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Abstract

Motivating workers to provide significant effort has been rec-
ognized as an important issue in crowdsourcing. It is impor-
tant not only to compensate worker effort, but also to discour-
age low-quality workers from participating. Several proper
incentive schemes have been proposed for this purpose; they
are either based on gold tasks or on peer consistency in in-
dividual tasks. As the rewards cannot become negative, these
schemes have difficulty in achieving zero expected reward for
random answers.
We describe a novel boosting scheme, ProperRBoost, that im-
proves the efficiency of existing incentive schemes by mak-
ing a better separation between incentives for high and low
quality work, and effectively discourages random answers by
assigning them near minimal average rewards. We show the
actual performance of the boosting scheme through simula-
tions of various worker strategies.

Introduction
One of the main issues in crowdwork is the existence of
spam workers, or shortly spammers, who provide inaccu-
rate or random data. Since providing accurate data requires
effort, it comes as no surprise that workers are inclined to de-
viate by investing as little effort as possible, and, hence, re-
porting inaccurate information. One of the basic approaches
in incentivizing workers to invest high effort is to provide
them with (monetary) rewards that would compensate their
cost of solving tasks.

Recently, many mechanisms have been proposed for as-
signing rewards to workers based on their performance in
solving micro-tasks. These mechanisms are either based on
gold tasks (test tasks whose correct answers are known)
(Oleson et al. 2011; Harris 2011; Shah, Zhou, and Peres
2015; Shah and Zhou 2015) or are peer-consistency-based
incentives (Dasgupta and Ghosh 2013; Radanovic, Faltings,
and Jurca 2016; Shnayder et al. 2016), suitable for elicita-
tion of subjective information (Miller, Resnick, and Zeck-
hauser 2005; Prelec 2004; Witkowski and Parkes 2012b;
2012a; Radanovic and Faltings 2013). The basic principle of
any strictly proper (incentive-compatible) payment mecha-
nism is to place higher rewards to more accurate answers.
Since the accuracy of an answer reflects the effort invested
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in obtaining it, a proper payment mechanism clearly as-
signs higher rewards to good workers who put in high ef-
fort and give truthful answers. A spammer strategy will still
occasionally hit the correct answer and result in a high re-
ward. Either these occurrences are compensated by charging
a worker to participate, or the property of making a spam-
mer’s expected reward equal to zero cannot be achieved.

A traditional approach of discouraging spammers to par-
ticipate is by transforming the incentives using an affine
transformation so that in expectation they are equal to or
less than 0 for spam workers. While such an approach might
have a positive impact in terms of a mechanism’s profit
(Witkowski et al. 2013), negative payments are not easy
to implement in practice, and can even deter good work-
ers from participating. To minimize the expected payments
to spammers when only positive payments are allowed, one
can use the multiplicative incentive mechanism of (Shah and
Zhou 2015), which implements the double-or-nothing prin-
ciple using gold tasks. In particular, for every correct answer
in the gold standard questions, the reward doubles, while if
any of the gold standard question are answered incorrectly,
the reward is 0. Furthermore, a worker can choose to skip
questions.

The mentioned performance-based mechanisms, how-
ever, do not optimize the difference between the expected
payment for good work and the expected payment for spam-
ming, which is important because low quality work typically
costs less than accurate reporting in terms of effort and time.
For many of these mechanisms, this difference can be quite
small, especially when the elicitation setting contains signif-
icant amount of noise. For example, in crowd-sensing, mea-
surements are often noisy, or in the peer-consistency-based
mechanisms, peer reports might come from both good work-
ers and spammers.

To address this issue, we examine a scenario in which
workers interact with a mechanism over a longer period of
time. Our goal is to design a mechanism that would output
scaling factors in interval [0, 1] that can be used as multi-
plicative factors of positive payments. A mechanism should
provide scales such that the average payment of a good
worker converges to the average payment with the scale
equal to 1, and the average payment of a spammer converges
to 0. We note that this objective differs from a traditional ap-
proach of maximizing surplus or a requester’s profit, as often
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done in similar principal-agent models in economics litera-
ture (e.g., see (MacLeod and Malcomson 1989; Levin 2003;
Ho, Slivkins, and Vaughan 2014)). However, we believe that
the differentiation between payments for good work and
spamming plays an important role in both self-selection of
workers and encouraging workers to provide accurate infor-
mation.

