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Abstract

A key challenge in participatory sensing systems has been
the design of incentive mechanisms that motivate individu-
als to contribute data to consuming applications. Emerging
trends in urban development and smart city planning indicate
the use of citizen reports to gather insights and identify ar-
eas for transformation. Consumers of these reports (e.g. city
agencies) typically associate non-uniform utility (or values)
to different reports based on the spatio-temporal context of
the reports. For example, a report indicating traffic congestion
near an airport, in early morning hours, would tend to have
much higher utility than a similar report from a sparse resi-
dential area. In such cases, the design of an incentive mecha-
nism must motivate participants, via appropriate rewards (or
payments), to provide higher utility reports when compared
to less valued ones. The main challenge in designing such
an incentive scheme is two-fold: (i) lack of prior knowledge
of participants in terms of their availability (i.e. who are in
the vicinity) and reporting behaviour (i.e. what are the re-
wards expected); and (ii) minimizing payments to the re-
porters while ensuring that the desired number of reports are
collected. In this paper, we propose STOC-PISCES, an algo-
rithm that guarantees a stochastic optimal solution in the gen-
eralized setting of an unknown set of participants, with non-
deterministic availabilities and stochastically rational report-
ing behaviour. The superior performance of STOC-PISCES
in experimental settings, based on real-world data, endorses
its adoption as an incentive strategy in participatory sensing
applications like smart city management.

Introduction
In recent years participatory sensing has evolved into a sci-
entific paradigm that empowers citizens with mobile de-
vices, embedded with a plurality of sensors, to contribute to
micro and macro-scale urban sensing applications (Ganti et
al. 2013; Chon et al. 2013; Campbell et al. 2008; Mukherjee
et al. 2014). The effectiveness of personal sensing systems
such as PEIR (Mun et al. 2009) and CenceMe (Miluzzo et
al. 2007), as well as community-based participatory sensing
systems, such as the Favela Project (Maps 2012), heavily
rely on the engagement of reporters contributing with data
sensed from their devices. Prior work (Koutsopoulos 2013;
Jaimes, Vergara-Laurens, and Labrador 2012; Lee and Hoh
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2010) corroborates the fact that participants get motivated to
submit data (reports) if they are appropriately incentivized
(rewarded) by the requesters (e.g. city agency). However, ap-
proaches proposed erstwhile heavily rely on either auction-
based or utility-based incentive mechanisms, that in no way
guarantee that a requester will receive the desired number of
reports, for a specific region or time period of interest. Fur-
ther, these approaches do not address the problem of mini-
mizing payments for a requester, while ensuring these pay-
ments are commensurate with the utility of reports. More
importantly, prior art assumes knowledge of reporter avail-
ability as well as reporting behaviours (often in the form of
bids). This assumption, however, does not hold in dynamic
real-world scenarios, where reporters can be highly mobile
and hence their availability can be non-deterministic.

Typically, for a participatory sensing application, re-
questers have a higher value (or utility) for events pertain-
ing to certain spatio-temporal regions of interest over others.
For instance, traffic reports during peak hours from a busi-
ness district are of greater value compared to reports from
a residential area, or reports during off-peak hours. A park-
ing lot violation report at a busy city intersection may have
greater utility to a city agency compared to such a report
from a low-congestion area. In real-world settings, this im-
plies that a higher number (or demand) of unique reports are
warranted due to the higher utility of these events to a re-
quester. Therefore, we consider the utility as the demand, in
terms of the number of unique reports, for an event. We re-
fer to the context of a report as the spatio-temporal event that
influences the utility of the report.

Variations in demand of heterogeneous events can be
modelled in terms of a configurable parameter, namely the
desired number of reports. We use the terms demand of a re-
port and desired number of reports, for any spatio–temporal
event, interchangeably in the rest of the paper. As mentioned
earlier, the demand is a direct function of the context of the
report – i.e. events with higher utility (e.g. a parking viola-
tion in down town during office hours) have much higher de-
mand for reports, than lower utility ones (e.g. a similar vio-
lation in a housing area at midnight). Additionally, indepen-
dent of the utility of a report (event) to a requester, the sever-
ity of the event is associated with a certain desired number
of reports received, which is empirically determined based
on ground work done by the requesters themselves. For in-
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stance, for a transit agency, non-availability of buses during
peak hours maybe of high utility. However, the agency may
not identify the issue to be severe based on a single report,
as opposed to getting a significant number of reports. There-
fore, in order to ascertain the severity of events, especially
those of higher utilities to the requester, it is natural for the
requester to desire a larger number of reports on these issues.

In order to meet the demand, requesters are constrained
by the cost incurred by payments made to the reporters. In
fact, an optimal incentive mechanism must guarantee the de-
sired number of reports (demand) to a requester, while mini-
mizing the total payment made to the reporters. Further, this
needs to be accomplished in an environment where there
is little or no prior knowledge about the availability of re-
porters, as well as their expectations in terms of payments
(rewards) for these reports. We propose PISCES–a novel
framework for designing incentive strategies in a participa-
tory sensing system, that is geared towards increasing citi-
zen engagement under dynamic and (previously) unknown
conditions. In specific, the proposed framework strives to
address the following challenges:
• Non-uniform requester demand: Different spatio-

temporal events have different utilities to the requester.
Hence, the demand for the number of reports is also
different for varying contextual scenarios. The incentive
mechanism should be able to produce a guaranteed
supply of reports that (closely) follows the demand
distribution of these reports.

