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Abstract

Counting objects is a fundamental image processisng prim-
itive, and has many scientific, health, surveillance, security,
and military applications. Existing supervised computer vi-
sion techniques typically require large quantities of labeled
training data, and even with that, fail to return accurate re-
sults in all but the most stylized settings. Using vanilla crowd-
sourcing, on the other hand, can lead to significant errors,
especially on images with many objects. In this paper, we
present our JellyBean suite of algorithms, that combines the
best of crowds and computer vision to count objects in im-
ages, and uses judicious decomposition of images to greatly
improve accuracy at low cost. Our algorithms have several de-
sirable properties: (i) they are theoretically optimal or near-
optimal, in that they ask as few questions as possible to hu-
mans (under certain intuitively reasonable assumptions that
we justify in our paper experimentally); (ii) they operate un-
der stand-alone or hybrid modes, in that they can either work
independent of computer vision algorithms, or work in con-
cert with them, depending on whether the computer vision
techniques are available or useful for the given setting; (iii)
they perform very well in practice, returning accurate counts
on images that no individual worker or computer vision algo-
rithm can count correctly, while not incurring a high cost.

1 Introduction
The field of computer vision (Forsyth and Ponce 2003;
Szeliski 2010) concerns itself with the understanding and in-
terpretation of the contents of images or videos. Many of the
fundamental problems in this field are far from solved, with
even the state-of-the-art techniques achieving poor results
on benchmark datasets. For example, the recent techniques
for image categorization achieve average precision ranging
from 19.5% (for the chair class) to 65% (for the airplane
class) on a canonical benchmark (Everingham et al. 2014).

Counting is one such fundamental image understanding
problem, and refers to the task of counting the number of
items of a particular type within an image or video.
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Counting is important. Counting objects in images or
videos is a ubiquitous problem with many applications. For
instance, biologists are often interested in counting the num-
ber of cell colonies in periodically captured photographs of
petri dishes; counting the number of individuals at concerts
or demonstrations is often essential for surveillance and se-
curity (Liu et al. 2005); counting nerve cells or tumors
is standard practice in medical applications (Loukas et al.
2003); and counting the number of animals in photographs
of ponds or wildlife sanctuaries is often essential for animal
conservation (Russell et al. 1996). In many of these scenar-
ios, making errors in counting can have unfavorable con-
sequences. Furthermore, counting is a prerequisite to other,
more complex computer vision problems requiring a deeper,
more complete understanding of images.

Counting is hard for computers. Unfortunately, current su-
pervised computer vision techniques are typically very poor
at counting for all but the most stylized settings, and cannot
be relied upon for making strategic decisions. The com-
puter vision techniques primarily have problems with oc-
clusion, i.e., identifying objects that are partially hidden be-
hind other objects. As an example, consider Figure 1, de-
picting the performance of a recent pre-trained face detec-
tion algorithm (Zhu and Ramanan 2012). The algorithm per-
forms poorly for occluded faces, detecting only 35 out of 59
(59.3%) faces. The average precision for the state-of-the-art
person detector is only 46% (Everingham et al. 2014). Fur-
thermore, these techniques are not generalizable; separate
models are needed for each new application. For instance, if
instead of wanting to count the number of faces in a photo-
graph, we needed to count the number of women, we would
need to start afresh by training an entirely new model.

Even humans have trouble counting. While humans are
much better at counting than automated techniques, and are
good at detecting occluded (hidden) objects, as the number
of objects in the image increases, they start making mistakes.
To observe this behavior experimentally, we had workers
count the number of cell colonies in simulated fluorescence
microscope images with a wide range of counts. We plot the
results in Figure 2, displaying the average error in count (on
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Figure 1: Challenging image for Machine Learning
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Figure 2: Worker Error

the y-axis) versus the actual count (on the x-axis). As can
be seen in the figure, crowd workers make few mistakes un-
til the number of cells hit 20 or 25, after which the average
error increases. In fact, when the number of cells reaches
75, the average error in count is as much as 5. (There are in
fact many images with even higher errors.) Therefore, sim-
ply showing each image to one or more workers and using
those counts is not useful if accurate counts are desired.
The need for a hybrid approach. Thus, since both humans
and computers have trouble with counting, there is a need
for an approach that best combines human and computer ca-
pabilities to count accurately while minimizing cost. These
techniques would certainly help with the counting problem
instance at hand—the alternative of having a biology, secu-
rity, medical, or wildlife expert count objects in each image
can be error-prone and costly. At the same time, these tech-
niques would also enable the collection of training data at
scale, and thereby spur the generation of even more capable
computer vision algorithms. To the best of our knowledge,
we are the first to articulate and make concrete steps towards
solving this important, fundamental vision problem.
Key idea: judicious decomposition. Our approach, in-
spired by Figure 2, is to judiciously decompose an image
into smaller ones, focusing worker attention on the areas that
require more careful counting. Since workers have been ob-
served to be more accurate on images with fewer objects,
the key idea is to obtain reliable counts on smaller, targeted
sub-images, and use them to infer counts for the original im-
age. However, it is not clear when or how we should divide
an image, or where to focus our attention by assigning more
workers. For example, we cannot tell a-priori if all the cell
colonies are concentrated in the upper left corner of the im-
age. Another challenge is to divide an image while being
cognizant of the fact that you may cut across objects dur-

ing the division. This could result in double-counting some
objects across different sub-images.