Contribution: Using techniques from the online learning
and reputation systems literature (e.g., (Nisan et al. 2007;
Cesa-Bianchi and Lugosi 2006; Resnick and Sami 2007;
Radanovic and Faltings 2016)), we develop a novel way
of boosting payments that can improve existing incentive
mechanisms. We propose a two stage reputation protocol,
that we call PropeRBoost, in which: 1) the reputation of a
worker defines how her payment is scaled; 2) the reputation
of a worker increases or decreases depending on the quality
of the work that the worker provides. Therefore, the reward
for achieving a good performance is reflected through a re-
ward for a later task. This allows us to penalize bad behavior
by deducting from future payments, and thus boost the pay-
ment gap between good and bad worker behavior. To eval-
uate the performance of the mechanism, we define a utility
measure that captures how well scaling factors reward accu-
rate work and suppress rewards for low quality work.

In the paper, we focus on reports that have a binary infor-
mation structure to show that the average PropeRBoost pay-
ments are near maximum for good workers and near min-
imum for spammers. We provide simulation results, which
reveal that our design leads to a greater separation between
payments for good work and spamming than the one ob-
tained with a standard incentive design.

Preliminaries
We are interested in a crowdsourcing scenario where work-
ers repeatedly solve micro-tasks of the same difficulty, such
as image labeling, product reviewing or sensing. Our goal is
to design a mechanism that would output scaled payments
so that low quality workers obtain average rewards close to
zero, while the rewards of high quality workers are scaled to
maximum value. The scale of a worker is denoted by σ and
it takes values in [0, 1]. We formalize the setting as follows.

In our setting, a mechanism periodically posts micro-tasks
that are assigned to a group workers W . Notice that the
question of how tasks are distributed among the workers in
W is application dependent. For example, at a certain time
step, there might be 100 tasks assigned to 50 workers, each
worker solving 12 tasks. We will, thus, consider a mecha-
nism from the perspective of 1 particular worker and exam-
ine how her reward is scaled in a long run, depending on
the reporting strategy adopted by the worker. We denote this
worker by w and associate to her time t, which measures
how many times the worker participated in the mechanism at
a certain point of time. We denote by T the expected number
of times that the worker will interact with the mechanism.

A worker w is considered to be a long-lived agent that
evaluates each of the tasks given to her with x or y.
While the binary information model has its limitations, it
is often used in recent literature on incentives (e.g., see
(Dasgupta and Ghosh 2013; Witkowski and Parkes 2012b;

2012a)), and can often be applied to non-binary information
sets, as we demonstrate in our simulations. To describe how
worker w evaluates her tasks, we use a simple probabilistic
model that assumes the existence of the ground truth. This
is a standard approach when dealing with objective informa-
tion (e.g., (Dasgupta and Ghosh 2013)) and a common ap-
proach when dealing with subjective information (e.g. (So-
ufani, Parkes, and Xia 2012)).

In particular, we assume that for each task, there is a cor-
rect answer θ ∈ {x, y}, and a worker endorses a noisy eval-
uation of θ that represents her answer to the task, which we
denoted by X . As in (Dasgupta and Ghosh 2013), we de-
fine the proficiency of a worker as the probability of the
worker being correct, i.e., Pr(X = θ) — throughout the
paper we denote it by p. It is reasonable to assume that a
worker is at least as good as a random guess, i.e., p ≥ 1

2 .
Nevertheless, worker w can be dishonest, and this situation
corresponds to the one in which worker w is honest, but has
proficiency level 1− p. Therefore, we allow p to take values
in the whole interval [0, 1], which enables us to model both
worker’s strategy and her quality via p.

