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Abstract

Crowdsourcing is increasingly being used to solve complex
tasks that require contributions from groups of individuals. In
this paper, we consider the problem of distinguishing workers
from idlers (who do not contribute positively) in group-based
tasks. We consider a group as our smallest observable unit
that can be evaluated and assume no knowledge of individ-
ual participant’s contribution. We propose the use of group
testing based methods for estimating quality of an individ-
ual, based on the performance of teams they have been part
of. We further extend these algorithms to identify subsets of
workers and give theoretical analysis on size of these subsets.
We account for several real-world constraints in our model
and present empirical support to our theoretical guarantees
by an array of simulation experiments.

Introduction
Crowdsourcing has evolved from solving simpler tasks, like
image-classification, to more complex tasks such as doc-
ument editing, language translation, product designing etc
(Rahman et al. 2015b). Unlike micro-tasks performed by a
single worker, these complex tasks require a group of work-
ers and greater resources. Recent research has highlighted
the importance of group-effort to accomplish complex tasks,
since individual worker’s efforts are insufficient (Kittur et
al. 2011). For instance, the task of collaborative document-
writing (Figure 1) broadly involves planning, composing
prose, writing coherent paragraphs etc. It is difficult to get an
individual to write the entire document with low monetary
costs. Such tasks fundamentally require coming together of
multiple skills. The requester can either decompose the com-
plex task into its constituent micro-tasks and assign them to
individual workers (Little et al. 2009) or pose less decom-
posable tasks in entirety (Chamberlain 2014). Either way,
groups of workers are involved who collaborate together and
iteratively work over each others’ contributions for complet-
ing the task.

The joint efforts of participants in a collaborative task are
often so fundamentally interlinked that it is hard to separate
out contribution of an individual. For example, in collabo-
rative writing, participants repeatedly pursue different tasks
like deciding the scope of article, collecting relevant facts,
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Figure 1: Collaborative document-writing is an instance of com-
plex tasks that require participants to work in groups. They iter-
atively add, edit and build upon efforts of other, thus making es-
timation of individual contributions hard. To reward participants
individually, there is a need to identify workers from idlers in these
groups – the problem we address in this paper.

writing, editing etc. In such scenarios, the requester can eval-
uate the entire group as a whole (by grading the final arti-
cle) but cannot gauge individual contributions. If the task-
requester is interested in making individual payments based
on their respective efforts in the group, she will need a strat-
egy to discriminate between participants. It is a non-trivial
task to distinguish workers (who contribute positively) from
idlers (who do not contribute to group task) among the par-
ticipants using only group’s performance. Due to lack of
concrete evaluation mechanisms, participants may also tend
to idle through tasks (Kim and Walker 1984). Prior work
also suggests that groups with more than required partici-
pants will have idlers (Kenna and Berche 2012).

The task requester is faced with the problem of reward-
ing individuals based on their group’s performance. In this
work, we study the problem of distinguishing workers from
idlers, without assuming any prior knowledge of individ-
ual skills and using only the group output. In this work, a
group is considered as the smallest observable unit for eval-
uation and not individual participants. We describe methods
to form groups for different collaborative tasks and estimate
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individual qualities based on group performances. Further,
we give bounds over minimum number of groups required
to identify quality of subsets of individuals with high confi-
dence.

We draw upon literature from group testing which pro-
poses strategies for forming groups and mechanisms to
decode individual qualities from group results (Atia and
Saligrama 2012). These group testing inspired techniques
will be used to form groups for collaborative tasks and de-
termine their individual participant qualities based on entire
group’s performance. These methods, which have tradition-
ally been used for signal processing, automated inspection
etc., usually require large number of group tests. Direct ap-
plication of these algorithms to crowdsourcing would incur
huge costs to the task requester. We reduce the total number
of group-tasks required for crowdsourcing applications by
identifying subsets of workers and idlers.

Our contributions in this paper are:

• We introduce ideas from group testing in crowdsourcing
and use them to distinguish workers from idlers, using the
performance of their teams.

• Propose efficient extensions, backed with theoretical
guarantees, to group testing algorithms for identifying
subsets of workers and idlers while significantly reducing
the number of required tasks.

• Experiments to empirically validate the theoretical guar-
antees and show that the proposed algorithms are effective
in identifying subset of workers.

Our work underscores interaction between applied crowd-
sourcing and theoretical foundations of group testing. To our
knowledge, we are the first to address the problem of iden-
tifying workers from idlers with groups being the smallest
unit of evaluation.

In rest of this paper, we first place this work in the con-
text of current literature and then formalize our setting to
establish notations. We then present algorithms to classify
all participants in ideal and noisy scenario and later prove
bounds for identifying subsets of worker and idlers. Finally,
we validate our theory with experiments and discuss their
results.

Related Work
Collaborative Tasks such as article writing, local report-
ing, product design etc., have recently gained popularity
in realms of crowdsourcing (Rahman et al. 2015b; Agapie,
Teevan, and Monroy-Hernández 2015). It is known that such
tasks require greater efforts and are better accomplished if
done in teams (Kittur et al. 2011). On-demand groups of
workers can be hired from companies like TaskRabbit for
tasks that require physical presence (Teodoro et al. 2014).