• Non-deterministic availability of reporters: Maintaining
and updating the specific location (mobility) of each
prospective reporter maybe practically infeasible in an
urban setting. For example, in an application targeted at
commuters in office cabs, even if routes are determined a-
priori, unforeseen traffic congestions, roadblocks etc. can
cause reporters to be available well beyond the “interest”
window of certain reports. Maintaining this information
at a massive scale can cause huge operational overhead.

• Unknown and stochastic reporting behaviour: Each re-
porter is assumed to have an expectation in terms of the
payment (reward) she receives for a report. As in the case
of availability, it might not be feasible to maintain and up-
date the expectations of each reporter. Further, it is pos-
sible that a reporter may not always report even if the
payment exceeds her expectations. For example, Joshua
might usually report a traffic condition for 1$ (or equiva-
lent reward points), but may not report on a day when he
is in a hurry to attend a client meeting. However, given
a large enough pool of reporters and an appropriate re-
ward announced for the event, it might still be possible to
satisfy the demand. It is this non-deterministic nature of
reporting behaviour that makes the problem both interest-
ing and challenging.

• Payment constraints: To ensure that a desired number of
reports is received, appropriate rewards need to be de-
termined for each event. However, to ensure economic
viability for the requester, any reward-based mechanism
must minimize the overall payment made to reporters.
The cost optimization, under dynamically varying apriori

unknown conditions, is a novel aspect of the incentiviza-
tion problem addressed in this paper.

Contributions: PISCES is a closed-loop incentive frame-
work that computes the reward (or payment) declared for
each report in a participatory system, where the reporters
are mobile and expect a (non-zero) payment for each re-
port. Each report is associated with a demand (i.e. number
of unique reports that need to be collected) and the frame-
work attempts to meet this demand, while minimizing the
total cost incurred by payments to reporters. At a high level,
PISCES employs an explore-exploit technique–(i) it declares
a reward for each report at the beginning of a trial; (ii) ob-
serves the number of reports gathered at the end of the trial;
and (iii) tunes the reward for the next trial in order to obtain
the desired number of reports. Our objective is to converge
to a reward value that minimizes the total payments over a
small number of trials.

We propose STOC-PISCES, an algorithm to determine
the minimum reward for each report, where the availabil-
ity and reporting behaviour of the participants can change
in every trial. This generalized setting allows us to consider
any participant who is in the spatio-temporal region of inter-
est for a report. Further, we assume that each participant will
report for each declared reward value with a non-zero prob-
ability specific to the (reporter, reward)–tuple. The pro-
posed strategy, STOC-PISCES, combines a Multi-Armed
Bandit (MAB) framework for adaptive learning, with binary
search, to converge to the (stochastic) optimal rewards in a
polynomial number of trials. To the best of our knowledge,
this is the first algorithm that provides optimality guarantees
on the expected outcome (i.e. number of reports generated)
in the stochastic setting of the cost minimization problem.
We show that the number of trials is determined by the devi-
ation from the expected number of reports that can be toler-
ated by the requester and a desired confidence level specified
by the requester.

Finally, empirical results from extensive simulations, con-
ducted using real-world mobility traces and realistic report-
ing behaviours, demonstrate that: (i) STOC-PISCES ensures
significantly low payments for requesters with guarantees
on the expected number of reports; and (ii) STOC-PISCES
scales efficiently with increased number of users as well as
variations in reporting behaviors of participants.

Related Work
There has been a plethora of work in participatory sensing
systems (Chon et al. 2013; Mun et al. 2009; Campbell et al.
2008). This section specifically addresses those pertaining to
incentive mechanisms in such systems. None of these works
address the problem of spatio-temporal variance in utility of
reports and unknown reporter profiles, either independently
or jointly. Most importantly, prior work completely overlook
the stochastic behaviour of participants in real-world scenar-
ios.
Reverse auction and utility based mechanisms: (Kout-
sopoulos 2013) proposes an optimal incentive scheme,
which maximizes individual user payments based on bid-
ding profile history. (Krontiris and Albers 2012) optimizes
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Figure 1: Illustrative example of a participatory sensing sys-
tem

a reporter-centric multi-attribute utility function; while in
(Jaimes, Vergara-Laurens, and Labrador 2012), a reverse
auction based mechanism with a greedy algorithm is pro-
posed to improve the coverage of reports. In (Lee and Hoh
2010), a Reverse Auction based Dynamic Price (RADP)
mechanism is presented with Virtual Participant Credit to
ensure reporter engagement. (Biswas et al. 2015) proposes a
mechanism that learns the stochastic qualities of the crowd-
workers, and proposes an auction-based payment rule which
is individually rational, truthful, budget feasible and com-
putationally efficient. (Yang et al. 2012) frames the incen-
tive design problem as a Stackelberg game that maximizes
platform utility and also proposes a user-centric model with
an auction-based scheme. In (Feng, Zhu, and Ni 2013), a
strategy-proof incentive mechanism is proposed based on
the Vickrey-Clarke-Groves (VCG) mechanism to stimulate
strategic smartphone users to truthfully disclose their real
costs. Three online incentive mechanisms based on online
reverse auction are also proposed in (Zhou et al. 2014). All
these mechanisms either assume apriori knowledge of re-
porter profiles or fail to guarantee a desired number of re-
ports under stochastic conditions.
All-pay auctions based schemes: In (Sun 2013), a
behaviour-based incentive mechanism with budget con-
straints applies sequential all-pay auctions in mobile social
networks. (Zhao, Li, and Ma 2014) additionally considers
the time availability of reporters. (Zhao, Ma, and Liu 2014)
proposes a solution to minimize the payment while laying
a constraint on the number of tasks that will be completed
within a deadline. Although these works recognize the on-
line arrival pattern of reporters, they primarily focus on the
quality of reports with no guarantees. They further require
a non-scalable handshaking of user bids and choose only a
certain number of reporters depending on the budget.
Adaptive learning schemes: Probably Approximately
Correct-Multi-Armed Bandit (PAC-MAB) algorithms have