Adaptivity to two modes. In the spirit of combining the best
of human worker and computer expertise, when available,
we develop algorithms that are near-optimal for two separate
regimes or modes:
• First, assuming we have no computer vision assistance

(i.e., no prior computer vision algorithm that could guide
us to where the objects are in the image), we design an
algorithm that will allow us to narrow our focus to the
right portions of the image requiring special attention.
The algorithm, while intuitively simple to describe, is
theoretically optimal in that it achieves the best possi-
ble competitive ratio, under certain assumptions. At the
same time, in practice, on a real crowd-counting dataset,
the cost of our algorithm is within 2.75× of the optimal
“oracle” algorithm that has perfect information, while
still maintaining very high accuracy.

• Second, if we have primitive or preliminary computer
vision algorithms that provide segmentation and prior
count information, we design algorithms that can use
this knowledge to once again identify the regions of the
image to focus our resources on, by “fast-forwarding”
to the right areas. We formulate the problem as a graph
binning problem, known to be NP-COMPLETE and pro-
vide an efficient articulation-point based heuristic for this
problem. We show that in practice, our algorithm has a
very high accuracy, and only incurs 1.3× the cost of the
optimal, perfect information “oracle” algorithm.

We dub our algorithms for these two regimes as the Jelly-
Bean algorithm suite, as a homage to one of the early appli-
cations of crowd counting1.
Here is the outline for the rest of the paper as well as our
contributions (We describe related work in Section 6.)
• We model images as trees with nodes representing image

segments and edges representing image-division. Given
this model, we present a novel formulation of the count-
ing problem as a search problem over the nodes of the
tree (Section 2).

• We present a crowdsourced solution to the problem of
counting objects over a given image-tree. We show that
under reasonable assumptions, our solution is provably
optimal (Section 3).

• We extend the above solution to a hybrid scheme that can
work in conjunction with computer vision algorithms,
leveraging prior information to reduce the cost of the
crowdsourcing component of our algorithm, while sig-
nificantly improving our count estimates (Section 4).

• We validate the performance of our algorithms against
credible baselines using experiments on real data from
two different representative applications (Section 5).

For readers interested in finer details and detailed evalua-
tions, we also provide an extended technical report (Sarma
et al. 2015).

1Counting or estimating the number of jellybeans in a jar has
been a popular activity in fairs since 1900s, while also serving as
unfortunate vehicle for disenfranchisement (NBC News 2005).
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Figure 3: Segmentation Tree

2 Preliminaries
In this section, we describe our data model for the input im-
ages and our interaction model for worker responses.

2.1 Data Model
Given an image with a large number of (possibly heteroge-
nous) objects, our goal is to estimate, with high accuracy,
the number of objects present. As noted above in Figure 2,
humans can accurately count up to a small number of ob-
jects, but make significant errors on images with larger num-
bers of objects. To reduce human error, we split the image
into smaller portions, or segments, and ask workers to esti-
mate the number of objects in each segment. Naturally, there
are many ways we may split an image. We discuss our pre-
cise algorithms for splitting an image into segments subse-
quently. For now, we assume that the segmentation is fixed.

We represent a given image and all its segments in the
form of a directed tree G = (V,E), called a segmentation
tree. The original image is the root node, V0, of the tree.
Each node Vi ∈ V , i ∈ {0, 1, 2, . . . } corresponds to a
sub-image, denoted by Image(Vi). We call a node Vj a seg-
ment of Vi if Image(Vj) is contained in Image(Vi). A di-
rected edge exists between nodes Vi and Vj : (Vi, Vj) ∈ E,
if and only if Vi is the lowest node in the tree, i.e. smallest
image, such that Vj is a segment of Vi. For brevity, we re-
fer to the set of children of node Vi (denoted as Ci) as the
split of Vi. If Ci = {V1, · · · , Vs}, we have Image(Vi) =⋃

j ∈ {1,··· ,s} Image(Vj).
For example, consider the segmentation tree in Figure 3.

The original image, V0, can be split into the two segments
{V1, V2}. V1, in turn, can be split into segments {V3, V4}.
Intuitively, the root image can be thought of as physically
segmented into the five leaf nodes {V3, V4, V5, V6, V7}.

We assume that all segments of a node are non-
overlapping. That is, given any node Vi and its imme-
diate set of children Ci, we have (1) Image(Vi) =⋃

Vj ∈Ci
Image(Vj) and (2) Image(Vj) ∩ Image(Vk) =

φ∀Vj , Vk ∈ Ci We denote the actual number of objects in a
segment, Image(Vi), by TrueCount(Vi). Our assumption
of non-overlapping splits ensures that TrueCount(Vi) =∑

Vj ∈ Ci
TrueCount(Vj).