Frameworks have been proposed to break down complex
tasks into series of simpler tasks (Kulkarni, Can, and Hart-
mann 2011; Little et al. 2009; Bernstein et al. 2015) and em-
ploy teams of crowd workers in tandem. Generating event
reports from groups of local workers (Agapie, Teevan, and
Monroy-Hernández 2015), is another instance of positive
synergistic effects of collaboration (Hertel and Hertel 2011).

Groupsourcing (Chamberlain 2014) investigates the poten-
tial of teams on social-networks for solving tasks. However,
it assumes that participants are intrinsically motivated and
self-organized, which is much different from our setting.
(Rahman et al. 2015a) studies the benefit of collaboration in
sentence translation and highlights its necessity. However, it
assumes the knowledge of worker’s skills.

Quality Estimation in Collaborative Tasks. Most work
on collaborative tasks look into quality of the result of the
tasks. To model collaboration and analyze individual con-
tribution in a group, (Rahman et al. 2015c) use aggrega-
tion sum and max strategies. However, we do not assume
any prior information of individual skill levels or task exper-
tise requirement. (Eppstein, Goodrich, and Hirschberg 2013)
presents combinatorial pair testing to identify unproductive
participants working in teams of size exactly two. Our work
does not place any restriction over the size of groups. The
free rider problem (Kim and Walker 1984) in economics
presents game-theoretic solutions to similar concerns where
idling members, who contribute little toward their groups,
still enjoy benefits as any other working member.

Group Testing is a discipline of probabilistic and combi-
natorial mathematics with rich literature on problems of lo-
cating individuals in a set with certain properties by testing
them in groups (Du and Hwang 1999). ‘Test’ refers to veri-
fying the existence of any identifiable property, in our case -
testing whether an individual is a worker or idler or testing
whether a team has atleast one slacker.

The idea of group testing is explained with a toy-example
below. Suppose we are given samples of several water-
bodies to test for the presence of a particular pollutant. A
naive method would be to test each sample individually. In-
stead we can combine a few samples together and test for
presence of the pollutant in this pool. Group testing frame-
work gives strategies to mix subset of samples and methods
to identify which samples are polluted. This greatly reduces
the total number of tests to be performed, and the gains are
especially substantial when number of polluted samples are
much lesser compared to non-polluted.

In our case, we want to test whether a participant is worker
or idler by evaluating performance of teams he/she has been
a part of. (Dorfman 1943) proposed group tests for identify-
ing diseased individuals by fusing blood samples and testing
them in pools. Group testing has found application in nu-
merous other fields such as data mining (Macula and Popy-
ack 2004), multi-access channels (Wolf 1985), data stream
(Cormode and Muthukrishnan 2005). Algorithms in Group
testing are broadly categorized as combinatorial (Ngo and
Du 2000) or probabilistic (Cheraghchi et al. 2011) based on
their methods of forming groups for tests. Most prior works
in group testing have focused on identifying properties of all
items in their universe (Atia and Saligrama 2012) and very
little work has also gone into identifying subsets of items.
(Sharma and Murthy 2015) have looked into identification
of subset from majority class using fewer tests and bound
the number of required groups. Our work looks into select-
ing subsets from both majority and minority classes.
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Problem Formulation
In this section we motivate our problem using the example
of ‘collaborative science journalism’. Later we establish no-
tations used in further sections and formalize our problem.

Motivating Problem: Consider the content-manager of a
collaborative-science journal who has to write several sci-
entific articles regularly. This complex job involves read-
ing recent scientific papers, understanding their findings, fo-
cused web-search, summarizing essential details in compre-
hensible manner etc. The efforts involved per article are pro-
hibitively high for an individual worker. The task-requester
can solicit a large pool of crowd-workers and distribute ar-
ticles among groups of participants. As the members of
groups collectively work to create, edit, and publish the con-
tent, their individual contributions are fuzzy and hard to
track. Participants are given the liberty to collaborate with-
out any supervision and hence are ‘invisible’ (in terms of
individual contributions toward group) to the task requester.
Being strategic and aware of this limitation in quality as-
sessment, participants can choose to not contribute towards
the team-effort. Based on the quality of final article, the re-
quester can determine whether sufficient efforts have gone
into producing the article or not. Even if the requester real-
izes that a few (one or more) participants might have been
idling in their groups, she still cannot pinpoint them exactly.
The requester is posed with two problems:
• How to smartly form teams for different articles? And
• How to estimate individual participant’s quality based on

team performance?
A natural response to the above problem would be to build

tracking mechanisms (like version-control) or structuring
the task to elicit worker’s accountability. However, isolat-
ing intricate cooperation-based-efforts of participants would
still be hard as each participant’s impact on the group’s per-
formance is a function of his individual contribution and
synergistic cooperation with other subsets of members.

Notations: The requester has access to a set of people N ,
with |N | = N . The participants in N are either workers
NW or idlers NI 1 with the number of idlers restricted to
K, i.e., |NI | ≤ K. We also assume that idlers are fewer than
workers, K < (N − K). There are M collaborative tasks
and each task i needs a group of participants Gi ⊂ N to work
together toward its completion. Participation matrix X ∈
RMxN captures the information of members for each group
task, withXij = 1 if participant j is involved in solving task
i, Xij = 0 otherwise.