Notice that a worker’s proficiency is closely tied to her
performance in solving tasks. Therefore, in a long run, a
mechanism should output scaling σw ≈ 0 if workerw has an
average performance lower than a proficiency threshold pl.
We also define a threshold pu that defines a maximal level of
worker w’s proficiency for which σw might not be in expec-
tation approximately equal to 1 in a long run. Thresholds pl
and pu are parameters set by a mechanism and are assumed
to relate as pu > pl ≥ 1

2 . Intuitively, pl defines the accept-
able level of proficiency, while pu defines the good level of
proficiency. For example, we can set that pl = 0.7, while
pu = 0.8. In general, pu can be arbitrarily close to pl, but
the more separate they are, the easier it is to distinguish pro-
ficient workers from those that provide low quality answers.

Furthermore, we consider an estimator F that produces
estimates of the correct answers for each task that we use to
evaluate worker w. We assume that the estimator performs
better that a random guess, i.e., independently for each task
we have that Pr(θ̂F = θ) > 1

2 , where θ̂F is an estimate of
F . Accuracy Pr(θ̂F = θ) and the prior bias of the correct
answers (2 · Pr(θ = x)− 1)2 are assumed to be known. We
denote Pr(θ̂F = θ) by q and (2 · Pr(θ = x)− 1)2 by γ.

As we demonstrate in Section Simulations, having an
estimator with q > 1

2 is a reasonable assumption, even
if we do not have gold standard tasks. For example, the
condition will typically hold for many implementations of
F (e.g., (Raykar et al. 2010; Karger, Oh, and Shah 2011;
Liu, Peng, and Ihler 2012; Karger, Oh, and Shah 2013)) if
workers are not malicious, although some of them might be
spammers, as in the spammer-hammer model described by
(Karger, Oh, and Shah 2011).

Performance Metric
In order to provide a good scaling factors, a mechanism has
to make a proper evaluation of a worker’s performance. We
measure a worker’s performance on a task by how much
more accurate her report X = z is than it is expected by
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a prior distribution Pr(θ):
πw = 1θ=z − Pr(θ = z)

where 1 is an indicator variable equal to 1 when θ = z and
0 otherwise. Since the mechanism does not have knowledge
of θ, but only its estimate θ̂F , we further define the estimated
accuracy for report X = z as:

π̂w = 1θ̂F=z − π̂Pr(θ̂F=z)
(1)

where π̂Pr(θ̂F=z)
is either prior Pr(θ̂F = z) or a random

variable whose expected value is equal to Pr(θ̂F = z). The
letter is often available in a typical crowdsourcing scenario,
as shown in Section Simulations. The following holds:
Proposition 1. For worker w with proficiency p, the ex-
pected value of π̂w for report X is equal to:

E(π̂w) = 2 · (1− γ) · (q − 1

2
) · (p− 1

2
)

Proof. Let X = z ∈ {x, y}. The expected value of 1θ̂F=z
is equal to:

Pr(θ̂F = θ) · Pr(θ = X) + Pr(θ̂F 6= θ) · Pr(θ 6= X) =

= q · p+ (1− q) · (1− p) = 2 · (q − 1

2
) · (p− 1

2
) +

1

2

Prior Pr(θ̂F = z′) for z′ ∈ {x, y} is equal to:

Pr(θ̂F = θ) · Pr(θ = z′)

+ (1− Pr(θ̂F = θ)) · (1− Pr(θ = z′))

= 2 · (q − 1

2
) · (Pr(θ = z′)− 1

2
) +

1

2
and, similarly, we obtain Pr(X = z′):

Pr(X = z′) = 2 · (p− 1

2
) · (Pr(θ = z′)− 1

2
) +

1

2

The expectation of Pr(θ̂F = z) over the possible values of
X is:

Pr(X = x) · Pr(θ̂F = x) + Pr(X = y) · Pr(θ̂F = y)

= 4 · (p− 1

2
) · (q − 1

2
) · [(Pr(θ = x)− 1

2
)2

+ (Pr(θ = y)− 1

2
)2] +

1

2

= 2 · (p− 1

2
) · (q − 1

2
) · (2 · Pr(θ = x)− 1)2 +

1

2

= 2 · γ · (p− 1

2
) · (q − 1

2
) +

1

2
By combining all the expressions above with (1) and noting
that E(π̂Pr(θ̂F=z)

) = E(Pr(θ̂F = z)), we obtain:

E(π̂w) = E(1X=θ̂F
)− E(π̂Pr(θ̂F=X))

= 2 · (1− γ) · (p− 1

2
) · (q − 1

2
)

Since parameter q is greater than 1
2 , from Proposition 1

follows that the expected value of performance metric π̂w
is maximized when worker w is honest and as accurate as
possible.