One of the major challenges of the counting problem is to
estimate these TrueCount values with high accuracy, by us-
ing elicited worker responses. Given the segmentation tree

G for image V0, we can ask workers to count, possibly mul-
tiple times, the number of objects in any of the segments.
For example, in Figure 3, we can ask workers to count the
number of objects in the segments (V3), (V4), (V5), (V6),
(V7), (V1), (V2),(V0). While we can obtain counts for dif-
ferent nodes in the segmentation tree, we need to consolidate
these counts to a final estimate for V0. To help with this, we
introduce the idea of a frontier, which is central to all our
algorithms. Intuitively, a frontier F is a set of nodes whose
corresponding segments do not overlap, and cover the entire
original image, Image(V0) on merging. We formally define
this notion below.
Definition 2.1 (Frontier). Let G = (V,E) be a segmen-
tation tree with root node V0 . A set of k nodes given by
F = {V1, V2, . . . , Vk}, where Vi ∈ V ∀ i ∈ {1, . . . , k} is
a frontier of size k if Image(V0) =

⋃
Vi ∈ F Image(Vi), and

Image(Vi) ∩ Image(Vj) = φ ∀ Vi, Vj ∈ F

A frontier F is now a set of nodes in the segmentation tree
such that taking the sum of TrueCount(·) over these nodes
returns the desired count estimate TrueCount(V0). Contin-
uing with our example in Figure 3, we have the follow-
ing five possible frontiers: {V0}, {V1, V2}, {V1, V5, V6, V7},
{V2, V3, V4}, and {V3, V4, V5, V6, V7}.

2.2 Worker Behavior Model
Intuitively, workers estimate the number of objects in an im-
age correctly if the image has a small number of objects.
As the number of objects increases, it becomes difficult for
humans to keep track of which objects have been counted.
Based on the experimental evidence in Figure 2, we hy-
pothesize that there is a threshold number of objects, above
which workers start to make errors, and below which their
count estimates are accurate. Let this threshold be d∗. So,
in our interface, we ask the workers to count the number
of objects in the query image. If their estimate, d, is less
than d∗, they provide that estimate. If not, they simply in-
form us that the number of objects is greater than d∗. This
allows us to cap the amount of work done by the workers–
the workers can count as far as they are willing to correctly,
and if the number of objects is, say, in the thousands, they
may just inform us that this is greater than d∗ without ex-
pending too much effort. We denote the worker’s estimate
of TrueCount(V ) by WorkerCount(V ).

WorkerCount(V ) =

{
TrueCount(V ) : TrueCount(V ) ≤ d∗
> d∗ : TrueCount(V ) > d∗

Based on Figure 2, the threshold d∗ is 20. We provide further
experimental verification for this error model in (Sarma et
al. 2015). While we could choose to use more complex error
models, we find that the above model is easy to analyze and
experimentally valid, and therefore suffices for our purposes.

3 Crowdsourcing-Only Solution
In this section, we consider the case when we do not have
a computer vision algorithm at our disposal. Thus, we must
use only crowdsourcing to estimate image counts. Since it is
often hard to train computer vision algorithms for every new
type of object, this is a scenario that often occurs in practice.
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As hinted at in Section 2, the idea behind our algorithms is
simple: we ask workers to estimate the count at nodes of the
segmentation tree in a top-down expansion, until we reach a
frontier such that we have a high confidence in the worker
estimates for all nodes in that frontier.

3.1 Problem Setup
We are given a fixed b-ary segmentation tree i.e. a tree with
each non-leaf node having exactly b children. We also as-
sume that each object is present in exactly one segment
across siblings of a node, and that workers follow the be-
havior model from Section 2.2. Some of these assumptions
may not always hold in practice, and we discuss their relax-
ations later in Section 3.4.

For brevity, we will refer to displaying an image segment
(node in the segmentation tree) and asking a worker to es-
timate the number of objects, as querying the node. Our
problem can be therefore restated as that of finding the exact
number of objects in an image by querying as few nodes of
the segmentation tree as possible. Next, we describe our al-
gorithm on this setting in Section 3.2, and give complexity
and optimality guarantees in Section 3.3.

3.2 The FrontierSeeking Algorithm
Our algorithm is based on the simple idea that to estimate the
number of objects in the root node, we need to find a frontier
with all nodes having fewer than d∗ objects. This is because
the elicited WorkerCounts are trustworthy only at the nodes
that meet this criteria. We call such a frontier a terminating
frontier. If we query all nodes in such a terminating frontier,
then the sum of the worker estimates on those nodes is in
fact the correct number of objects in the root node, given
our model of worker behavior.

If a node V has greater than d∗ objects, then we cannot
estimate the number of objects in its parent node, and con-
sequently the root node, without querying V ’s children. Our
algorithm, FrontierSeeking(G), depends on this obser-
vation for finding a terminating frontier efficiently, and cor-
respondingly obtaining a count for the root node, V0. The
algorithm simply queries nodes in a top-down expansion of
the segmentation tree, for example, with a breadth-first or
depth-first search. For each node, we query its children if
and only if workers report its count as being higher than the
threshold d∗. We continue querying nodes in the tree, only
stopping our expansion at nodes whose counts are reported
as smaller than d∗, until we have queried all nodes in a ter-
minating frontier. We return the sum of the reported counts
of nodes in this terminating frontier as our final estimate.

3.3 Guarantees
We now discuss the guarantees that our FrontierSeeking
algorithm provides under our proposed model. Given an im-
age and its segmentation tree, let F ∗ be a terminating fron-
tier of the smallest size, having k nodes. Our goal is to find
a terminating frontier with as few queried nodes as possible.

First, we note that any algorithm needs to query at least
k nodes to get a true count of the number of objects in the
given image. This follows trivially from the observation that

we need to query at least one complete terminating frontier
to obtain a count for the root node of the tree. To quantify
the performance of our algorithm, we use a competitive ra-
tio analysis (Borodin 1998). Intuitively, the competitive ratio
of an algorithm is a measure of its worst case performance
against the optimal oracle algorithm. Let A(G) denote the
sequence of questions asked, or nodes queried, by our on-
line deterministic FrontierSeeking algorithm on segmen-
tation graph G. Let |A(G)| be the corresponding number
of questions asked. For the optimal oracle algorithm OPT ,
|OPT (G)| = k where k is the size of the minimal terminat-
ing frontier of G.