Evaluation function f , which represents the requester,
gauges the performance of group G for a certain task and
grades it either satisfactory or not, f(G)→ {0, 1}. f(G) = 1
implies that team performance is not satisfactory and that it
consists of one or more idlers, whereas f(G) = 0 implies
that team performance is satisfactory and the team is com-
posed of all workers2. Y ∈ RM stores the performance of

1We acknowledge that skill of a person is more fine grained
than binary classification of worker or idler, but this simplification
is assumed as a first approach.

2This assumption is relaxed later for more realistic settings.

all groups, such that Y (l) = f(Gl) for lth task.

Noisy Variants: The above strong assumptions made on
the nature of f are relaxed in their noisy variants, which
are more suitable for crowdsourcing. Due to inherent dif-
ficulty of the task or poor judgment of evaluator f , it is pos-
sible that task-requester incorrectly evaluates a group GA
that consists of all workers (and no idler) and assigns it a
score f(GA) = 1. We account for such false-positives us-
ing parameter q, which is the probability that a group of all
workers is evaluated wrong. Similarly, it is possible that few
idlers go unnoticed in a group GB of diligent workers who
compensate for the deficient efforts and f(GB) = 0. Such
false-negatives are accounted using parameter u, which is
the probability that an idler goes unnoticed while evaluating
group G.

In this work, we present non-adaptive probabilistic al-
gorithms (Cheraghchi et al. 2011) to model groups among
crowd workers. These probabilistic methods imitate the ran-
domness in forming groups with unknown workers3. Non-
adaptivity requires us to specify all groups upfront, making
tasks independent of each other. The requester will not have
to wait for results of previous groups to form further groups.
Hence, all tasks can happen parallely or at worker’s avail-
ability/convenience. Our algorithms are agnostic to whether
participants are distributed/collocated or tools used by them
and will prove effective as long as performance of the entire
group is computable.

Quality Estimation of All Participants
In this section, we present algorithms to identify each partic-
ipant as either a worker or an idler i.e., partition N into NI
and NW with |NI | = K and |NW | = N −K. These algo-
rithm (1) assign participants to groups of different tasks; and
(2) estimate individual’s quality using performance of entire
team. Our goal is to distinguish workers and idlers as soon
as possible using minimum number of group tasks.

Noiseless Group Tests
Noiseless setting assumes that the requester can accu-
rately judge a group’s performance and determine if
it has performed sub-optimally i.e, there exists one or
more idlers in the group. Formally, for a group GA,
f(GA) = 1 ⇐⇒ ∃i ∈ GA such that i ∈ NI and f(GA) =
0 otherwise. Although this assumption is strong for
collaborative-journalism, it is more applicable to group-
sensing scenarios (Singla and Krause 2013) where crowd-
workers carrying hand held sensors help in collecting data.
Privacy concerns often limit access to individual sensor feed
and provide aggregated statistics over data (Olson, Grudin,
and Horvitz 2005). In such cases, the requester can accu-
rately identify discrepancies in aggregated data from a group
of sensors but cannot pinpoint malicious/defective sensors.
Coupon Collector (CoCo) algorithm is inspired by clas-
sical coupon collection problem (Chan et al. 2014; Boneh

3Note that random group formation restricts us from modeling
participant’s personal preferences to be grouped with other specific
participants.
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and Hofri 1997). Given a bag of different coupons, where
probability of drawing each coupon is the same, coupon col-
lection problem estimates the distribution over total number
of draws that are needed to collect all the coupons. Here,
we treat each worker j ∈ NW as a coupon and estimate the
number of groups j would have to be present in for being
identified.
Steps involved in CoCo algorithm: To construct the par-
ticipation matrix X ∈ RMxN , for each row i in X , uni-
formly sample index j from [1, 2, 3, . . . N ] for g times with
replacement and set Xij = 1. g =

(
log(N/N − K)

)−1
is a system parameter (refer appendix for exact calcula-
tion of g) and M is number of group tasks. Note that
a few indices might be selected repeatedly, so each row
can have less than g ones. Formally, ∀i,Xij = 1 if j ∈
{RandomSample(1, 2, . . . N)}g . Using this X matrix we as-
sign participants to each ith task and evaluate its team’s per-
formance Y (i), to obtain vector Y .

To identify workers from idlers, we look for those groups
G with evaluation f(G) = 0 and mark all their participants
as workers. All the remaining participants are declared as
idlers. Formally, ∀i, if Y (i) = 0 then ∀j, such that Xij = 1
mark j ∈ NW and NI = N\NW .

It is important to correctly identify workers and idlers
with high probability. The contention lies in having suffi-
ciently high M i.e., enough number of team-tasks, so that
each worker appears with high probability in atleast one
team which does not have idlers. For g = 1/ ln(N/N −K)
and M ≥ θ(KlogN), (Chan et al. 2014) bounds the proba-
bility of error to diminish exponentially with increase in M .

