill this gap by introducing a system that
provides functionality for the three points identified above.
Such a system would be useful in at least two important sce-
narios:

Enterprise Crowdsourcing: Large volumes of tasks are
processed on a regular basis, so there is both scope and
incentive to learn and optimize over labor channels.

Platform Improvement: Offering such optimization as a
feature for requesters would be a novel and useful feature
for a crowdsourcing platform.
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Note that it is important, in both scenarios, that the solu-
tion be adaptive. Since the crowd within a labor channel
is changing (due to people joining, leaving, or acquiring
skills), learning once and optimizing is not enough.

Related Work

Task assignment strategies to improve performance of
crowdsourcing platforms has been studied before. Most of
them require knowledge of platform internals such as worker
skills and preferences (Difallah, Demartini, and Cudré-
Mauroux 2013), historical worker performance (Liu et al.
2012), or availability of best workers (Khazankin, Schall,
and Dustdar 2012). Even those works that do not assume
knowledge of platform internals such as (Dasgupta et al.
2013; Rajan et al. 2012) overlook the fact that the per-
formance of these platforms is an aggregate of the perfor-
mances of multiple labour channels.

Our Approach

We consider an explore-exploit framework when thinking
about this problem. While we wish to improve performance
as much as possible by “exploiting” the best labour pool,
we also wish to “explore” to make sure we detect potential
better pools as and when they arise. We conduct a very sim-
ple experiment where we post tasks several times a day over
several days. We compare an adaptive posting algorithm to
the naive (yet commonly used) strategy of simply posting to
a single labor pool.

The Experiment

We considered a digitisation task where workers were asked
to type in fields of handwritten text from a form. We
used four different labor channels (DiamondTask, Neodev,
Prodege & RewardingWays) on the CrowdFlower platform
which allows the requester to explicitly select labor chan-
nels. We posted batches of 20 tasks on each of the four chan-
nels at six different hours of the day (02, 06, 10, 14, 18 &
22) for seven days in a week, which generated our data.

We considered optimizing three different metrics: 1) only
accuracy (Acc) 2) only response time (RT), and both accu-
racy and response time (AccRT). Accuracy is given by 1— #
where, L is the Levenshtein Distance between the original
text field in the form and the response (i.e. minimum number



of string manipulations required to transform one string to
other) and N is the length of the string. RT is the time elapsed
between posting the task and retrieving the results. To nor-
malize for outliers, we set any value below 1st quartile to 0,
any value above 3rd quartile to 1 and normalized the remain-
ing values. Our optimization function was Acc + (1 — RT).
We used regret against each labor channel (the difference be-
tween the performance of our switching algorithm with the
algorithm that does not switch) as a measure of our algo-
rithms efficacy. Since our algorithm is randomized, we ran it
counterfactually on the above data 100 times, and report the
mean regret along with the standard deviation over the trials.

We used a simple exploration/exploitation algorithm with
one simple observation: not every labor pool is worth explor-
ing. We only explore under two scenarios: 1) it was close to
our current best, or 2) it has been a long time since we tried
it. In either case, the performance of the pool may have im-
proved and surpassed our current best. We exploit the best
observed pool with probability 1 — e and explore a pool
which satisfies the above conditions with probability €. The
algorithm has a short memory, and simply uses the last ob-
served measurement as an estimate for the performance of a
labor pool. The pseudocode is given in Algorithm 1. Many
more sophisticated algorithms could be used, however we
see below that even this simple version gives significant im-
provement.

Algorithm 1 : e-Smart Algorithm.
Input: number of pools &, and learning parameters e, .
7=0
fori < 1tokdo
T = i, ﬂl =T~ F;
end for
fori < k,k+1to...do
w* =max;{ji;}, i* = argmazx;{ji;}
for i < 1to k do

a; = 1
10
with probability 1 — ¢;

. 2
= { ist.a; =1 with probability .

otherwise.

end for

end for

Results

When running our algorithm, we saw that it indeed choses to
switch between the different labor channels. Moreover, de-
spite being rather simple, it still outperforms any single labor
channel. This difference is significant when we optimize for
both accuracy and time, and comparable when optimizing
only one of the two (see Figure 1).

We expect a more sophisticated algorithm, with better
memory or more sophisticated switching to improve the
results further. Developing such algorithms remains a key
component of future work. Further, we wish to test larger
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Figure 1: Performance of our algorithm compared to an al-
gorithm that has a fixed choice of labor channel.

data sets with more labor channels over longer periods of
time.

Conclusions

In this work, we proposed a system which opportunistically
and automatically selects labour channels in such a way that
the final performance can be improved. Enterprise requesters
and crowdsourcing platforms could benefit significantly by
leveraging their labor pools in an efficient manner. Even a
simple first attempt has shown improvement, and we expect
our results to only improve with more sophisticated algorith-
mic techniques.
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