We now state the competitive ratio CR of our
FrontierSeeking algorithm AFS in the following theo-
rem. The proofs can be found in (Sarma et al. 2015).
Theorem 3.1. Let G be the set of all segmentation trees with
fanout b. We have, CR(AFS) = max

G∈G
|AFS(G)|
|OPT (G)| =

b
b−1 .

The following theorem (combined with the previous one)
states that our algorithm achieves the best possible competi-
tive ratio across all online deterministic algorithms.
Theorem 3.2. Let A be any online deterministic algorithm
that computes the correct count for every given input seg-
mentation tree G with fanout b. Then, CR(A) ≥ ( b

b−1 ).

3.4 Practical Setup
In this section we discuss some of the practical design chal-
lenges faced by our algorithm and give a brief overview of
our current mechanisms for addressing these challenges.
Worker error. So far, we have assumed that human worker
counts are accurate for nodes with fewer than d∗ objects per-
mitting us to query each node just a single time. However,
this is not always the case in practice. In reality, workers
may make mistakes while counting images with any num-
ber of objects (and we see this manifest in our experiments
as well). So, in our algorithms, we show each image or node
to multiple (five in our experiments) workers and aggre-
gate their answers via median to obtain a count estimate
for that node. We observe that although individual work-
ers can make mistakes, our aggregated answers satisfy our
assumptions in general (e.g., that the aggregate is always
accurate when the count is less than d∗). While we use a
primitive aggregation scheme in this work, it remains to be
seen if more advanced aggregation schemes, such as those
in (Karger, Oh, and Shah 2011; Parameswaran et al. 2012;
Sheng, Provost, and Ipeirotis 2008) would lead to better re-
sults; we plan to explore these schemes in future work.
Segmentation tree. So far, we have also assumed that a
segmentation tree with fanout b is already given to us. In
practice, we are often only given the whole image, and have
to create the segmentation tree ourselves. In our setup, we
create a binary segmentation tree (b = 2) where the chil-
dren of any node are created by splitting the parent into two
halves along its longer dimension. As we will see later on,
this choice leads to accurate results. While our algorithms
also apply to segmentation trees of any fanout; further in-
vestigation is needed to study the effect of b on the cost and
accuracy of the results.
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(a) (b)

Figure 4: Biological image (a) before and (b) after partitioning

Segment boundaries. We have assumed that objects do not
cross segmentation boundaries, i.e., each object is present
in exactly one leaf node, and cannot be partially present in
multiple siblings. Our segmentation does not always guar-
antee this. To handle this corner case, in our experiments we
specify the notion of a “majority” object to workers with the
help of an example image, and ask them to only count an
object for an image segment if the majority of it is present in
that segment. Once again, we find that this leads to accurate
results in our present experiments. That said, we plan to ex-
plore more principled methods for counting partial objects
in future work. For instance, one method could be to have
workers separately count objects that are completely con-
tained in a displayed image, and objects that cross a given
number of segment boundaries.
We revisit these design decisions in Section 5.

4 Incorporating Computer Vision
Unlike the previous section, where we assumed a fixed seg-
mentation tree, here, we use computer vision techniques
(when easily available) to help build the segmentation tree,
and use crowds to subsequently count segments in this tree.
For certain types of images, existing machine learning tech-
niques give two things: (1) a partitioning of the given image
such that no object is present in multiple partitions, and (2)
a prior count estimate of the number of objects in each par-
tition. While these prior counts are not always accurate and
still need to be verified by human workers, they allow us to
skip some nodes in the implicit segmentation tree and “fast-
forward” to querying lower nodes, thereby requiring fewer
human tasks.

4.1 Partitioning
As a running example, we consider the application of count-
ing cells in biological images. Figure 4a shows one such
image, generated using SIMCEP, a tool for simulating flu-
orescence microscopy images of cell populations (Lehmus-
sola et al. 2007). SIMCEP is the gold standard for testing
algorithms in medical imaging, providing many tunable pa-
rameters that can simulate realworld conditions. We imple-
ment one simple partitioning scheme that splits any given
such cell population image into many small, disjoint par-
titions. Applying this partitioning scheme to the image in
Figure 4a yields Figure 4b. Combined with the partitioning

scheme above, we can leverage existing machine learning
(ML) techniques to estimate the number of objects in each
of the partitions. We denote these ML-estimated counts on
each partition, u, as prior counts or simply priors, du. Note
that these priors are only approximate estimates, and still
need to be verified by workers. We discuss details of our
partitioning algorithm, prior count estimation, and other im-
plementation details later in Section 4.3.

We use these generated partitions and prior counts to de-
fine a partition graph as follows:
Definition 4.1 (Partition Graph). Given an image split
into the set of partitions, VP , we define its partition graph,
GP = (VP , EP ), as follows. Each partition, u ∈ VP , is a
node in the graph and has a weight associated with it equal
to the prior, w(u) = du. Furthermore, an undirected edge
exists between two nodes, (u, v) ∈ EP , in the graph if and
only if the corresponding partitions, u, v, are adjacent in the
original image.

Notice that while we have used one partitioning scheme
and one prior count estimation technique for our example
here, other machine learning or vision algorithms for this, as
well as other settings provide similar information that will
allow us to generate similar partition graphs. Thus, the set-
ting where we begin with a partition graph is general, and
applies to other scenarios.