Noisy Group Tests
Noisy algorithms cater to most crowdsourcing scenarios
where an idler does not get identified amidst several work-
ers and workers wrongly get classified as idlers. Let q be
the probability that a team of workers is wrongly classified
and u the probability that an idler does not get identified in
group of workers. The requester would still want to correctly
identify workers from idlers with high probability.
Column Based (CoBa) algorithm in group testing attempts
to correlate columns of X,X:,j with the evaluation vector Y
(Atia and Saligrama 2012). For every participant j ∈ N , it
calculates over the number of teams j has been a part of and
their respective evaluations.
Steps involved in CoBa algorithm: Construction of partici-
pation matrix X ∈ RMxN is as follows. Each participant
j is involved with team i with probability p (where param-
eter p = 1/K, refer Appendix for calculation). Formally,
Xij = B(p) ∀i, j, where B(p) = 1 with probability p and
0 with probability 1 − p, is Bernoulli distribution. Hence,
choosing a participant for any team is an independent event,
which reinforces our assumption that we do not have any
prior knowledge of individual participants. Using the above
participation matrix X , the requester can assign groups for
each task and evaluate their performance to obtain Y .

Define function t(j) for participant j such that
t(j) = XT

(:,j)Y
′ − ψXT

(:,j)Y , where Y ′ refers to comple-
ment of Y and ψ is a constant dependent on u, q,K. We

Algorithm 1 Red-CoCo: Reduced Coupon Collection algo-
rithm for identifying subset of workers

Require: M: number of tasks, N: total number of partici-
pants, g: parameter

1: INITIALIZEMATRIX Xij = 0,∀i,∀j
2: for all i ∈ [1, 2, 3 . . . ,M ] do
3: for g times do
4: j = RANDOMSAMPLE([1, 2, 3 . . . , N ])
5: Xij = 1
6: end for
7: end for
8: Y = EVALUATEGROUPTASKS
9: SW = NULL

10: for all i ∈ [1, 2, 3 . . . ,M ] do
11: if Y (i) == 0 then
12: SW = SW ∪ j, all j such that Xij = 1
13: end if
14: end for
15: return SW

identify a participant j as a worker if

t(j) ≥ Kc0/N
where c0 is a constant for fixed u, q,K such that c0 =
maxa,b[t(a)− t(b)]. Otherwise, j is identified as an idler.

Intuitively, XT
(:,j)Y

′ refers to the number of successful
groups j has been a part of and ψXT

(:,j)Y accounts for
noisy evaluations. CoBa tends to classify those j’s as work-
ers which are associated with most number of success-
ful teams after accounting for noise. The trade-off here
is again between the number of tasks it would take to
identify workers correctly with high probability. (Atia and
Saligrama 2012) bounds minimum number of tasks M to be
O
(

K logN
(1−u)2(1−q)

)
.

Quality Estimation of Sub-Sets of Participants
In this section, we present algorithms to identify subsets

of workers SW ⊂ NW and subsets of idlers SI ⊂ NI with
reduced number of group tasks. It is one of our main contri-
butions to extend the algorithms from previous section and
present their analysis for choosing subsets SI ,SW .
To motivate the subset selection problem from empirical per-
spective, consider a case where the collaborative-journal ed-
itor hires around 250 participants, out of which he expects
approximately 8− 10% to be idlers. Using CoBa with noisy
tests, he will require results for about 500 articles before he
can classify all workers and idlers. It is not practical to wait
for completion of 500 articles before identifying idlers. The
requester can instead choose to identify a few workers, who
he can pay incentives, and identify a few idlers, who he can
drop from further tasks. The requirement of classifying all
participants is now reduced to classifying a subset of partic-
ipants.

The crux of group testing algorithms is to have each par-
ticipant take part in sufficiently many group tasks, so that
we can assert his worker/idler status with high certainty.
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To classify all participants as either worker or idler it takes
M = O(K logN) for noisy and noiseless scenarios (Chan
et al. 2014), which we improve next.

Subsets in Noiseless Group Tests
In coupon collection problem it takes lesser number of draws
to collect initial coupons while it takes long time to col-
lect last few coupons in coupon-collection problem. For in-
stance, first coupon is always collected in the very first draw
whereas it takes N number of draws (in expectation) to col-
lect the N th coupon, given all other (N − 1) coupons are
collected. We know from previous sections that CoCo identi-
fies all (N−K) workers when each is grouped in atleast one
team having no idlers and it takes MCoCo = O(K logN)
group tasks.
Reduced Coupon Collector (Red-CoCo) algorithm re-
duces M by exploiting the above property of coupon col-
lection problem while selecting subset of workers SW ⊂
NW with |SW | = L. We show that Red-CoCo takes
O(K log(N − L)) fewer tasks to accomplish this require-
ment. The reduction comes from the fact that now only L
workers need to be grouped in team with no other idler.
Steps involved in Red-CoCo algorithm: Algorithm 1 de-
scribes the construction of participation matrix for Reduced-
CoCo and method for distinguishing individual workers.
This method is same as CoCo and only varies in the input pa-
rameter M . Red-CoCo considers only those tests for which
Y (i) = 0, hence it is limited to identifying only subset of
workers and fails to identify idlers from remaining N − L
participants. As the task requester would want to identify
workers as soon as possible, the theorem below formalizes
the reduction in number of group tasks to identify SW with
L < (N −K).
Theorem 1. For fixed N and K, Red-CoCo requires atleast
M tasks, with

M ≥ K log
(

N
N−L

)
for identifying subset of L workers SW ⊂ NW with proba-
bility of error decaying exponentially with M .
Note that the bound on number of tasks M is O(K log(N −
L)) fewer as compared to CoCo. The proof follows from
calculating the number of draws required to collect first
L coupon (workers) from total N − K coupon (work-
ers). We upper bound the probability of error by estimat-
ing tail-probabilities for not drawing atleast L coupons in
N logN/(N −L) draws. Refer Appendix for detailed proof
and parameter assignments.