Score Function
Notice that the performance metric π̂w is linear in profi-
ciency p of worker w. This enables us to assign a quality
score to a worker w that directly tells us how much more
proficient workerw is than the lowest acceptable proficiency
level pl. In particular, we define the score of a worker w for
a particular task as:

scorew = (1− α) · π̂w − α (2)

where α is a predefined parameter. The direct consequence
of Proposition 1 is:

Corollary 1. Let α =
2·(1−γ)·(pl− 1

2 )·(q−
1
2 )

1+2·(1−γ)·(pl− 1
2 )·(q−

1
2 )

. Then, for
worker w with proficiency p, the score defined by expression
(2) is in expectation equal to:

E(scorew) = A · (p− pl)

where:

A =
2 · (1− γ) · (q − 1

2 )

1 + 2 · (1− γ) · (pl − 1
2 ) · (q −

1
2 )

Utility Function
It remains to define an objective (utility) function of a scal-
ing mechanism that provides scaling factors σw. As noted
in the previous sections, we investigate how to maximally
separate average payments for low and good quality work.
Therefore, we define the gain g of a mechanism as:

g(σw, p) = σw · (p− pl) (3)

In other words, the greater the scaling is for a worker with
good performance (p > pl), the better the performance of
the mechanisms is. Likewise, the lower the scaling is for a
worker who provides low quality work (p < pl), the better
the performance of the mechanism is. The gain is positive
for good quality work and negative for low quality work.
Thus, it describes the performance of the mechanisms rel-
ative to the rewarding mechanism that assigns 0 rewards to
everyone.

PropeRBoost
We now turn to our main contribution: a reputation system
that limits the effectiveness of spam workers whose report-
ing strategies are based on low effort. We call the mechanism
PropeRBoost and it has the structure defined by Algorithm
1. As noted in the preliminaries, we focus on a particular
worker w that interacts with the mechanism over a long pe-
riod.

Worker w initially has reputation score equal to ρ0, where
ρ0 is a small positive number. Then, over a long time period
T , the worker solves different tasks and reports her answers
to the mechanism. Once worker w solves a task at time t, the
algorithm estimates the correct answer to that task, θ̂F , and
calculates the performance π̂w using expression (1). This
performance further defines scorew, which is used to update
the reputation of worker w. Notice that worker w is allowed
to solve multiple tasks at one time period. In that case, we
use the average of all the scores scorew in the reputation
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updating procedure. Due to the linearity of the expectation,
we know that the statement of Corollary 1 holds for the av-
erage as well. Furthermore, if multiple tasks are present, the
mechanism needs not to evaluate a worker on all the tasks
she solves at time t.

Parameter α is set as suggested in the corollary, and its
proper value depends on the lowest allowable proficiency
pl, the characteristics of the considered dataset (the value of
γ) and the quality of estimator F (the value of q).

Algorithm 1: PropeRBoost

Data: Initial reputation ρ0 > 0, pl ∈ [ 12 , 1), η ∈ (0, 12 ]
begin

ρw = ρ0;

α =
2·(1−γ)·(pl− 1

2 )·(q−
1
2 )

1+2·(1−γ)·(pl− 1
2 )·(q−

1
2 )

;

for t = 1 to t = T do
Publish scale σw = ρw

ρw+1 to worker w;
Assign worker w to task τ ;
Obtain answer X;
Estimate the correct answer: θ̂F = F(τ);
Estimate performance:
1 : π̂w = 1X=θ̂F

− Pr(θ̂F = X);
2 : scorew = (1− α) · π̂w − α;
Update reputation: ρw = ρw · (1 + η · scorew);
Pay σw · Payment(X) to worker w;

Once we estimate worker w’s performance, the reputa-
tion of the worker is updated in such a way that it expo-
nentially increases or decreases depending on the worker’s
score. For example, if the worker is providing random re-
ports, her score is likely to be negative, in which case her
reputation decreases by a factor 1 + η · scorew < 1. On the
other hand, if the worker performs well, her score is likely
to be positive, in which case her reputation grows by fac-
tor 1 + η · scorew > 1. Clearly, if worker w performs well
most of the time, her reputation ρw is quickly boosted to
large values, which means that scales σw = ρw

ρw+1 become
quickly close to the maximum (i.e., 1). On the other hand, if
the worker does not perform well, she will quickly loose her
reputation, and her payments will become very close to the
minimum (i.e., 0).

