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Abstract

Designing pricing mechanisms for recruitment of work-
ers is a central challenge in online crowdsourcing mar-
kets. We consider a novel and realistic setting for such
markets, where the private cost of the workers and util-
ity derived from them is unknown to the mechanism;
however, a set of the workers’ features can be observed
before making the price offer. How should the offered
price be adapted to maximize the utility from recruited
workers, while minimizing the cost of payments and the
idling cost of failure to recruit? In this paper, we address
these questions by formulating the problem as a contex-
tual partial monitoring game, a generic framework for
online learning problems that allows to deal with com-
plex feedback structure. We present simulation results
comparing our approach to the classical contextual ban-
dit approach, demonstrating the complexity of the prob-
lem and the need for the partial monitoring framework.

Introduction
The recent adoption of crowdsourcing markets on the Inter-
net (such as Amazon’s Mechanical Turk, Clickflower, etc.)
has created numerous opportunities for outsourcing tasks to
online “workers”. The principal agent or “requester” who
posts the tasks generally has limited budget as well as time
constraints and aims to maximize the utility derived from
the task. The workers in such markets are diverse and often
act strategically in aiming to maximize their profit. Further,
the system may have very limited information about them,
making it difficult to infer their private cost and potential
utility derived from their recruitment. These challenges have
brought increased attention to the scientific questions around
the design of pricing mechanisms for recruitment of work-
ers in such markets. A series of recent results (Singer 2012;
Singla and Krause 2013b; 2013a) have proposed the use
of budget feasible procurement auctions to design market
mechanisms and pricing policies for crowdsourcing. How-
ever, these results are limited and not broadly applicable to
more realistic and complex scenarios – the existing mecha-
nisms either assume that the utility is equal across all work-
ers, or that the utility of a worker can be inferred by the
mechanism before making the offer. Consider tasks such as
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Figure 1: Loss function
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(a) Small idling
cost α = 0.15

0 1 2 3 4
x 10

5

0

500

1000

1500

Time Step

E
xp

ec
te

d 
R

eg
re

t

 

 

CBP−SIDE
LinUCB
TFT

(b) Large idling
cost α = 0.75

Figure 2: Simulation Results

translating web documents or image tagging. Here, the util-
ity derived from a worker and the private cost could pos-
sibly depend on the demographics. In realistic settings, the
mechanism may have access to some of these features that
could provide cues for the worker’s utility and private cost.
Given these contextual features, how can a mechanism learn
to adapt the prices to be offered so as to maximize the utility?
This is the fundamental question we address in this paper.

Contextual Partial Monitoring Problem
Model and protocol. The mechanism interacts with the
workers sequentially in discrete timesteps denoted by t.
Each worker wt has a private cost ct ∈ C and is associated
with a utility vt ∈ V that the mechanism would derive from
recruitment. Here C and V are the sets of possible prices
and utilities, assumed to be in same units. Both ct and vt
are unknown, however a set of contextual features xt ∈ X
(such as demographics of the worker) are observable to the
mechanism before making the payment offer. The mecha-
nism computes and offers a price pt ∈ C. The worker ac-
cepts if ct ≤ pt and rejects otherwise. Upon acceptance, the
worker completes the task, receives a payment of pt, the re-
quester gains the utility vt and mechanism receives as feed-
back the utility value vt. The actual cost ct is never revealed.

Loss function and regret minimization. The explicit
goal of the requester is modeled as a loss function `(c, v, p)
that the mechanism aims to minimize. Budget constraints of
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the requester are modeled as the price inefficiencies of of-
fering higher payment compared to the optimal price that
could have been offered at time t. Time constraints are mod-
eled through fixed idling cost α of failure to recruit a worker
at timestep t because of offering lower payment than the true
cost. The particular loss function we consider in our work is
shown in Figure 1(a),1(b) and is given by `idle(pt, ct, vt) =
max(pt − vt, pt − ct)Ipt≥ct + αIpt<ct , where I is the in-
dicator function. The goal of the mechanism is to be able
to learn a latent mapping K from contextual features X to
workers’ cost and utilities C ×V , and perform competitively
w.r.t the oracle that offers prices with full knowledge of K.
This is captured by the “regret” of the mechanism given by
RM = LM − LO where LM =

∑T
t=1 lt is the cumulative

loss of the mechanism and LO denotes the loss of the oracle.
The goal is to design a mechanism where the average regret
approaches zero asymptotically, i.e., limT→∞ RM/T = 0.