Subsets in Noisy Group Tests
Similar to noiseless scenario, identifying all workers and
idlers in noisy setting takes considerably more tasks than
identifying subsets of participants. Note, we assume that
workers in N are in majority i.e., number of workers ex-
ceed the number of idlers N − K > K. In group testing,
subset identification in noisier settings has been previously
explored in (Sharma and Murthy 2015), where subset is re-
stricted to the majority class (workers in our case). Analysis
in (Sharma 2014) shows reduction in the number of group

Algorithm 2 Red-CoBa: Reduced Column based algorithm
for identifying subset of workers and subset of idlers

Require: M: number of tasks, N: total number of partici-
pants, p: parameter, L: worker subset size, D: idler sub-
set size, ψ: parameter

1: for all i ∈ [1, 2, 3 . . . ,M ] do
2: for all j ∈ [1, 2, 3 . . . , N ] do
3: Xij = B(p)
4: end for
5: end for
6: Y = EVALUATEGROUPTASKS
7: for all j ∈ [1, 2, 3 . . . , N ] do
8: T (j) = XT

:,jY
′ − ψ

(
XT

:,jY
)

9: end for
10: S = SORT( T )
11: SW = S[N − L+ 1 : N ]
12: SI = S[1 : D]
13: return SW and SI

tests from θ(K logN) to O(KL/N) for identifying a sub-
set of size L from majority class.
Reduced Column Based (Red-CoBa) algorithm extend
this analysis to identify subsets in minority class (idlers in
our case) along with identifying subset of workers simulta-
neously. Note that finding SW and SI together makes up for
the deficiency of Red-CoCo which can only identify SW .
Steps involved in Red-CoBa algorithm: Participation Matrix
X is constructed in a similar way as for CoBa. For iden-
tifying L workers, we sort each participant j on basis of
T (j) = XT

:,jY
′ − ψ

(
XT

:,jY
)
, where Y ′ denotes comple-

ment of Y and ψ is constant dependent on u, q,K. Top L
high scored participants are declared as workers and bottom
D are declared idlers. (Sharma and Murthy 2015) show that
for

MCoBa ≥
K

λ′

(
log
[
K
(
N−K
L−1

)]
N −K − (L− 1)

)
(1)

where λ′ = c3(1 − γ)2(1 + ψ)(1 − q)/(1 − u) the prob-
ability of error in selecting L workers decays exponentially
in M (refer appendix for parameter details). Algorithm 2
demonstrates step-by-step method for Red-CoBa.

We use M from Equation (1) above to find workers sub-
set |SW | = L and also additionally identify subset of idlers
|SI | = D. We give upper bounds on maximum number of
idlers D that can be identified with high probability, using
M tests. Note, no additional tests are performed in Red-
CoBa to find idlers separately. To identify most number of
idlers for given M group tasks, the following theorem for-
malizes the upper-bound on D.
Theorem 2. ForM satisfying Equation (1) and fixedN and
K, Red-CoBa (Algorithm 2) can identify at most D idlers
with arbitrarily high probability 1− exp(−Mc1), for some
constant c1 > 0, where

D ≤ (K + 1)− log(N −K − L)

log
(
K
(
N−K
L−1

)) (N −K − (L− 1))

Proof follows from upper bounding the probability of mis-
identifying a worker as an idler. We calculate probability that
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Figure 2: Performance of Red-CoCo in identifying subsets of workers SW (note that idlers are not identified here) and empirical validation
of Theorem 1. (a) For N = 125,K = 25, size of subsets of workers L against number of group tasks M needed. (b) For N = 125,K = 25,
probability of error diminishes exponentially with increasing M . (c) For N = 250,K = 100, L against number of group tasks needed M
for extracting |NW | = L. (d) For N = 250,K = 100, exponential decay of probability of error.
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Figure 3: Performance of Red-CoBa in identifying subsets of workers SW and subset of idlers SI and empirical validation of Theorem 2.
(a), (b), (c) and (d) are respective results of Red-CoBa over identical scenarios from Figure 2.

T (j) ≤ T (i) for worker j and idler i in sorted vector T .
Taking union over all such events ∀i,∀j and calculate for
D such that error decays exponentially. Refer Appendix for
detailed proof and parameter calculations.

Experiments
We conduct two sets of experiments on simulated data in this
section. The first set aims to give empirical support to the
claims made in our theorems with varying size of workers
SW and idlers SI . The second set of experiments try to learn
the impact of crowd properties like proportion of idlers vs.
workers in N , behavior of noise in team evaluation etc.
We ask the following questions in this sections:

• Q1: How many workers and idlers can be identified with
significant probability for a given number of group-tasks?

• Q2: For fixed size of workers/idlers, does the probabil-
ity of error in mis-identification decay exponentially with
increase in number of group-tasks?

• Q3: How does participant demographics and noise impact
the size of subsets of workers/idlers?

