
Using Worker Quality Scores to Improve Stopping Rules (Work in Progress)∗

Ittai Abraham, Omar Alonso, Vasilis Kandylas,
Rajesh Patel, Steven Shelford, and Alex Slivkins

{ittaia, omalonso, vakandyl, rajeshpa, stevsh, slivkins}@microsoft.com
Microsoft

Abstract

We consider the crowdsourcing task of learning the answer
to simple multiple-choice microtasks. In order to provide sta-
tistically significant results, one often needs to ask multiple
workers to answer the same microtask. A stopping rule is an
algorithm that for a given microtask decides for any given set
of worker answers if the system should stop and output an
answer or iterate and ask one more worker. A quality score
for a worker is a score that reflects the historic performance
of that worker. In this paper we investigate how to devise bet-
ter stopping rules given such quality scores. We conduct a
data analysis on a large-scale industrial crowdsourcing plat-
form, and use the observations from this analysis to design
new stopping rules that use the workers’ quality scores in a
non-trivial manner. We then conduct a simulation based on
a real-world workload, showing that our algorithm performs
better than the more naive approaches.

Introduction. A crowdsourcing system allows to quickly
and cheaply obtain and aggregate information from a large
online community of people. One of the most prominent
uses of crowdsourcing is in learning the wisdom of the
crowd. In a typical industrial scenario that we consider in
this paper, a surveyor has a collection of microtasks (also
called HITs: Human Intelligence Tasks), where each HIT
has a specific, simple structure and involves only a small
amount of work. We focus on multiple-choice HITs: each
HIT consists of a question with several possible answers.
The goal of the surveyor is to learn the majority opinion of
the crowd on each HIT. This abstract scenario covers impor-
tant industrial applications such as relevance assessment and
other optimizations in a web search engine and construction
of training sets for machine learning algorithms. For exam-
ple, if a HIT asks whether a particular URL should be la-
beled as spam and most workers believe it should, then the
surveyor would like to learn this.

The surveyor has two objectives: extract high-quality in-
formation from the crowd (i.e., reduce the error rate), and
minimize costs (e.g. in terms of money and time spent).
There is a fundamental tradeoff between these two objec-
tives; on a high level, our goal is to optimize this tradeoff.

∗The full paper is available on arxiv.org.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We focus on obtaining a high-quality answer for a sin-
gle HIT. We investigate a natural adaptive approach: the
platform adaptively decides how many workers to use be-
fore stopping and choosing the answer. The core algorithmic
question here is to design a stopping rule: an algorithm that
at each round decides whether to stop or to ask one more
worker. An obvious tradeoff here is that using more workers
naturally increases both costs and quality.

Workers vary in skill and expertise, and one can assign
quality scores to workers based on their past performance.
We investigate how these quality scores can help in building
better stopping rules. While an obvious approach is to give
more weight to workers with better quality scores, we find
that more nuanced approaches perform even better.

We provide analysis of a real crowdsourcing system and
design new stopping rule algorithms based on our conclu-
sions. There could be other ways a quality score can be
used, but we argue that there is good reason to consider sys-
tems that only use them to optimize the stopping rule. In
particular, we assume that each worker gets paid the same
micro-payment amount for each microtask she answers and
we assume that the platform cannot choose which workers
show up and answer the tasks. These assumptions match the
current behaviour of many large scale crowdsouring plat-
forms. Morover adding differential payments and/or dif-
ferential task assignment introduces a wide range of com-
plexities. We believe that modifying these assumptions may
raise some interesting research questions that are beyond the
scope of this paper.

Our contribution - data analysis. We consider a large col-
lection of HITs from UHRS – a large in-house crowdsourc-
ing platform operated by Microsoft. First, we find that the
difficulty of a random HIT is distributed near-uniformly
across a wide range. Second, we investigate the interplay be-
tween HIT difficulty and worker quality. We partition HITs
(resp., workers) into groups according to the empirical HIT
difficulty (resp., worker quality). We construct a coarse ma-
trix of task difficulty vs workers’ quality, where each cell
contains the average error rate when workers in a given
worker group answer HITs in a given HIT group. Looking
at this matrix, we observe that the better-quality workers are
significantly better than the low-quality workers for the rel-
atively harder tasks. Moreover, there is very little difference

Human Computation and Crowdsourcing: Works in Progress and Demonstration Abstracts 
An Adjunct to the Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing

2



between all workers for the relatively easy tasks. We find
this surprising, as we previously believed that better-quality
workers are always much better than worse-quality workers.
These observation allow us to construct realistic simulated
workloads for our experiments.

Our contribution - algorithms. Since HIT difficulty is
near-uniformly distributed across a rather large range, we
do not optimize for a particular difficulty level, but instead
design robust algorithms that provide a competitive cost-
quality tradeoff for the entire range of difficulty. As a base-
line, we consider a scenario where workers are “anony-
mous”, in the sense that they have no history and therefore
no quality scores. We design and analyze a simple stopping
rule for this scenario, and optimize its parameters using a
realistic simulated workload.