The mechanism has initial reputation ρ0 as its parameter:
the initial reputation should be set to relatively small values,
so that workers first prove themselves to the mechanisms by
building up their reputation. The next section shows how the
total gain of the mechanism is bounded from below by a
negative value of the initial reputation. Notice, however, that
the value of the initial reputation should not be too small
because if workers cannot build up their reputation in a rea-
sonable amount of time, they will not respond to payments.

The reputation update also depends on parameter η. This
parameter should not exceed 1

2 , but its proper value de-
pends on proficiency threshold pu, as well as the variance
of scorew. As it is shown in the following subsections, a
good value for η would be η = min(12 , A · (pu−pl)), where

A is defined in Corollary 1. However, often for high quality
reports, the expected score E(scorew) is greater than vari-
ance V ar(scorew), in which case, one can set η = 1

2 . This
will typically be true if workers solve several tasks in each
period t, and thus, worker w’s reputation is updated using
the average of scores scorew across these tasks.

Finally, at the end of the period t, worker is rewarded with
σw · Payment(X). Function Payment can be any proper
payment function that incentivizes workers to truthfully re-
veal their private information. If workers only strategize on
whether they will invest high effort to obtain proficiency
greater than pu or low effort and have proficiency lower than
pl, one can use a constant payment function, and in this case,
workers’ payoffs can be known to them upfront (before they
engage in solving the tasks).

PropeRBoost algorithm has several properties that makes
it practical for crowdsourcing scenarios. These properties
are described in the following subsections. To make our
analysis easier to follow, we will denote time dependent
variables by putting the subscript t. For example, workerw’s
reputation at time t is denoted by ρw,t.

Property 1: Bounded Negative Gain
We first investigate the impact of low quality workers on the
utility of the mechanism, described by equation (3). The first
property we show is that no matter what worker w’s strategy
is, the overall expected gain of the mechanism is bounded
from below by a constant proportional to the initial reputa-
tion ρ0. By noting that scaling with σ = 0 always brings 0
gain, we directly obtain that, in expectation, PropeRBoost is
never much worse than having no rewarding system at all.
More formally, we have the following result:
Theorem 1. The minimal value of the PropeRBoost’s total
gain is bounded from below by:

E(
T∑
t=1

g(σw,t, pt)) ≥ −
ρ0
A · η

where σw,t denotes the scale assigned to worker w at time t,
pt is the worker’s proficiency at time t, and A is defined in
Corollary 1.

Proof. We have:

ln(ρw,T+1 + 1) = ln(ρw,T · (1 + η · scorew,T ) + 1)

= ln((ρw,T + 1)(1 +
ρw,T

ρw,T + 1
· η · scorew,T )))

= ln(ρw,T + 1) + log(1 + σw,T · η · scorew,T ) = ...

= ln(ρ0 + 1) +
T∑
t=1

log(1 + σw,t · η · scorew,t)

≤ ln(ρ0 + 1) + η ·
T∑
t=1

σw,t · scorew,t

≤ ρ0 + η ·
T∑
t=1

σw,t · scorew,t
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where we used the fact that ln(1+x) ≤ x for x > −1. From
the way PropeRBoost updates the reputations, we know that
ρw,t > 0, because ρ0 > 0 and 1+ η · scorew > 0. The latter
inequality follows from η ≤ 1

2 and scorew ∈ [−1, 1]. In the
worst case, reputation ρw,T+1 is approximately equal to 0,
so by setting ρs,T+1 = 0, we obtain:

T∑
t=1

σw,t · scorew,t ≥ −
ρ0
η

The expected gain g(σw, pt) at time t is:

E(g(σw,t, pt)) =

∫ 1

0

p(σw,t = σ) · σ · (pt − pl)dσ

=

∫ 1

0

p(σw,t = σ) · σ · E(scorew,t)
A

dσ

where we applied E(scorew,t) = A · (pt − pl) from Corol-
lary 1.1 Therefore, the obtained expression evaluates to
1
A · E(σw,t · scorew,t). This implies that the expected total
gain

∑T
t=1 g(σw,t, pt) is equal to:

E(
T∑
t=1

g(σw,t, pt)) =
T∑
t=1

E(g(σw,t, pt))

=
1

A

T∑
t=1

E(σw,t · scorew,t) =
1

A
· E(

T∑
t=1

σw,t · scorew,t)

≥ − 1

A
· ρ0
η

The importance of this theorem is that we can make the
total negative gain of the mechanism arbitrarily small by
putting the initial reputation of worker w to small enough
value. This is true regardless of worker w’s strategy, as long
as estimator F performs better than random estimation. We
have not discussed, however, the incentive properties of the
mechanism, which might play a crucial role for the result to
be valid. Namely, when F outputs estimates using the re-
port of peer workers instead of gold tasks, to guarantee that
the estimates are accurate, at least some portion of the peer
workers should provide accurate reports. In other words, the
mechanism should incentivize workers to provide accurate
reports.

Property 2: Incentives for Accurate Reporting
The second property we want to show is that a worker whose
performance is in expectation good and stable is able to
quickly build up her reputation so that her payments quickly
become close to the maximum. In particular, with the rep-
utation updating rule defined by PropeRBoost algorithm, a
workerw whose proficiency is expected to be p > pu should
receive near maximal payments for honest reporting. That is,
the scale assign to the worker should be close to 1 and ap-
proach 1 as the worker solves more tasks.

1Notice that E(scorew,t) is conditioned on σw,t if worker w’s
strategy (proficiency pt) is dependent on her reputation.

Theorem 2. Suppose that an honest worker w has profi-
ciency p > pu (in all time periods t), and let parameter η be
strictly greater than 0 and less than:{

1
2 if V ar(scorew,t) < E(scorew,t)
min( 12 , A · (pu − pl)) if V ar(scorew,t) ≥ E(scorew,t)

where A is defined in Corollary 1 and V ar(scorew) is the
variance of the score scorew,t. Then, the expected difference
between the optimal scale for this worker (σ = 1) and scales
σw,t generated by PropeRBoost is bounded by:

E(
T∑
t=1

(1− σw,t)) ≤

[
2

h
· ln(ρ0 + 1

ρ0
) +

e−
1
4 ·h

2

1− e− 1
4 ·h2

]
where h = E(ln(1 + η · scorew,t)) > 0.

Proof. Markov’s inequality gives us:

E(σw,t) = E(
ρw,t

ρw,t + 1
) ≥ Pr(ρw,t ≥ ρ0 · at) ·

ρ0 · at
ρ0 · at + 1

where we used: at = e
1
2 ·h·t, where h = E(ln(1 + η ·

scorew,t)) > 0. Notice that scorew,t ∈ [−1, 1]. There-
fore, from ln(1 + x) ≥ x − x2 for x ≥ − 1

2 , it follows
that h ≥ η · E(scorew,t)− η2 · E((scorew,t)2). Due to the
conditions of the theorem, we know that η < E(scorew,t) or
E(scorew,t) >

1
2 ·E((scorew,t)

2) (when V ar(scorew,t) <
E(scorew,t)), which by scorew,t ∈ [−1, 1], implies that
h > 0. Now, notice that:

Pr(ρw,t ≥ ρ0 · at) = Pr(ln ρw,t ≥ ln(ρ0 · at))

= Pr(ln ρw,t ≥ ln ρ0 +
1

2
· h · t)

= Pr(ln ρw,t − t · h− ln ρ0 ≥ −
1

2
· h · t)

≥ 1− Pr(ln ρw,t − t · h− ln ρ0 ≤ −
1

2
· h · t)