Note, for verifying performance of Red-CoCo and Red-
CoBa over real crowd workers, their true worker/idler sta-
tus is needed, which is hard to obtain. We simulate datasets

that closely imitate crowd scenarios to test the merit of our
proposed algorithms.
Setup: We experiment with two different participant pop-
ulations. N1 consists of total N = 125 participants with
K = 25 of them as idlers. It has the generic distribution of
80%:20% for workers vs. idlers. N2 with total participants
N = 250 consisting of K = 100 idlers. This is another
prevalent crowd scenario where the requester hires many
workers (potentially consisting of many volunteers) and sev-
eral of them slack in group-efforts. We set noise parameters
as u = 0.05 and q = 0.1. The results are averaged over
10000 repetitions and we consider events with probability
greater than 0.9 to have significant chances of occurrence.
Method: Participation matrices are constructed as described
in Algorithm 1 and Algorithm 2. K random participants
from total N population are assigned idler identity and used
to calculate group performance Y . For noiseless setting, the
evaluation vector is

Y =
∨
X:,j ∀j ∈ NI

with logical-OR of columns of all idlers. In noisy setting,
where an idler can go unnoticed with probability u and team
of workers can get mis-evaluated with probability q, the
group performance vector is calculated by

Y =
(∨

UjX:,j

)∨
Q ∀j ∈ NI
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Figure 4: Effect of crowd demographics and noise parameters on size of subset of workers identified against number of group tasks. (a) For
N = 125, varying the number of idlersK in total population. It requires least number of tasks to identify SW when number of idlers are less.
(b) For N = 125K = 25, varying probability q of mis-identifying workers. Observe that it is less harmful in terms to number of tasks M to
mis-classify workers. (c) For N = 125K = 25, varying probability u of not identifying an idler. Observe that it takes many more tasks to
uncover idlers hidden in groups of workers.

where matrix Uj hides idlers j in task i with probability
u and vector Q mis-evaluates each group with probability
q. Precisely, Uj ∈ RMxM is diagonalized matrix of vector
Uj ∈ RM , U

(i)
j = B(1 − u) and Q ∈ RM , Q(i) = B(q).

From this point, the true identity of participants is hidden
from the algorithms and we would like them to be able to
predict these true identities.
Results: We are not aware of other crowd evaluation tech-
niques which consider groups of participants as their small-
est observable unit. We present the outcome of our algo-
rithms and answer the above three questions.
Q1 Size of subsets identified: Figure 2 and 3 show the per-
formance of Red-CoCo and Red-CoBa respectively, over
N1 and N2. Figure 2a, 2c and Figure 3a, 3c capture the
dependence between number of workers/idlers that can be
identified with varying number of group tasks. Although
there are fewer workers in |NW1| = 100 in comparison
to |NW2| = 150, it takes many more group tasks for N2

than N1 to arrive at same size of subsets of workers. This
is because groups G in N2 have higher probability of hav-
ing idlers and hence lower probability of f(G) = 0. It high-
lights the idea that gains in group tests are much higher when
|NW | � |NI |. It is also evident from Figure 3a and 3c that
number of idlers identified is much lesser than number of
workers |SW | > |SI |, which is consistent with the our the-
ory.
Q2 Probability of error: For different fixed values of L, Fig-
ure 2b, 2d and Figure 3b, 3d show that probability of er-
ror i.e., mis-identifying worker as idler and vice versa, de-
creases exponentially to linear increase in number of group
tasks. This indicates that the requester can become much
more confident about his judgment of identifying workers
from idlers by conducting a few additional group tasks.
Q3 Impact of parameters: With other parameters fixed, Fig-
ure 4a shows that it takes more number of group tasks to
identify workers with increase in number of idlers. It is be-

cause the probability of f(G) = 0 drops with increasing K
for random groups G. Similarly, Figure 4b and 4c show that
increase in noise levels of the system leads to more number
of group tasks for identifying SW . Comparing results across
Figure 4a, 4b and 4c shows that idlers getting away uniden-
tified in pool of workers is a more serious problem than mis-
evaluating workers. It take more efforts to pinpoint an idler
who piggybacks over efforts of workers in his group. It also
shows that the best way of reducing group tasks to identify
subsets, is to start with a population of lesser K.

Discussion on Relevance and Limitations
Wider Relevance of Group Tests in Crowdsourcing:
Although we motivated this work from the perspective of
‘collaborative-science-journal’, it could also applicable to
other complex tasks like book translations, local media re-
porting, group-sensing, group pedagogy etc. Crowdsourcing
applications which satisfy the following two prime requi-
sites can benefit from this framework. First, the task should
involve diffused efforts from groups of people, i.e it should
not be easy to identify individual’s contributions. Second,
there should be a provision to evaluate entire group as a
whole.

Group testing in general can have much wider applicabil-
ity in crowdsourcing. Algorithms can be utilized to solve
mainstream crowdsourcing micro-tasks. A task requester
can pool a few micro-tasks together and ask the crowd for
its judgment over entire pool. Based on the results of several
such pools, the requester can deduce information about indi-
vidual micro-tasks. This framework guides on how to group
individual entities of interest and further deduce information
about them. By means of this work, we hope to highlight that
Crowdsourcing applications can benefit from Group Testing
and Compressed-Sensing algorithms at large.

Simplicity is a strength of both Red-CoCo and Red-CoBa
algorithms and they are computationally very inexpensive.

