
Assigning Tasks to Workers by Referring to Their Schedules
in Mobile Crowdsourcing

Mayumi Hadano†, Makoto Nakatsuji††, Hiroyuki Toda†, and Yoshimasa Koike†
†NTT Service Evolution Laboratories, NTT Corporation
†{hadano.mayumi, toda.hiroyuki, koike.y}@lab.ntt.co.jp

††NTT Resonant, Inc., nakatuji@nttr.co.jp

Abstract

This paper focuses on task assignments to workers in
mobile crowdsoucing systems. The current method does
not work so well since it considers only workers who are
ready to work at the time of optimization. Our method
handles workers’ day-long schedules, creates a ‘time-
extended’ worker-task graph that expresses the relation-
ships between workers and tasks over a time period and
finds the best set of worker-task-time triples. Our eval-
uation using real world visiting logs shows it increases
the rate of assigned tasks by more than 8.2% compared
with a state-of-the-art assignment method.

Introduction

The spread of smart devices has made it feasible to develop
a mobile crowdsourcing system, where crowd workers per-
form a variety of location-specific tasks through their mobile
devices. Services of this sort have attracted a lot of interests
from business, and they would be especially beneficial to
local businesses seeking detailed information that could be
cheaply gathered by crowd workers.

A representative task-assignment study (Kazemi and Sha-
habi 2012) in the mobile crowdsourcing field tries to maxi-
mize the number of assigned tasks and then to minimize the
total costs by modeling the task assignment as a min-cost
max flow problem. However, crowd workers usually per-
form tasks during their free time so they often appear, dis-
appear, and move. As a result, it misses opportunities to as-
sign tasks to workers who will appear after its optimization
and decrease the number of assigned tasks. To tackle this
problem, we propose a new task assignment under the con-
dition that the system can refer to workers’ schedules for the
following reason; It has benefits for workers because shar-
ing their schedules enables crowdsourcing system to avoid
sending notification to workers when they are not free.

We briefly explain the steps of our method. First, all pos-
sible triples consisting of tasks, workers, and available time
periods are created on the basis of the distance between the
workers and the tasks as well as workers’ available time by
referring to their schedules. Next, directed graphs are cre-
ated for each time period in the same way as the current

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Task-worker graph generated by our method (top:
the worker-task graph for each time period, bottom: the
time-extended worker-task graph used in our method).

method, and they are merged into one ‘time-extended’ graph
covering all time periods (Fig. 1). It then finds best set of
worker-task-time triples that maximize the number of as-
signed tasks and minimize the total cost (e.g. time and dis-
tance). To find this set, we regards extracting worker-task-
time triples as min-cost max flow problem (Hassin 1982).

Method

This section explains the terminology and our method.
Definition 1 (Task). Task ti ∈ T is submitted by requesters
to the mobile crowdsourcing system. We specify the loca-
tion of each task ti by using a longitude and latitude. For
simplicity, we do not care about reward of tasks.
Definition 2 (Worker). Worker wj ∈ W performs a task in
the mobile crowdsourcing system. We specify the location
of each worker wj by using a longitude and latitude. The set
of workers who are available during the whole time period
is denoted as W(Φ). A worker who comes at time period φk

is denoted as wj(φk), and he shares the maximum number
of tasks (maxTj(φk)) and available region (rj(φk)) with the
system. He can move within the available region. We assume
that worker who is assigned to a task by the system does not
decline to perform the task.
Definition 3 (Worker-task graph). A worker-task graph
G(V,E) is composed of a set of vertices and edges (Fig.

Human Computation and Crowdsourcing: Works in Progress Abstracts:
An Adjunct to the Proceedings of the Third AAAI Conference on Human Computation and Crowdsourcing

10

Figure 2: Spatial distribution of assigned tasks (white pins:
assigned tasks, black pins: not-assigned tasks).

1). The vertices represent tasks and workers, and there are
two special vertices, vsrc and vsink, that represent the source
of flows and the sink of flows, respectively. The edges repre-
sent the possibilities of workers performing tasks. Each edge
(u, v) in the worker-task graph carries a flow. The amount of
flow passing from vertex u to vertex v is denoted as f(u, v).
Each edge has a capacity f̄(u, v) and cost c(u, v) which is
paid to send a unit flow. The way to connect the edges and
compute the capacities and costs of the edges are shown in
the study of (Kazemi and Shahabi 2012).