Figure 2: Overview of PISCES framework

been used to learn true participant behaviours in crowd-
sensing scenarios. (Jamieson et al. 2013) finds the near-
optimal arm and theoretically proves an upper bound on the
number of samples or trials required. (Karnin, Koren, and
Somekh 2013) studies the problem of finding the best arm
in minimum number of trials for a given confidence; and
with a high confidence for a fixed number of trials. A MAB
mechanism is also proposed in (Jain, Narayanaswamy, and
Narahari 2014) for demand response, which makes mon-
etary offers to strategic requesters who have unknown re-
sponse characteristics. However, these techniques require a
large number of trials to achieve performance bounds with
a high confidence and ignore the cost associated with each
trial. To the best of our knowledge, there exists no result
around minimizing the total cost incurred, subject to the con-
straint that the value obtained from the trials is greater than
a given threshold.
Trust based schemes: The bi-directional relationship be-
tween trust models and incentive mechanisms have been
identified in various domains. (Zhang, Cohen, and Larson
2012) proposes trust-based incentive mechanisms to pro-
mote honesty in electronic marketplaces. (Vu and Aberer
2011) studies the effect of various computational trust mod-
els on rational participants. (Wang et al. 2012) uses a Maxi-
mum Likelihood estimation approach to determine the trust-
worthiness of participants and veracity of observations re-
ported by participants of unknown trustworthiness. Trust
and veracity of reports is an important research direction
in participatory sensing. However, the related techniques do
not cater to the problem of designing incentives under dy-
namic variations in the demand for reports, as well as the
availability/willingness of users to report.

PISCES Framework
In this section, we introduce the PISCES framework for a
typical participatory sensing system, illustrated in Fig. 1.

System Overview
Fig. 2 presents the overview of the PISCES framework. Re-
call that the objective of the framework is to compute re-
wards for each event (report) in a participatory sensing ap-
plication. The requester submits the following requirements
to the framework:

• Set of events to be reported, i.e. the set of events for
which reports are required;

• Demand Distribution of reports, i.e. the desired num-
ber of reports pertaining to each event and spatio-temporal
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context;

• Reward range, the range of reward values that the re-
quester is willing to pay for each event.

As illustrated in Fig. 2, PISCES is a closed-loop system
framework that works as follows. In each trial (e.g. during
each day), a reward vector is estimated that constitutes the
rewards for each event in the system. The rewards are de-
clared to the participants. Note that for a particular event,
any reporter reporting it is paid the same amount, corre-
sponding to the reward declared for the event in that trial.
At the end of the trial, PISCES observes the number of re-
ports that are gathered from the participants, for each event.
Based on the observed effectiveness of the trial, the reward
vector is updated for the consecutive trial and so on. This
pricing mechanism is referred to as a posted price mecha-
nism in literature (Hartline 2001; Singla and Krause 2013;
Jain, Narayanaswamy, and Narahari 2014).

During the reward estimation step of each trial, our ob-
jective is to converge towards an optimal reward that guar-
antees the desired number of reports for each event. Note
that, in each trial a participant is rewarded only once, i.e.,
even if a participant sends multiple reports of a particular
event, she gets rewarded only once. Hence, assuming ratio-
nal reporters, no reporter will report on an event more than
once. However, for every unique report that is gathered for a
particular event, a payment is made to the corresponding re-
porter. Finally, the rewards computed for each event can be
very different depending on the relative utility of the events.

System Model and Requirements
Each report is associated with an event in our system. Fig.
1 depicts illustrative events in the context of traffic manage-
ment in the city of Bangalore, India. Events are character-
ized by the triple: <place, time, category>. Let T represent
the set of events (triples consisting of place, time and type of
the event) and for each event j ∈ T let dj denote the number
of unique reports required for the event.

As noted earlier, the demand, dj , differs across events
and represents the inherent utility of reports for the specific
event. For example, in Fig. 1, a report on the wait times dur-
ing rush hours (9 AM) at Hoodi traffic signal have a higher
utility and demand compared to off-peak hours (e.g. 2 PM)
at the same location. Similarly, reports regarding illegal dig-
gings on the Outer Ring Road (a critical highway across the
business district) is deemed to be of higher value than any
of the traffic signal reports. We assume that the requester
(e.g. the Bangalore Traffic Police) is allowed to express the
demand, dj , as the desired number of reports for event j, de-
pending on the spatio-temporal event corresponding to the
report(s). Intuitively, a requester would like to pay higher
rewards for the valuable, in-demand events to encourage
larger number of unique reports for such events. More re-
ports are desirable for increased accuracy w.r.t. actionable
insights that are drawn from these reports. However, at the
same time, the requester would like to minimize the total
payment for getting the required number of reports for each
event. Finally, for every event j, the associated reward rj is
bounded as rmin ≤ rj ≤ rmax.