Now, given a partition graph, one approach to counting
the number of objects in the image could be to have workers
count each partition individually. The number of partitions
in a partition graph is, however, typically very large, mak-
ing this approach impractical. For instance, most of the 5–6
partitions close to the lower right hand corner of the image
above have precisely one cell, and it would be wasteful and
expensive to ask a human to count each one individually.
Next, we discuss an algorithm to merge these partitions into
a smaller number, to minimize the number of human tasks.

4.2 Merging Partitions
Given a partition graph corresponding to an image, we lever-
age the prior counts on partitions to avoid the top-down ex-
pansion of segmentation trees described in Section 3. In-
stead, we infer the count of the image by merging its par-
titions together into a small number of bins, each of which
can be reasonably counted by workers, and aggregating the
counts across bins.
Merging problem. Intuitively, the problem of merging par-
titions is equivalent to identifying connected components (or
bins) of the partition graph, with total weight (or count) at
most d∗. Since workers are accurate on images with size up
to d∗, we can then elicit worker counts for our merged com-
ponents and aggregate them to find the count of the whole
image. Overall, we have the following problem:
Problem 4.1 (Merging Partitions). Given a partition
graph GP = (VP , EP ) of an image, partition the graph into
k disjoint connected components in GP , such that the sum
of node weights in each component is less than or equal to
d∗, and k is as small as possible.

Enforcing disjoint components ensures that no compo-
nents overlap over a common object, thereby avoiding
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double-counting. Furthermore, restricting our search to con-
nected components ensures that our displayed images are
contiguous — this is a desirable property for images dis-
played to workers over most applications, because it pro-
vides useful, necessary context to understand the image.
Hardness and reformulation. The solution to the above
problem would give us the required merging. However, the
problem described above can be shown to be NP-Complete,
using a reduction from the NP-Complete problem of parti-
tioning planar bipartite graphs (Dyer and Frieze 1985); our
setting uses arbitrary planar graphs, and so our problem is
more general. Thus, we have:
Theorem 4.1 (Hardness). Problem 4.1 is NP-COMPLETE.

We consider an alternative formulation for the above bal-
anced partitioning problem. Note that while this reformu-
lated problem is still NP-COMPLETE, as we see below, it is
more convenient to design heuristic algorithms for it.
Problem 4.2 (Modified Merging). Let dmax = maxu d

u,
u ∈ VP be the maximum partition weight in the partition
graph GP = (VP , EP ). Split GP into the smallest number
of disjoint, connected components such that for each com-
ponent, the sum of its partition weights is at most k× dmax.

By setting k ≤ d∗/dmaxin the above problem, we can find
connected components whose prior counts are estimated to
be at most d∗. Observe that here, although we do not start
out with a segmentation tree, the partitions provided by the
partitioning algorithm can be thought of as leaf nodes of a
segmentation tree and our merged components form parents,
or ancestors of the leaf nodes.

Figure 5: Articulation
Point

Each component produced
via a solution of Problem 4.2
also corresponds to an actual
image segment formed by merg-
ing its member partitions: if
the prior counts are accurate,
these image segments together
comprise a minimal terminat-
ing frontier for some segmenta-
tion tree. While in practice, they
need not necessarily form a min-
imal terminating frontier, or even a terminating frontier, we
observe that they provide very good approximations for one.

Given the hardness of this modified merging problem, we
now discuss good heuristics for it, and provide theoretical
and experimental evidence in support of our algorithms.

FirstCut Algorithm. One simple approach to Prob-
lem 4.2, motivated by the first fit approximation to the Bin-
Packing problem (Coffman Jr, Garey, and Johnson 1996),
is to start a component with one partition, and incremen-
tally add neighboring partitions one-by-one until no more
partitions can be added without violating the upper bound,
k × dmax on the sum of vertex weights. We refer to this
as the FirstCut algorithm. In practice, however, we find
that FirstCut performs suboptimally for several graphs as
certain partitions and components get disconnected by the
formation of other components during this process. For ex-
ample, consider the partitioning shown in Figure 5.

Suppose partitionsA, . . . , G contain 100 objects each and
parameter k = 6. The maximum allowed size for a merged
component is 6 × dmax ≥ 6 × 100. Supposing we start a
component with A, and incrementally merge in partitions
B, . . . , F , we end up isolating G as an independent merged
component. This causes some components to have fewer
than k × dmax objects, which in turn will result in a higher
final number of merged components than optimal.

ArticulationAvoidance Algorithm. Applying our first
cut procedure to Figure 5 results in poor quality compo-
nents if we merge partitions B . . . F to A before G. In-
tuitively, when adding B to the component containing A,
the partition graph is split into two disconnected compo-
nents: one containing G, and another containing C . . . F .
Given our constraint requiring connected components (con-
tiguous images), this means that partition G can never be
part of a reasonably sized component. This indicates that
merging articulation partitions like B, i.e. , nodes or par-
titions whose removal from the partition graph splits the
graph into disconnected components, potentially results in
imbalanced final merged components. Since adding artic-
ulation partitions early results in the formation of discon-
nected components or imbalanced islands, we implement
our ArticulationAvoidance algorithm that tries to merge
them to growing components as late as possible. We merge
partitions as before, growing one component at a time up to
an upper bound size of k×dmax, but we prioritize the adding
of non-articulation partitions first. With each new partition,
u, added to a growing component, we also update our list
of articulation partitions for the new graph and repeat this
process until all partitions have been merged into existing
components.