Our method is composed of two components. First com-
ponent merges worker-task graphs of certain time periods
into a ‘time-extended’ worker-task graph (Fig. 1). It gener-
ates edges from the source vertex to the worker vertices that
exist over the whole time period. Next, it generates edges
from the worker vertices to the task vertices if they are paired
in a set of worker-task pairs P(Φ); each pair in this set repre-
sents the possibility of worker wj performing task ti during
the whole time period. Then, it generates edges from the task
vertices to the sink vertex.

Next component finds a set of assignment results. First,
the component assigns capacities to the edges in the time-
extended worker-task graph in the way explained in the
previous methods (Kazemi and Shahabi 2012). Next, it as-
signs costs to edges. The costs that the workers should pay
when performing tasks are assigned to the edges in the time-
extended worker-task graph. It is computed as follows:

c
∗
(u, v)=

⎧⎪⎨
⎪⎩

0 (u = vsrc, v∈ W(Φ))

time(wj(φk),ti)+φk ((u, v)∈P(Φ))

0 (u ∈ T(φk), v=vsink)

where time(wj(φk), ti) represents the time taken by
worker wj(φk) to complete tasks ti. Thus, the objective
function of min-cost max task assignment is different from
previous method and formulated as follows:

min
∑

(u,v)∈E

f(u, v)c∗(u, v). (1)

The constraints are defined as

f(u, v) ≤ f̄(u, v), ∀(u, v) ∈ E (2)

∑

v∈V

f(u, v) =
∑

v∈V

f(v, u), ∀u ∈ V\{vsrc, vsink} (3)

∑

u∈V

f(vsrc, u) = fmax (4)

where fmax represents the result of the max flow problem.
Then it solves the min-cost max flow problem by using the
time-extended worker-task graph. In doing so, it obtains a
set of worker-task-time triples by finding edges that receive
the flows from worker vertices wj(φk)s to task vertices tis.

Evaluation

Experimental setting. We used real-world visiting logs
(Gowalla data1) to evaluate our method. In the same way as
the previous studies did (Kazemi and Shahabi 2012; Deng,
Shahabi, and Demiryurek 2013), we also regard check-in lo-
cations in visiting logs as the places of workers and tasks in
the mobile crowdsourcing system. The tasks and workers
were randomly generated from the check-in locations. The
tasks were generated at 0:00 and expired at 23:59. The num-
ber of tasks and workers varied from 100 to 500. For each of
our experiments, we ran 50 cases, and reported the average
of the results. We compared two methods, Kazemi (Kazemi
and Shahabi 2012) and CTimeOpt (our method).
Results. The number of tasks that had been assigned by
CTimeOpt totaled 255.4, whereas Kazemi totaled 236.1
when the best parameter settings (|W | = 400 and |T | =
300). Hence, our method assigned 8.2% more tasks. Fig.
2 shows the part of spatial distributions of tasks that each
method assigned to workers at 23:59. From this figure, we
can see that CTimeOpt succeeded in assigning tasks located
far from Los Angels to workers, whereas Kazemi failed to
do so. This is because CTimeOpt can refer to the workers’
schedules and thus it can wait to assign workers who can
complete the tasks that are not covered by the regions of
most workers. The rate of tasks assigned by CTimeOpt is
higher than that by Kazemi when the number of workers is
relatively greater than that of tasks.

Conclusion

This paper tackled the task assignment problem in the con-
text of a mobile crowdsourcing system. While the existing
task assignment method has a limitation in that it ignores
the dynamic nature of workers and tasks, our method uses
the changes in the workers’ locations over time by referring
to their schedules. Our evaluation showed that our method
increased the coverage of assigned tasks by more than 8.2%
compared with a state-of-the-art approach.

References

Deng, D.; Shahabi, C.; and Demiryurek, U. 2013. Maxi-
mizing the number of worker’s self-selected tasks in spatial
crowdsourcing. In Proc. SIGSPATIAL’13, 314–323.
Hassin, R. 1982. Minimum cost flow with set-constraints.
Networks 12(1):1–21.
Kazemi, L., and Shahabi, C. 2012. Geocrowd: Enabling
query answering with spatial crowdsourcing. In Proc.
SIGSPATIAL’12, 189–198.

1See ”http://snap.stanford.edu/data/loc-gowalla.html”

11