Reporter Profiles

The event-specific rewards are declared by the system to the
participants beforehand. More importantly, the system is un-
aware of the payments expected by each reporter. Note that,
the reporters are typically large in number, so instead of esti-
mating the distribution of costs of each reporter, we propose
a method to declare a posted price (or reward) and update
the reward in each trial towards converging to the minimum
reward required for getting the desired number of reports.

Reporter Mobility and Availability The availability of a
participant in reporting an event depends on the match be-
tween the spatio-temporal context of the event and the par-
ticipant, i.e., if a participant is present in the neighbourhood
of the event location during the specified time interval, then
she is considered available to report on the event. For exam-
ple, any resident commuting through Hoodi signal between
9–11 AM becomes eligible to report wait times and collect
the corresponding reward. In other words, given an event and
its spatio-temporal context, anyone in the vicinity during the
specified time is a potential candidate for reporting.

We assume that reporters have associated mobility pat-
terns with some stochastic variability. Note that the stochas-
tic nature does allow for chance occurrences resulting in re-
porter unavailability or deviation from regular mobility pat-
tern, for example detours due to road blocks, delays or ab-
sence due to other reasons. Conversely, it also allows for un-
expected reporter availability for events due to similar rea-
sons.

The incentive strategy proposed in this paper does not
depend on any specific mobility pattern, but rather is only
aware of the fact that reporters have a stochastic mobility
pattern (and hence availability) and does not presume any
a-priori knowledge of the same.

Reporting behaviours Apart from non-deterministic
availability, reporters may also have variable reporting be-
havior. For example, the reporter near Hoodi at 9 AM may
not report traffic wait time even for a high reward, if she is
running late for a meeting. Thus, similar to the above ar-
gument for mobility pattern, the reporting behaviors is as-
sumed to have a stochastic pattern. In particular, each re-
porter has an associated probability Pa(r) for each reward r
(Pa(r) <= 1) with which they accept each reward r. Pa(r)
is further assumed to be a non-decreasing function of reward
r, in other words, reporters are considered to be stochasti-
cally rational.

Irrespective of the rationality assumption, Pa(r) allows us
to capture the variability due to human behavior or chance
occurrences, in reporting an event for a reward value even
when the reporter is available to report it.

In a special case setting, where Pa(r) = 1 for a reward
r, each reporter has a fixed (deterministic) cost threshold,
above which she will always report an event.

In the following section, we present the proposed incen-
tive strategy, which uses a Multi-armed Bandit (MAB) al-
gorithm to estimate near-optimal rewards with a high confi-
dence, with a reasonable convergence rate.
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Incentive Strategy
As mentioned in the previous section, we assume the re-
porters are rational and the mobility pattern to be indepen-
dent of rewards for events. The availability of a reporter for
an event depends solely on the stochastic mobility pattern of
the reporter and is independent on the rewards for the event.
We make the following observation from these assumptions.
Observation 1. The expected number of reports that can
be obtained for an event cannot decrease as the reward in-
creases.

We propose a MAB algorithm in the posted price
setting (Hartline 2001; Singla and Krause 2013; Jain,
Narayanaswamy, and Narahari 2014).

The basic idea behind the algorithm for estimating the
right incentives or reward vector runs in parallel for every
event, and for any given event, it conducts a certain num-
ber of trials to converge to the right reward. In a trial, any
reporter reporting an event is paid the same amount corre-
sponding to the posted reward for that event in that iteration.
The reward estimate for each event is updated after observ-
ing the reporting behaviors for a particular posted reward
vector. The update step employs binary search on the reward
range with resolution of ε. The number of trials n run for
every event (parallelly) is determined by the desired confi-
dence level and the extent of deviation from the desired num-
ber of reports dj that can be tolerated by the requester. Based
on the observations of the actual behaviour in the reward
trials, the rewards are updated. We show that the proposed
scheme will converge in at most n · log2

(
rmax−rmin

ε

)
iter-

ations. Algorithm 1 presents the STOC-PISCES algorithm
describing the procedure in detail.

Algorithm 1 STOC-PISCES for an event j ∈ T
Input: rmax, rmin, ε, dj , ε1, ε2 < ε1 and δ.
Output: rj .
Set rj,max ← rmax and rj,min ← rmin.
Set n← d 1

2ε22 · ln
(
2
δ

)
e, k ← 1, rj ← rj,max, and vj,max = 0.

while k ≤ log2 (
rmax−rmin

ε ) do
Set rj,k ← rj,max+rj,min

2 and vj,k ← 0.
for all p ∈ {1, . . . , n} do

Run system trial with {rj,k|j ∈ T }.
Pj,k,p ← number of reports received.

Compute vj,k,p ← min
(
Pj,k,p

dj
, 1
)

.

Update vj,k ← vj,k +
vj,k,p

n .
end for
if vj,k ≥ 1− ε1 then

Update rj ← rj,k, and rj,max ← rj .
else

Update rj,min ← rj,k + ε.
if vj,max < vj,k then

Update vj,max ← vj,k and rj ← rj,k.
end if

end if
k ← k + 1.

end while
Return reward rj .