We performed extensive evaluation of our algorithms
on synthetic and real partition graphs and found that
ArticulationAvoidance performs close to the theoreti-
cal optimum; FirstCut, on the other hand, often gets stuck
at articulation partitions, unable to meet the theoretical opti-
mum. For details of our algorithms, their complexities, and
their evaluation on various partition graphs, we refer the
reader to (Sarma et al. 2015).

4.3 Practical Setup
In this section we discuss some of the implementation details
of and challenges faced by our algorithms in practice. Many
of the challenges faced in Section 3.4 apply here as well.

Partitioning. The first step of our algorithm is to parti-
tion the image into small, non-overlapping partitions. To
do this, we use the marker-controlled watershed algo-
rithm (Beucher and Meyer 1992). The foreground markers
are obtained by background subtraction using morphologi-
cal opening (Beucher and Meyer 1992) with a circular disk.

Prior counts. In the example of Figure 4, we learn a model
for the cells using a simple Support Vector Machine clas-
sifier. For a test image, every 15 × 15 pixel window in the
image is classified as ‘cell’ or ‘not cell’ using the learned
model – see (Sarma et al. 2015) for more details of this ap-
proach. Note that this procedure always undercounts, that is,
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the prior count estimate obtained for any partition is smaller
than the true number of objects in that partition.
Traversing the Segmentation Tree. While Section 4.2
gives us a set of merged components, we still need to show
these images to human workers to verify the counts. One op-
tion is to have (multiple) workers simply count each of these
image components and aggregate the counts to get an esti-
mate for the whole image. Since some of these image com-
ponents may have counts higher than our set worker thresh-
old of d∗, our model tells us that worker answers on the
larger components could be inaccurate. So, another option is
to use these images as a starting point for an expansion down
the segmentation tree, and perform a FrontierSeeking
search similar to that in Section 3 by splitting these seg-
ments until we reach segments whose counts are all under
d∗. We compare these two alternatives in (Sarma et al. 2015)
and find that while splitting the merged components could
be beneficial for certain datasets, just our AA algorithm with
worker counts on generated components is sufficient for our
biological dataset.

5 Experimental Study
We deployed our crowdsourcing solution for counting on
two image datasets that are representative of the many appli-
cations of our work. We examine the following questions:
• How do the JellyBean algorithms compare with the the-

oretically best possible “oracle” algorithms on cost?
• How accurate are the JellyBean algorithms relative to

machine learning baselines?
• What are the monetary costs of our algorithms, and how

do they scale with the number of objects?
• How accurate are the JellyBean algorithms relative to

directly asking workers to count on the entire image?

5.1 Datasets
Dataset Description. Our first dataset is a collection of 12
images from Flickr. These images depict people in various
settings, with the number of people (counts) ranging from
41 to 209. This is a challenging dataset, with people look-
ing very different across images—ranging from partially to
completely visible, and with varying backgrounds. Further-
more, no priors or partitions are available for these images—
so we evaluate our solutions from Section 3 on this dataset.
We refer to this as the crowd dataset.

The second dataset consists of 20 simulated images show-
ing biological cells, generated using SIMCEP (Lehmussola
et al. 2007). The number of objects in the images ranges
from 151 to 328. The computer vision techniques detailed
in Section 4 are applied on these images to get prior counts
and partitions. We refer to this as the biological dataset.
Segmentation Tree. For the crowd dataset, the segmenta-
tion tree was constructed with fanout b = 2 until a depth of
5, for a total of 31 nodes per image. At each stage, the im-
age was split into two equal halves along the longer dimen-
sion. This ensures that the aspect ratios of all segments are
close to the aspect ratio of the original image. Given a seg-
ment, workers were asked to count the number of ‘majority’
heads (as described in Section 3.4)—if a head crossed the

image boundary, it was to be counted only if the worker felt
that majority of it was visible. To aid the worker in judging
whether a majority of an object lies within the image, the
surrounding region was shown demarcated by clear lines.

For the biological dataset, bins were generated by our
ArticulationAvoidance algorithm.

Task Generation. The segments/bins, generated as above,
were organized randomly into Mechanical Turk HITs (Hu-
man Intelligence Tasks) having 15 images each. The workers
were paid 30¢ for each HIT. Across both datasets, workers
provided counts for 2250 segments. Each HIT was answered
by 5 workers and then take the median of their responses as
the WorkerCount. We discuss additional experiments on
worker behavior, as well as ones evaluating various answer
aggregation schemes beyond median in (Sarma et al. 2015).

Given the generated segmentation trees, as well as the out-
comes of the generated tasks, we are able to simulate the
runs of different algorithms on the two datasets and com-
pare them on an an equal footing.

5.2 Variants of algorithms

Algorithms for Both Datasets. For the above datasets, we
evaluate the following algorithms:
• FS: our FrontierSeeking algorithm from Section 3;
• OnlyRoot: This algorithm queries only the root node of

the segmentation tree, to test how workers perform with-
out any algorithmic decomposition;

• ML: Machine learning baselines — (a) For the biological
dataset, the prior counts from our machine learning algo-
rithm from Section 4.3, and (b) For the crowd dataset, a
pre-trained face detector from (Zhu and Ramanan 2012);

• Optimal: Given our worker behavior model, a worker’s
answer is expected to be accurate only if the number of
objects to be counted is < d∗. Thus, any algorithm re-
quires at least d TrueCountd∗ e questions to count accurately,
even if it knows the exact nodes to query. We call this
Optimal since it is a lower bound for any algorithm
given our error model.