Comparison to multi-armed-bandits (MAB). In our
model, the exact loss incurred at each timestep, lt, cannot
be directly computed by the mechanism as it depends on ct
and vt. This is exactly the reason, why the class of problems
considered here is more difficult and generic than what can
be modeled by the MAB framework (Li et al. 2010). While
simpler crowdsourcing markets have been modeled through
the MAB (Singla and Krause 2013b), the complex feedback
structure of our model calls for a more generic framework.

Partial monitoring framework. Many realistic settings,
as in our model, have complex and limited feedback struc-
ture thus concealing the incurred losses. Partial monitoring
games (Bartók, Zolghadr, and Szepesvári 2012) provide a
powerful model for an online learner acting in such an envi-
ronment. Bartók and Szepesvári (2012) present an algorithm
CBP-SIDE for contextual partial monitoring games where
the learner is also provided with some side information (con-
text) at each timestep. We present the necessary components
to define such a game w.r.t our problem, the complete imple-
mentation details are presented by Lienert (2014).

A finite stochastic partial monitoring game with linear
side information is a game G = (N ,S,L,Σ,H,K) played
between a learner (the mechanism executed on behalf of re-
quester) and an environment (capturing the interaction with
the workers) over the course of a finite number of rounds
T . The set of actions available to the mechanism, N =
{1, · · · , N}, is the set of price offers C that could be made
by the mechanism. S = {1, · · · , S} denote the possible val-
ues of outcome of unknown states of the environment at each
timestep and is given by S = C × V referring to the possi-
ble values of cost and utility. L ∈ RN×S is the loss matrix
associating each action-outcome pair with a loss in R and is
completely defined by the loss function `idle(pt, ct, vt).

The feedback alphabet Σ defines a set of symbols de-
noting the possible feedback that could be observed by the
mechanism. In our case, the feedback observed is two-fold:
i) first, the worker’s decision about the acceptance (y) or re-
jection (n) of the offer is observed, ii) then, in case of ac-
ceptance, the utility v of the worker is observed. Hence, Σ is
given by {n}∪({y}×V). The feedback matrix H ∈ ΣN×S as-
sociates the pair of action (pt) and outcome (ct and vt) with a
feedback symbol from the alphabet Σ as discussed above. At

each time step t, the mechanism observes side information
xt ∈ RD which completely determines the distribution over
outcomes the environment plays according to. We assume
‖xt‖1 = 1. The mapping from side information space to the
S-dimensional probability simplex ∆S ⊂ RS is realized by
the stochastic matrix K ∈ RS×D. Note that the mechanism
has full knowledge ofN ,S,L,Σ,H and the goal is to learn
K. The oracle also has the full knowledge of K.

Results
We now provide results for simulation experiments. We
considered the set of prices as C = {0, 1/2, 1} and three
equally-spaced utility values V = {1/3, 2/3, 1}. We vary
the idling cost from α = 0.25 to α = 0.75. We considered
D = 9 for side information (given by |C| × |V|), gener-
ated uniformly at random from the probability simplex and
mapped to an outcome distribution using a predefined lin-
ear stochastic matrix K, unknown to the mechanism. We
compare the results against TFT and LINUCB as baselines.
TFT is naive algorithm we developed that does not learn
anything about the outcome distribution, and simply incre-
ments or decrements the offered price for a given value of
side information, based on the rejection or acceptance of the
offer for the same side-information previously. Secondly, we
also applied the contextual bandit algorithm LINUCB. As
the feedback in our model is less than what is required by
the bandit algorithm, applying LINUCB requires approxi-
mating bandit feedback from observed variables. We defer
the details to Lienert (2014). The results are depicted in Fig-
ure 2(a) and 2(b) for α = 0.25 and α = 0.75. TFT performs
badly for both settings and the regret of CBP-SIDE grows
sublinearly and faster compared to LINUCB. Also, we note
that the case of larger idling cost α = 0.75 has higher re-
gret for the algorithms compared to α = 0.25. These results
demonstrate the complexity and need for partial monitoring
framework for such models with limited feedback. Our pro-
posed framework is a step forward in learning and designing
mechanisms for more realistic crowdsourcing markets.
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Bartók, G.; Zolghadr, N.; and Szepesvári, C. 2012. An adaptive
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