First, we determine the number of trials required for each
reward value considered. Let the confidence level desired by
the requester be (1 − δ), and the maximum deviation in the
expected number of reports that the requester can tolerate

is (1 − ε). Given the values of δ and ε, we choose ε1 and
ε2, such that ε1 + ε2 ≤ ε, and ε1 > ε2, and accordingly
determine number of trials, n = d 1

2ε22 · ln
(
2
δ

)
e.

As already stated, each reward is tried n times. For ev-
ery event j, for iteration k with reward rj,k, and trial p ∈
{1, . . . , n}, the value obtained from the trial is computed as
vj,k,p = min

(
Pj,k,p

dj
, 1
)

, where Pj,k,p is the number of re-
ports obtained from that trial. This will be a function with
range [0, 1]. Now, for a given rj,k, if

∑
p∈{1,...,n}

Pj,k,p

n <

1− ε1, we reject the reward, and search in the upper half of
the current reward range (by binary search), otherwise, we
search in the lower range. This is done log2

(
rmax−rmin

ε

)
times for every event in parallel.

Theorem 1. With probability (1 − δ), for any event j,
the reward rj , as computed by Algorithm STOC-PISCES is
rj ≤ rj,STOC−OPT , where rj,STOC−OPT is the minimum
reward for which the expected number of reports is ≥ dj ,
if such a reward exists. Otherwise, with probability (1− δ),
rj is the minimum reward for which the expected number
of reports is the highest possible. Furthermore, the expected
number of reports with rj is≥ (1−ε1−ε2)·dj ≥ (1− ε)·dj
with probability ≥ (1− δ).

Proof. Suppose that the estimated reward rj >
rj,STOC−OPT . For this to happen, the estimated vj,k
for a rj,k < rj must have been underestimated as < 1 − ε1
in an iteration k. Let the true expected value for rj,k, be v̂j,k.
From Chernoff-Hoeffding inequality (Hoeffding 1963),
we know that for the given choice of n, the probability
that vj,k < v̂j,k − ε2 is ≤ δ. Therefore, with probability
≥ (1−δ), vj,k ≥ v̂j,k− ε2. Since vj,k < 1−ε1, this implies
that v̂j,k ≤ 1 − ε1 + ε2. Since we have chosen ε1 > ε2,
it holds that v̂j,k < 1, and therefore rj,k < rj,STOC−OPT
with probability (1−δ). In fact, this holds for every iteration
where vj,k′ < 1 − ε1, where we update the search space to
higher reward values, including the iteration with reward
rj − ε. Hence, it follows that with probability ≥ (1 − δ),
rj ≤ rj,STOC−OPT .

If rj < rj,STOC−OPT , then v̂j must be < 1, where v̂j is
the true expected value for rj . However, we had estimated
vj ≥ 1 − ε1, and from our choice of n, it follows from
Chernoff-Hoeffding inequality, that vj ≤ v̂j+ε2. Therefore,
v̂j ≥ vj − ε2 ≥ 1 − ε1 − ε2. Since ε1 + ε2 ≤ ε, it follows
that with probability ≥ (1− δ), the true expected number of
reports corresponding to reward rj is ≥ (1− ε) · dj .

Optimality of STOC-PISCES: Informally, Theorem 1
states that the algorithm STOC − PISCES is near op-
timal (in the expected sense), with a high (desired) confi-
dence. An optimal algorithm would minimize the total re-
ward for which the expected number of reports is at least
the minimum required for each event. However, such an op-
timal algorithm would need to be omnipotent, i.e., it needs
to know the exact stochastic nature of mobility patterns and
reporting behaviors. However, in reality, since the stochas-
tic nature of the mobility patterns or reporting behaviors are
unknown, and need to be estimated, in a reasonable number
of exploration rounds or trials, one can only hope to achieve
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a guarantee on the quality (near optimality) of the solution
with a high desired probability (where the probability can be
specified as an input to the system). STOC-PISCES achieves
this while ensuring that the expected number of reports ob-
tained for any event are within a certain bound of the desired
number of reports.

Note that, optimality can indeed be guaranteed (i.e., pro-
viding minimum reward while ensuring that desired number
of reports are received) in certain simplified situations. In
particular, consider the scenario where—(i) the set of users
available for reporting a particular event is fixed in each trial;
and (ii) users are rational with a fixed threshold or cost,
where a rational reporter always reports for a reward r as
long as r ≥ c, where c is the cost of reporting 1. We show
that under such assumptions, there exists a simplified algo-
rithm, referred to as OPT-PISCES, that can be used to com-
pute the optimal rewards for each event. Specifically, this
leads to the following observation.

The main assumptions for OPT-PISCES are that the re-
porters have deterministic availability and deterministic re-
porting behaviours, i.e., (i) the set of reporters available for
reporting a particular event are the same in every trial (e.g.
every day), and secondly, (ii) reporters are rational with a
fixed threshold or cost, such that if the reward for a particu-
lar event for which the reporter is eligible to report is higher
than that threshold, then the reporter will report the event.
Specifically, this leads to the following observation.
Observation 2. As the reward for a particular event in-
creases, the number of reports obtained can not decrease.