175



Creating participation matrix requires access to a random
number generator and the requester can manually work out
participant qualities with minimal efforts.

Limitations of this model: As a first approach to apply
group testing in crowdsourcing, there are a few shortcom-
ings in the current model and they require non-trivial exten-
sions. We presently classify participants as either workers or
idlers, whereas in reality the skills of a person are more nu-
anced and should be measured on a richer scale. Second,
our underlying assumption that a worker remains to be a
worker and idler continues as idler across group tasks, is
hard to satisfy in crowdsourcing. Crowd workers are gener-
ally dynamic and get motivated/demotivated by incentives.
Accounting for their dynamic identities might add to the ran-
domness of our system. And lastly, our random allocation of
groups, although unbiased, ignores the complementary ef-
fects of collaboration. A participants productivity might vary
with different groups (maybe collaborate better with friends
than strangers). Our model currently fails to identify such
inter-participant dependencies and would require extending
it to adaptive group test strategies.

Conclusion
Collaborative crowdsourcing is an emerging field where
group of participants coherently work to accomplish com-
plex tasks. With machine-intelligence continuously gaining
competence to solve simpler tasks, crowd-intelligence is go-
ing to be increasingly used for complex tasks which will be
better accomplished by groups rather than individuals.

We addressed the problem of distinguishing workers from
idlers in scenarios where requester has no knowledge of in-
dividual contributions but only entire group’s performance.
We proposed efficient extensions to group testing based
algorithms to decide on how to form teams and identify
subsets of individuals with reduced number of tasks. We
gave theoretical guarantee over the performance of algo-
rithms and conducted simulation based experiments to val-
idate them empirically. As part of future work, we want to
account for skills of people and incorporate parameters for
dynamic participants who shift from being workers to idlers
and vice versa.
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Appendix
Red-CoCo treats the problem of selecting SW as collecting L
coupons from totalN −K coupons. Before we proceed to proving
Theorem 1 we establish a few essential properties of coupon col-
lection problem. For total n coupons, the probability of drawing a
new coupon, having collected i coupons already, is (n− i+ 1)/n.
The expected time drawing ith coupon is ti = n/(n − i + 1).
Expected time for collecting l coupons out of total n coupons

E(Tn−l) = E(t1) + E(t2) . . .+ E(tl)

=
n

n
+

n

n− 1
+ . . .+

n

n− l + 1

= n(logn− log(n− l))

Probability that ith coupon is not collected in r draws is (1 −
1/n)r ≤ e−r/n. Substituting r = βn log(n/n − l), e−r/n =
(n/n− l)−β . By union bounds, probability that it takes more than
n log(n/n− l) draws to pick l coupons is n(n/n− l)−β .

Proof of Theorem 1. Consider the process of drawing Mg ran-
dom participants to construct participation matrix X , as coupon
collection problem where probability of drawing each participant
from Xi,: is uniform. For some group G in Red-CoCo, the prob-
ability that f(G) = 0 is ((N − K)/K)g , i.e all g participants
are workers. As Red-CoCo considers only those groups for which
Y (l) == 0, the expected number of participants in all such rows
is Mg((N −K)/N)g . To find values of M for which at least L
workers are present participants of Xi,: is

(1− ε)Mg
(N −K

N

)g
≥ β(N −K) log

( N −K
N −K − L

)
(2)

Left side of Equation (2) represents expected number of workers to
be found in rowXi,: with Y (i) = 0 and right side denotes the event
of exceeding the expected number of draws to obtain L workers.
Inequality in Equation (2) hold with probability atleast

1−exp
(
−ε2M

(N −K
N

)g)
−(N−K)

( N −K
N −K − L

)−β
(3)

which is obtained using Chernoff bound on left side of Equa-
tion (2) and tail bound of coupon collection problem on its right
side, which is proved above (substitute n = (N − K)). Differ-
entiating Equation (2) with respect to g and by substituting back
optimal g = 1/ log(N/N −K) , we get

M≥ eβ

(1− ε) (N −K) log
( N −K
N −K − L

)
log
( N

N −K
)

Simplifying log(N/(N − K)) using inequality log(1 + x) ≥
x− x2/2 for x = (K/(N −K)), we get

eβ

(1− ε) (N −K) log
( N −K
N −K − L

)( K

N −K −
K2

(N −K)2

)

≥ eβ

(1− ε) log
( N −K
N −K − L

)
K

≥ ηK log(N −K)−K log(N −K − L) for appropriate η

≥ ηK log(N)−K log(N − L)

for sufficiently large population N and relatively less idlers K =
o(N). Hence, MRedCoCo = MCoCo −K log(N − L).

For fixed parameters N,K,L the probability of error by substi-
tuting optimal g = 1/ log(N/N − K) in complement of Equa-
tion (3) is

P(Eerr) = exp

(
− ε2M

e

)
+ (N −K)

( N −K
N −K − L

)−β

In Red-CoBa, the probability of participant j, not being selected
in group i is up+(1−p). Probability that f(Gl) = 0 for any group
lth is when none of theK idlers participate in it and workers do not
get misclassified. Say, τ = P(Y (l) = 0) = (1−q)(1−(1−u)p)K .

Given that an idler is present in a group G, then f(G) = 0 when
the idler gets lost among other workers, no other idler participates
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in f(G) and workers do not get mis-identified.