Algorithms for Biological Dataset. For the biological
dataset, we also evaluate the following algorithm:
• AA: ArticulationAvoidance algorithm (Section 4.1);

Ground Truth. For both datasets, we denote the true counts
of images by Exact. While the (generated) images in the
biological dataset have a known ground truth, the images in
the crowd dataset were evaluated independently and agreed
upon by two annotators.

Accuracy. The error of our algorithms is calculated as:
|TrueCount-WorkerCount|

TrueCount
. The percentage accuracy is therefore

100 × (1 − Error). We also use the percentage of images
where TrueCount = WorkerCount as another accuracy
metric for the biological dataset.

5.3 Results
In this section, we describe the results of our algorithms.
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How do the JellyBean algorithms (FS and AA) com-
pare with the theoretically optimal oracle algorithm
on cost?
On both datasets, the costs of FS and AA are within a
small constant factor–between 1 to 2.5–of Optimal.

Crowd Dataset Optimality. For the crowd dataset, we com-
pare the performance of FS against Optimal. Averaging
across images, the number of questions asked by FS is within
2.3× of Optimal. Further, this factor does not cross 2.75 for
any image in the dataset. This is especially low considering
how hard the images in this dataset are.
Biological Dataset Optimality. For the biological dataset,
we compare the performance of FS and AA against Optimal.
The average number of questions asked by AA is within a
factor 1.35 of Optimal, which is significantly lower than the
2.3 factor for FS. This indicates that leveraging information
from computer vision algorithms helps bring AA closer to
“oracle” optimality.

How accurate are the JellyBean algorithms (FS and
AA) relative to machine learning baselines (ML)?
On the crowd dataset, FS has a much higher accuracy
of 97.5% relative to 70.1% for ML on the 5/12 images
ML works on; for the remaining 7/12 images, ML de-
tects no faces at all.
On the biological dataset, FS has an accuracy of
96.4%. In comparison, AA increases the accuracy to
99.87%, returning exact counts for 85% of the im-
ages (off on the rest by counts of 1 to at most 3),
while Bio-ML gets only 45% correct (off on the rest
by counts of at least 5).

Crowd Dataset Accuracy. For the crowd dataset, we com-
pare the performance of FS against ML. On this difficult
dataset, ML fails to detect any faces for 7 out of the 12 images
(i.e., making 100% error on 58.3% of the images), and has
an average accuracy of 70.1% on the remaining, demon-
strating how challenging face detection can be to state-of-
the-art vision algorithms. In comparison, FS counts people
in all these images with an average accuracy of 92.5% for
an average cost of just $1.17 per image. In particular, for the
5 images where ML did detect heads, the average accuracy of
our algorithm was 97.5%. The accuracy of FS, which is in-
dependent of the domain, demonstrates that crowdsourcing
can be very powerful for tasks such as counting.
Biological Dataset Accuracy. For the biological dataset, FS
has an average accuracy of 96.4%. Next, we compare AA to
ML, our computer vision algorithm, whose counts and parti-
tions are input to AA. We observe that out of 20 images, AA
gets the correct Exact count for 17 (85%) of the images,
while ML gets only 9 (45%) images exactly correct. To study
the errors further, we plot a histogram of the deviation from
the correct counts in Figure 6a. The x-axis shows the devia-
tion from Exact for an image, and the y-axis shows the fre-
quency, or number of images for which the count estimated
by an algorithm deviated for a specific x-value. We observe
that even though the counts provided by FS are 96.4% ac-
curate, they deviate by more than 5 for 18/20 images. AA is
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significantly better – only 3 images deviating by counts of 1,
2, and 3 respectively. In comparison, ML estimate deviates
by at least 5 for 7 images. Thus, AA, which leverages both
crowds and computer vision algorithms, outperforms both
FS and ML.

How expensive are the Jellybean algorithms?
On both datasets with hundreds of objects, the algorithms
FS and AA return accurate results at the cost of a few dol-
lars per image. The cost of AA is approximately half of the
cost of FS per object, indicating that “skipping ahead” in
the segmentation tree using information from computer
vision algorithms cleverly helps reduce cost significantly.

Crowd Dataset Cost. In Figure 7 we plot the cost of count-
ing an image from the crowd dataset using FS against the
number of objects in that image. Each vertical slice corre-
sponds to one image with its ground truth count along the
x-axis, and dollar cost incurred along the y-axis. The cost is
of the order of just a few dollars even for very large counts,
making it a viable option for practitioners looking to count
(or verify the counts of) objects in an image.

Biological Dataset Cost. The average cost of counting an
image from the biological dataset incurred using AA was
$1.6, as compared to $2.7 using FS. The average cost of
counting per object was 0.63¢ for AA and 1.25¢ for FS. This
significant reduction (2×) for AA is a result of our merging
algorithm which skips the larger granularity image segments
and elicits accurate counts on the generated components.
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How accurate are the JellyBean algorithms (FS and
AA) relative to directly asking workers to count on the
entire image (OnlyRoot)?
On the crowd dataset, FS estimates counts with >
90% accuracy on 9/12 images, relative to 2/12 images
for OnlyRoot.
On the biological dataset, FS and AA improve the ac-
curacy by 27% and 30.7% as compared to OnlyRoot.