The algorithm runs in parallel for every event, and for any
given event, it employs binary search on the reward range
with resolution of ε, and based on observations of actual
behavior in the reward trial, updates the rewards, thereby
converging to optimal rewards for every event in at most
log2

(
rmax−rmin

ε

)
iterations. Algorithm 2 depicts the OPT-

PISCES algorithm describing this procedure in detail.
Theorem 2. Algorithm OPT-PISCES gives the optimal set
of rewards for all the events in T , with a time complexity of
O
(
log2 (

rmax−rmin

ε )
)

in parallel for every event.

Proof. Suppose for a particular event j, for which there ex-
ists a feasible optimal solution, the estimated reward rj >
rj,OPT , where rj,OPT is the minimum reward for which
the number of reports received is ≥ dj . Since we chose
rj , and employed binary search over the entire range in ε
granularity, it must hold that the number of reports received
for rj − ε was < dj . From Observation 2, therefore, for
every r ≤ rj − ε, the number of reports received by any
solution would be < dj , which implies that rj,OPT ≥ rj ,
which contradicts the assumption that rj > rj,OPT . For
an event, for which there is no feasible solution, in other
words, the maximum number of reports Pj,max that can
be received is < dj , we find the minimum rj for which
we can still get Pj,max reports, by the same argument as
above. Specifically, in this case, rj will only get updated

1Unlike in bidding systems, the notion of truthfulness of costs
does not arise here as our solution does not require reporters to bid
their expected costs.

if the number of reports received (while still less than dj)
increases on increasing the reward. The time complexity is
clearly O

(
log2 (

rmax−rmin

ε )
)
, since the update steps take

constant time, and we run the iterations in parallel for every
event.

Algorithm 2 OPT-PISCES for an event j ∈ T
Input: rmax, rmin, ε, dj .
Output: rj .
Set rj,max = rmax and rj,min = rmin.
Set k ← 1 and rj ← rj,max, and Pj,max = 0.
while k ≤ log2 (

rmax−rmin

ε ) do
Set r′j ←

rj,max+rj,min

2 .
Run system trials with {r′j |j ∈ T }.
Pj ← number of reports received.
if Pj ≥ dj then

Update rj ← r′j , and rj,max ← rj .
else

Update rj,min ← r′j + ε.
if Pj,max < Pj then

Update Pj,max ← Pj and rj ← r′j .
end if

end if
k ← k + 1.

end while
Return reward rj .

The “deterministic” assumptions (in OPT-PISCES) on
availability and reporting behaviour are mostly violated in
practice. Reporters cannot be expected to be in the same
spatio-temporal neighbourhood during each trial, nor com-
pelled to report at the same reward value during each trial.
However, OPT-PISCES provided an interesting baseline for
our empirical analysis. In particular, we demonstrate how
STOC-PISCES performs in real-world (dynamic) conditions
w.r.t a baseline approach that is provably optimal, however,
less suitable for pragmatic real-world environments.

Experimental Evaluation
Experimental Set-up
In this section, we show the performance of STOC-PISCES
experimentally. We first describe the reward acceptance pro-
files and mobility model of the reporters used in our experi-
ments. Multiple experiments are then conducted to evaluate
STOC-PISCES. Since STOC-PISCES is a first-of-a-kind al-
gorithm, we use OPT-PISCES as the baseline since it guar-
antees the theoretical optimal under a simplified scenario. In
a realistic set-up with stochastic reporter mobility and be-
havior, STOC-PISCES is more effective.

Reward Acceptance Profile of Reporters In practice,
one would expect these profiles to be observed/learnt from
user studies, historical data etc. At the time of writing this
paper, we do not have sufficient real-word data to infer these
profiles. At the same time, there is little or no prior art that
has studied reward acceptance profiles in participatory sys-
tems. Consequently, we have opted for realistic simulations
of user profiles, described below.

As mentioned in the previous sections, we assume the
reporters to be stochastically rational. i.e., the probability
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Figure 3: Reward acceptance profile of reporters

of acceptance would either increase or remain constant as
the reward increases. Specifically, the probability of accep-
tance for low rewards would tend towards zero, while the
probability of acceptance for high rewards would tend to-
wards 1. For our experiments, we have therefore chosen a
sigmoidal acceptance model to capture the this stochastic
behavioural pattern2. Fig. 3 depicts the stochastic reward ac-
ceptance profile used in our experiments. The leftmost pro-
file corresponds to an altruistic participant while the right-
most one corresponds to a greedy participant, each report-
ing in a probabilistic manner. Naturally, a greedy reporter
reports with higher probabilities for higher incentives and
may not report at all for lower values. In Fig. 3, a greedy
reporter is not probable to report for 30 reward points, while
reporting with a probability of 90% for 80 reward points (or
more). An altruistic reporter, on the other hand, is probable
to report even when incentives are low.

Reporter Population & Mobility Model We have con-
sidered real mobility traces of 143 employees commuting to
and from a 24 × 7 BPO office facility in Bangalore, India.
We collected the GPS traces of the office cabs, which these
employees avail at different times of day depending on their
shifts, for a month. Table 1 shows a summary of different pa-
rameters inferred from the dataset. Depending on the shifts
and mobility patterns, the hours of the day are categorized
into “peak” or “off-peak” hours. The thirty-day average, in
terms of percentage of employees, commuting during differ-
ent times of the day is depicted in Fig. 4. For the given data
and set of participants, one can observe that during a typical
day, the off-peak hours (considered to be hours where less
than 20% of participants are mobile) fall during 12 AM -7
AM, 9 AM - 1 PM, 7 PM - 10 PM; while peak hours are
during 7 AM - 9 AM, 1 PM - 6 PM, 10 PM - 12 AM.