P(Y (l) = 0|Xli = 1)= γτ, i ∈ NI
γ =

u

1− (1− u)p

P(Y (l) = 0|Xli = 0)= (1− (1− u)p)K−1(1− q)
P(Xli = 0|Y (l) = 0)= γp (4)

ψ =
τ(1 + γ)

(1− p)
p = 1/K

Proof of Theorem 2 . In Red-CoBa (Algorithm 2) the firstD par-
ticipants from sorted T are declared as idlers. Error occurs when
a worker is part of SI , i.e T (j) for some worker j is lesser than
atleast K − (D − 1) idlers. Let SZ denote the set of workers re-
maining after choosing SW , with |SZ | = N − K − L. Let SD
denote subset of K − (D− 1) idlers and SD denote set of all valid
SD , so |SD| = K − D + 1 and |SD| =

(
K
D−1

)
. More formally,

error occurs when T (j), j ∈ SZ is less than all T (i), i ∈ SD .
Let Ed denote the event of error while selecting D idlers, i.e Red-
CoBa returns SI with one or more workers.

ED ⊂
⋃
j∈SZ

{j ∈ SI}

⊂
⋃
j∈SZ

⋃
SD∈SD

{T (j) ≤ T (i), ∀i ∈ SD}

Define Pd as the probability of event (T (j) − T (i) ≤ 0; i ∈
SD, j ∈ SZ) for given idler and worker pair. By union bounds

P(ED) ≤ (N −K − L)

(
K

D − 1

)(
Pd K−(D−1)

)
Rearrange T (j)−T (i) as (XT

:,jY
′−XT

:,iY
′)+ψ(XT

:,iY −XT
:,jY ),

and rewriting

=
( M∑
l=1

X
(l)
:,j −X

(l)
:,i

)
IY (l)=0︸ ︷︷ ︸

Z0

+ψ
( M∑
l=1

X
(l)
:,i −X

(l)
:,j

)
IY (l)=1︸ ︷︷ ︸

Z1

= Z0 + ψZ1 = Z

where X(l)
:,j denotes lth component of X:,j and I is indicator func-

tion. The idea is to compute probability of event (Z < 0) by find-
ing mean µZ and variance σ2

Z of Z. By using Equation (4) and
Bayes rule, we get

E(Z1)=E
[( M∑

l=1

X
(l)
:,i −X

(l)
:,j

)
IY (l)=1

]
=M(1− τ)

(
P(Xli = 1|Y (l) = 1)

− P(Xlj = 1|Y (l) = 1)
)

=M(1− τ)
(p(1− γτ)

1− τ − p
)

=Mτ(p− γp)
Similarly, computing expectation and variance of other random
variables

E(Z0)= Mτ(p− γp)
E(Z2

0 )= Mτp(1− 2pγ + γ)

E(Z2
1 )= Mp

[
(1− p)(2− γτ) + τ(1− pγ)

]
µZ = E(Z0) + ψE(Z1) = Mτp(1 + ψ)(1− γ)

σ2
Z = σ2

Z0
+ ψ2σ2

Z1
≤Mp

[
τ(1 + γ) + 2ψ2(1− p)

]

For arbitrarily small ε, calculate probability Pd = P(Z < 0) ≤
P(Z < εµZ) using Bernstein inequality and take union bound to
get simplified Pd ≤ exp

(
−Mλ

)
where λ = pτ3(1 − γ2)(1 +

γ)(1− ε)2.
Substituting upper bounds for ψ = τ(1+γ)

(1−p) , p = 1/K, λ′ = Kλ,

Pd ≤ exp

(
− M

K
λ′
)

P(Ed) ≤ exp

(
− Mλ′

K/(K −D + 1)

+ ln

[
(N −K − L)

(
K

D − 1

)])

= exp

(
−M

(
λ′

K/(K −D + 1)

−
ln
[
(N −K − L)

(
K
D−1

)]
M

))
= exp(−Mc1)

where c1 ≥ 0 for exponential decay of probability of error. Sub-
stituting M from (Sharma and Murthy 2015)

M ≥ K
λ′

(
ln

[
K(N−K

L−1 )
]

(N−K)−(L−1)

)
for c1 > 0, we obtain

ln
[
K
(
N−K
L−1

)]
(N −K)− (L− 1)︸ ︷︷ ︸

∆

≥
ln
[
(N −K − L)

(
K
D−1

)]
K − (D − 1)

e∆(K−D+1) ≥ (N −K − L)

(
K

D − 1

)
e∆K

N −K − L ≥

(
K

D − 1

)
e∆(D−1) (5)

(
K

D

)
=

K · (K − 1) . . . (D + 2) · (D + 1)

(K −D) · (K −D − 1) . . . 2 · 1

=
1

(1− D
K

)(1− D
K−1

) . . . (1− D
(D+1)

)

≥
(

1− D

K

)−(K−D)

in limits, for K and D = o(K), above inequality approximate to
eD by substituting x = −D/K in (1 + x

n
)n converging to ex.

Substituting in Equation (5) e∆K ≥ (N −K − L)e∆(D−1)+D

K∆− log(N −K − L) + ∆

∆
≥D

(K + 1)− log(N −K − L)

log
(
K
(
N−K
L−1

)) (N −K − (L− 1)) ≥D
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