We then devise algorithms that use worker quality scores.
Given the above empirical observations, we would like to
utilize all workers for easy tasks, while giving more weight
to better workers on harder tasks. As we do not know a pri-
ori whether a given HIT is easy or hard, we use the stop-
ping time as a proxy for task difficulty. Informally, we start
out believing that the task is easy, and change the belief
in the “harder” direction over time as we ask more work-
ers. Accordingly, we start with all workers having equal
weights, and gradually modify the weights over time: in-
crease weights for better workers and/or decrease weights
for worse workers. We consider several algorithms based on
this weight-modifying approach, and compare them to more
obvious algorithms that do not change weights over time.
We conduct simulation based on the real workload, and con-
clude that the weight-modifying approach performs better.

Our model. We assume that each HIT has a correct answer.
A surveyor has a collection of HITs, called a workload,
and strives to learn the correct answer for each task. The
surveyor has access to a stylized crowdsourcing system that
operates in rounds. In each round it chooses one HIT from
the workload and a worker arrives, receives the task, sub-
mits his answer and gets paid a fixed amount for her work.
The system needs to output an answer for each HIT.

We focus on designing stopping rules for a single HIT. In
each round, a worker arrives and submits an answer to this
HIT, and our algorithm decides whether to stop, and if so,
which answer to output. For a given workload, there are two
objectives to minimize: the error rate – the fraction of tasks
for which the algorithm outputs the wrong answer, and the
average cost per task paid to the workers by the algorithm.

We consider a plane whose coordinates are the error rate
and the average cost. The performance of a given algorithm
on a given workload corresponds to a point on this plane.
Our algorithms have a parameter that controls the error rate
vs. average cost tradeoff. So each parameterized algorithm
corresponds to a curve on this plane.

For the analysis, and also for intuition, we model a given
worker’s answer to a given HIT as an independent random
variable. Moreover, we assume that the most probable an-
swer to each HIT is the same for all workers.

For a given HIT, we consider the difference in average
probability between the two most probable answers, where

the averages are taken over all workers. We treat this differ-
ence as an objective measure of difficulty of the HIT: a large
difference (close to 1) implies the HIT is very easy, and a
small difference (close to 0) implies that it is very hard.

Related work. Much work on crowdsourcing is usually
done using platforms like Amazon Mechanical Turk or
CrowdFlower. (Snow et al. 2008) found that on these plat-
forms, the majority voting is a good approach to achieve
quality. (Sheng, Provost, and Ipeirotis 2008) explore adap-
tive schemes with Bayesian assumptions. A study on ma-
chine translation quality uses preference voting for com-
bining ranked judgments (Callison-Burch 2009). Budget-
optimal task allocation (Karger, Oh, and Shah 2011) focuses
on a non-adaptive solution to the task allocation problem
given a prior distribution on both tasks and judges (while we
focus adaptive solutions and do not assume priors on tasks).
CrowdSynth addresses consensus tasks by leveraging super-
vised learning (Kamar, Hacker, and Horvitz 2012). A recent
line of research is adding a crowdsourcing layer as part of a
computation engine, e.g. (Franklin et al. 2011).

Settings similar to stopping rules for anonymous work-
ers (but technically incomparable) were considered in prior
work, e.g. (Ramey Jr and Alam 1979; Dagum et al. 2000;
Mnih, Szepesvári, and Audibert 2008; Abraham et al. 2013).

References
Abraham, I.; Alonso, O.; Kandylas, V.; and Slivkins, A.
2013. Adaptive crowdsourcing algorithms for the bandit sur-
vey problem. In 26th COLT.
Callison-Burch, C. 2009. Fast, cheap, and creative: Evalu-
ating translation quality using amazon’s mechanical turk. In
EMNLP.
Dagum, P.; Karp, R. M.; Luby, M.; and Ross, S. M. 2000.
An optimal algorithm for monte carlo estimation. SIAM J.
on Computing 29(5):1484–1496.
Franklin, M. J.; Kossmann, D.; Kraska, T.; Ramesh, S.; and
Xin, R. 2011. Crowddb: answering queries with crowd-
sourcing.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining hu-
man and machine intelligence in large-scale crowdsourcing.
In 11th AAMAS.
Karger, D. R.; Oh, S.; and Shah, D. 2011. Iterative learning
for reliable crowdsourcing systems. In 25th NIPS.
Mnih, V.; Szepesvári, C.; and Audibert, J.-Y. 2008. Empiri-
cal bernstein stopping. In 25th ICML.
Ramey Jr, J., and Alam, K. 1979. A sequential procedure for
selecting the most probable multinomial event. Biometrica
66:171–173.
Sheng, V. S.; Provost, F. J.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In 14th KDD.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008.
Cheap and fast - but is it good? evaluating non-expert anno-
tations for natural language tasks. In EMNLP.

3