The dispersion of spatial coordinates during the three
“off-peak periods” is more than during peak periods. From
Table 1 one can note that, while peak and off-peak travel
times differ by approximately 10 minutes; the standard
deviation is as high as 30 minutes for both these cate-
gories. The observations highlight that the underlying mo-
bility model is bound to lead to non-deterministic availabil-

2Note that, the set of experiments in this work can also be per-
formed with any other acceptance model that captures the afore-
mentioned stochastic reporting behaviour (since STOC-PISCES is
agnostic of any specific behavior but only assumes stochastic ratio-
nality of reporters).

Figure 4: Percentage of employees commuting during a typical
day

ity. We further enhance the basic model to increase the pop-
ulation of reporters in the system for studying scalability
of STOC-PISCES when number of available reporters in-
creases. Specifically, the spatio-temporal distribution of re-
porters in the basic model (with x reporters, where x = 143)
is uniformly scaled up for 2x, 3x and 4x reporters. For ex-
ample, in the basic model, if there are 5 reporters available at
a location at a particular time, then for the enhanced model
of 2x reporters, there would be 10 reporters available at the
same location co-ordinate at the same time.

Table 1: Mobility Data.

Parameters value

Total Participants 143
Distinct Locations 84
Routes 235
Landmarks 858
Average Distance 26 Kms
Average Peak travel time 42 min
Average OffPeak travel time 31 min
Standard Dev. in Peak travel time 35 min
Standard Dev. in OffPeak travel time 29 min

Events and Demands from Requesters For our experi-
mental set-up, we consider twelve distinct events mapped
to specific strategic locations and timings in the context
of the Bangalore city. There are three locations, each of
which has four different times when the event occurs. The
events belong to different categories (i.e. wait time at traf-
fic signal, potholes on roads, illegal parking, and uncleared
garbage). In practice, these could be defined around any ar-
bitrary points of spatio-temporal interest. We assume that
the events are heterogeneous in terms of–(i) demands from
requesters, i.e. the number of reports required, as well as
(ii) availability and behaviour of reporters who can poten-
tially participate. A reporter can independently participate
in multiple events. For instance, a reporter can report on ille-
gal parking (which has a lower demand) and simultaneously
report on traffic congestion (which has a higher demand).
To show the efficacy of the incentive strategy, we vary the
demands (i.e. the number of desired reports) for each of
these events, across the following categories: low, normal,
and high. If there are x eligible reporters for an event, then
based on the mobility model described above, these cate-
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(a) Events with normal demand (b) Events with high demand

Figure 5: Cost of STOC-PISCES and OPT-PISCES for stochastic settings. Events have independent demands in terms of number of required
reports. Performance for each event depends on the demand (utility) and reward acceptance profiles of participants.

Figure 6: Rewards comparison of OPT-PISCES and STOC-
PISCES for six representative events across 10 runs

Figure 7: Comparison of rewards of STOC-PISCES and OPT-
PISCES for a single event across 100 runs

gories translate to—-low, where number of reports ≤ x
3 ; nor-

mal, where x
3 < number of reports ≤ 2x

3 ; and high, where
number of reports > 2x

3 . Intuitively, our objective is to test
the performance of the strategies for different demands.

Results and Insights
Comparison of OPT-PISCES and STOC-PISCES Fig.
5 shows the average payment (cost) for events when the
demands for number of reports are normal and high,
respectively. The key observation here is that STOC-
PISCES always results in lower payments (where total
payment=number of reports × reward) compared to OPT-
PISCES. This is primarily due to the lower rewards deter-

Figure 8: Reports acquired by STOC-PISCES in large trials

mined by STOC-PISCES compared to OPT-PISCES. In-
terestingly, when the demand increases from normal to
high, the differences in cost (total payment) between STOC-
PISCES and OPT-PISCES become significant (Fig. 5(b)).
Fig. 6 shows the reward values offered by OPT-PISCES and
STOC-PISCES for reporting on a subset of events. Specif-
ically, we highlight the variations in rewards by the two
strategies for different runs of the same stochastic setting.
Fig. 7 further shows this variation for a much larger number
of runs (of the same stochastic setting) for a single event.
STOC-PISCES not only provides lower rewards than OPT-
PISCES, but it also provides consistent reward values with
very little deviations across runs. However, in the case of
OPT-PISCES, the reward values for reporting the same event
vary drastically for different runs and fail to converge to a
stable value. The result clearly demonstrates why an optimal
solution for deterministic setting does not work in real-world
scenarios.

Effectiveness of STOC-PISCES While it is true that
STOC-PISCES converges to lower rewards and minimizes
the cost for a requester, it is important to empirically validate
the guarantees for actual number of reports received. Fig. 8
shows the reports acquired by STOC-PISCES. Specifically,
100 trials are performed for each event (i.e., n = 100 as
per the formula in Algorithm 1) - where each trial consti-
tutes declaring the “converged” reward computed by STOC-
PISCES and observing the number of reports gathered. We
observe that the lower (25%) and upper quartiles (75%) of
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number of reports are always above the desired number of
reports for each event.