Crowd dataset. We now compare OnlyRoot, i.e., only ask-
ing questions at the root, versus FS. We plot the results in
Figure 6b. The x-axis marks the ground truth (Exact) counts
of images, while the y-axis plots the predicted counts by
different algorithms. Each vertical slice corresponds to an
image, and each point on the plot corresponds to the out-
put of an algorithm for a given input image. We find that
average accuracy of OnlyRoot is 81.8% as compared to
the 92.5% of FS. We observe that splitting the image into
smaller pieces improves counts significantly for most im-
ages. As Figure 6b shows, FS estimates better counts than
OnlyRoot for 10/12 images. The two points on the extremes
where Onlyroot yields a better answer result are anomalous
due to image-specific reasons – see (Sarma et al. 2015).
Biological Dataset. For the biological dataset, the
OnlyRoot baseline performs poorly, achieving an accuracy
of < 75% for 14/20 images. In comparison, FS counts with
an accuracy of 96.4% for all images. Further, AA has 100%
accuracy on 17/20 images as shown in Figure 6a, indicat-
ing that using vanilla crowdsourcing without applying our
JellyBean algorithms can lead to low accuracy.

6 Related Work
The general problem of finding, identifying, or counting ob-
jects in images has been studied in machine learning, com-
puter vision and crowdsourcing communities. We discuss
recent related work from each of these areas and compare
them against our approach.
Unsupervised learning. A number of recent solutions to ob-
ject counting problems tackle the challenge in an unsuper-
vised way, grouping neighboring pixels together on the basis
of self-similarities (Ahuja and Todorovic 2007), or similari-
ties in motion paths (Rabaud and Belongie 2006). However,
unsupervised methods have limited accuracy, and the com-
puter vision community has therefore considered supervised
learning approaches. These fall into three categories:
Counting by detection. In this category of supervised al-
gorithms, a object detector is used to localize each object
instance in the image. Training data for these algorithms is
typically in the form of images annotated by bounding boxes
for each object. Once all objects have been located, counting
them is trivial (Nattkemper et al. 2002). However, object de-
tection is an unsolved problem in itself even though progress
has been made in recent years (Everingham et al. 2014).
Counting by regression. Algorithms in this category learn
a mapping from image properties like texture to the num-
ber of objects. This mapping is inferred using one of the
large number of available regression algorithms in machine
learning e.g., neural networks (Cho, Chow, and Leung 1999;

Marana et al. 1997). For training, images are provided with
corresponding object counts. In such methods , the map-
pings from local features to counts are global, that is, a sin-
gle function’s learned parameters are used to estimate counts
for the entire image or video. This works well when crowd
densities are uniform throughout the image – a limiting as-
sumption that is largely violated in real life applications.
Counting by annotation. A third approach has been to train
on images annotated with dots. Instead of bounding boxes,
each object here is annotated with a dot. For instance, in
(Lempitsky and Zisserman 2010), an image density func-
tion is estimated, whose integral over a region in the im-
age gives the object count. Another recent work counts ex-
tremely dense crowds by leveraging the repetitive nature of
such crowded images (Idrees et al. 2013).

A common theme across these methods is that they deliver
accurate counts when their underlying assumptions are met
but are not applicable in more challenging situations. This
guides us to leverage the ‘wisdom of the crowds’ in counting
heterogeneous objects, which may be severely occluded by
objects in front of them.
Crowdsourcing for image analysis. The above considera-
tions indicate the requirement of human input in the object
counting pipeline. The idea of using human inputs for com-
plex learning tasks has recently received attention; in (Cheng
and Bernstein 2015), the authors present a hybrid crowd-
machine classifier where crowds are involved in both feature
extraction and learning. Although crowdsourcing has been
extensively used on images for tasks like tagging (Qin et al.
2011), quality assessment (Ribeiro, Florencio, and Nasci-
mento 2011) and content moderation (Ghosh, Kale, and
McAfee 2011), the involvement of crowds in image anal-
ysis has been largely restricted to generating training data
(Sorokin and Forsyth 2008; Lasecki et al. 2013).

In a recent study of crowdsourcing for malaria im-
age analysis (Luengo-Oroz, Arranz, and Frean 2012), non-
expert players achieved a counting accuracy of more than
99%. In our work, we build on this study to propose solu-
tions to the challenges that arise when using crowds to esti-
mate counts in images across different application settings.
Summary. While there have been many studies on com-
puter vision for counting and segmentation, either (a) the
described settings are stylized or make application-specific
limiting assumptions, or (b) the designed algorithms have
relatively low accuracy in practice. Compared to the com-
puter vision algorithms described, our approach to count ob-
jects is generic—it can be used to count heterogeneous, oc-
cluded objects in diverse images.

7 Conclusions
We tackle the challenging problem of counting the num-
ber of objects in images, a ubiquitous, fundamental problem
in computer vision. While humans and computer vision al-
gorithms, separately, are highly error-prone, our JellyBean
algorithms combine the best of their capabilities to deliver
high accuracy results at relatively low costs for two separate
regimes or modes, while additionally providing optimality
guarantees under reasonable assumptions.
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Our JellyBean algorithms were shown to (a) be within a
2.75× factor of the best possible oracle algorithm in terms
of cost when operating without computer vision , and within
a 1.3× factor of the best possible oracle algorithm, with av-
erage cost reduced by almost half, when operating in concert
with computer vision, (b) have high accuracy relative to both
computer vision baselines as well as vanilla crowdsourcing.
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