Due to the stochastic nature of the experimental settings,
there are expected variations in the number of reports re-
ceived across different trials. In fact there are a few rare out-
liers, where the number of reports are below the demand.
Recall that, for the tunable parameter δ of STOC-PISCES,
the requester obtains the desired number of reports with a
confidence of 1−δ. In our experiments, we have set δ = 0.2,
with an expectation of obtaining the number of reports in at
least 80% of the cases. While smaller values of δ increase
the chances of obtaining the desired number of reports, sig-
nificantly lowering this value can result in a large number
of trials for convergence. Next, we show empirically that
the number of trials, n, can however be reduced if there are
higher number of reporters.

Scalability of STOC-PISCES The experiments till now
have used n = 100 trials for x reporters under an equal mix
of greedy and altruistic users. We now present the results
from a set of experiments where we vary—(i) the number of
reporters from x to 4x (where x = 143 as mentioned pre-
viously); and (ii) the mix of greedy and altruistic reporters.
The purpose is to study how STOC-PISCES scales with in-
crease in number of reporters, as well as the impact of dif-
ferent mix of reporters on the outcome of STOC-PISCES,
under different demands. We further examine how these pa-
rameters affect the number of trials in STOC-PISCES.

Fig. 9 shows the cost for three representative events for
a generalized setting of mixed population of altruistic and
greedy reporters (50% each) under both normal and high de-
mands. It is noted that the cost for any event converges to a
stable value for lower number of trials when the number of
users is higher. Since the supply increases with higher num-
ber of users, providing lower rewards leads to getting the
required number of reports. Hence, lower number of trials is
generally enough for STOC-PISCES to converge. However,
for each event, as demand is increased from normal to high,
the cost increases. The extent of this increase can be dif-
ferent for different events depending on the spatio-temporal
variations of available altruistic and greedy reporters.

For our experimental set up, we see the increase of cost
from normal to high demand is between 2 to 5 times. Inter-
estingly, for high demand, it takes more trials to converge for
2x reporters. This is because as demand is high, the num-
ber of reporters needs to be considerably higher (3x and
4x) to converge in low number of trials. In summary, re-
questers’ cost increases with increase in their demand. How-
ever, if there are enough supply of reports then cost becomes
low. Notably, lower number of trials are required in STOC-
PISCES to converge when the supply is higher.

Fig. 10 shows that for high demand, variations on the mix-
ture of greedy and altruistic users, can impact number of
trials required for convergence of STOC-PISCES. As ex-
pected, with increase in number of greedy users, the cost
increases, since higher rewards are warranted to elicit the
required number of reports. The number of trials needed
to converge also increases for higher number of reporters.
However, even for the scenario of 4x reporters (in our exper-

Figure 9: Cost for different number of trials and different num-
ber of users for three representative events under normal and high
demands.

Figure 10: Cost (reward per report × total number of reports) for
different number of trials for different number of users under differ-
ent mix of altruistic and greedy users ((a) 25% greedy, 75% altruis-
tic; (b) 50% greedy, 50% altruistic; (c) 75% greedy, 25% altruistic)
for a representative event with high demand.

iments), which is more than 500 reporters, STOC-PISCES
needs only around 10 trials. This is a reasonable scalability
result and for an even larger reporter pool, the number of tri-
als required can not increase (as the trends in Figs. 9 and 10
suggest) because of larger supply.

It must be noted that, STOC-PISCES does better than our
expectations in the reported settings. In fact, it mostly deliv-
ers the expected number of reports in very less number of
trials; and even when it falls short, the difference is within
tolerable limits as set by the parameter ε. Based on our
experimental results, we advocate the suitability of STOC-
PISCES to meet requester demands in a scalable manner at
significantly lower costs in real-world scenarios.

Conclusions and Future Work
This paper proposed a closed loop incentive framework,
PISCES, for participatory sensing systems. PISCES
meets requester demands in terms of the desired number
of reports pertaining to a spatio-temporal region of interest,
while minimizing the total cost incurred by payments to re-
porters. The framework provides incentive strategies for par-
ticipants, with no apriori knowledge of their reporting pro-
files. To the best of our knowledge, the proposed algorithm,
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STOC-PISCES, is the first algorithm that provides provably
optimal guarantees on the number of reports in the stochas-
tic setting of the cost minimization problem. Extensive sim-
ulations using real-world mobility traces and realistic re-
porting behaviours, demonstrate that STOC-PISCES consis-
tently ensures significantly low payments for requesters with
guarantees on the expected number of reports.

We recognize that one of the key extensions, needed for a
participatory sensing system, is the incorporation of data ve-
racity and reputation in deciding the incentives to reporters.
From a requester point of view, it is critical to ensure that
the reports are valid, timely, and from a trusted source. We
are exploring enhancements to the stochastic framework by
leveraging an estimation-theoretic approach for computing
the veracity of reports as part of the incentivization process.
It is also important for a requester that reporters do not col-
lude and any incentive strategy should discourage same set
of malicious reporters from sending multiple similar reports
to meet the demand. Tuning the incentive mechanism to en-
sure data veracity and discourage such malicious behavior is
an important future work that we are pursuing.
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