= 1− bt

where we set bt = Pr(ln ρw,t−t·h−ln ρ0 ≤ − 1
2 ·h·t). Since

ln ρw,t − ln ρ0 is a sum of t independent random variables
ln(1 + η · scorew,t) that are in expectation equal to h, using
Hoeffding’s inequality, we obtain:

bt ≤ e
− 2·(h·t)2

4·
∑t
τ=1[ln 3

2
−ln 1

2
]2 ≤ e− 1

4 ·h
2·t

Therefore, E(σw,t) is bounded from below by:

E(
ρw,t

ρw,t + 1
) ≥ (1− bt) ·

ρ0 · at
ρ0 · at + 1

≥ 1−
[

1

ρ0 · at + 1
+ e−

1
4 ·h

2·t · ρ0 · at
ρ0 · at + 1

]
which means that E(

∑T
t=1(1− σw,t)) is at most:

T∑
t=1

1

ρ0 · at + 1
+

T∑
t=1

e−
1
4 ·h

2·t · ρ0 · at
ρ0 · at + 1
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Let us put the bound for each term in the bracket. Using the
fact that at = e

1
2 ·t·h, we obtain:

T∑
t=1

1

ρ0 · at + 1
=

T∑
t=1

1

ρ0 · e
1
2 ·t·h + 1

≤
∫ T

t=0

1

ρ0 · e
1
2 ·t·h + 1

dt ≤
∫ ∞
t=0

1

ρ0 · e
1
2 ·t·h + 1

dt

=
2

h
· ln(ρ0 + 1

ρ0
)

Furthermore, we have:

T∑
t=1

e−
1
4 ·h

2·t · ρ0 · at
ρ0 · at + 1

≤
T∑
t=1

e−
1
4 ·h

2·t

= e−
1
4 ·h

2

·
T−1∑
t=0

e−
1
4 ·h

2·t ≤ e− 1
4 ·h

2

·
∞∑
t=0

e−
1
4 ·h

2·t

=
e−

1
4 ·h

2

1− e− 1
4 ·h2

where we applied
∑∞
t=0 x

t = 1
1−x for x ∈ (0, 1).

The bound in Theorem 2 implies that a worker with a
good performance (i.e., p > pu) will have in expectation av-
erage payment that is close to maximum (i.e., payment that
the worker would obtain with the scale equal to 1). Notice
that the average difference between the maximum payment
and the one that the worker obtains is inversely proportional
to time T , with a proportionality constant that depends on
h = E(ln(1 + η · scorew,t)): the higher h is, the lower the
constant is. Clearly, worker w can increase the value of h
with her performance, and thus, lower the proportionality
constant.

Furthermore, the mechanism itself can influence the value
of h by adjusting parameter η. Notice that parameter η can
always be set to min( 12 , A · (pu − pl)) for the theorem to
hold. From Theorem 2, it follows that threshold pu deter-
mines the lower bound for the proficiency levels that are
guaranteed to achieve near-maximum scaling factors. While
one might want to put pu close to pl, this also decreases
the value of η, and thus, the value of h. Clearly there is
a tradeoff between the thresholds’ separation and the effi-
ciency of the mechanism. However, high quality workers
might have stable scores, meaning that V ar(scorew,t) is
lower than E(scorew,t) for good proficiency levels. For ex-
ample, workers might solve several micro-tasks at each time
step t, which significantly reduces the variability in their per-
formance scores. In this case, one can set η to any value in
(0, 12 ], as indicated by Theorem 2.

Notice that Theorem 2 does not examine the possibility
that a worker w could manipulate the system; it only pro-
vides guarantees that an honest worker with a desirable pro-
ficiency level is expected to have an average payment close
to the one with the scale equal to 1.

Property 3: Near-Minimal Payments for Low
Quality Reports
Property 2 shows that workers are rewarded for high quality
reports, but we must also ensure that alternative strategies,
such as random reporting, lead to small average rewards. We
show that, in expectation, strategies for which a worker’s
proficiency is strictly smaller than p < pl lead to very low
average payments, close to 0 in a long run. Let us consider
first what happens when worker w consistently reports low
quality information.
Proposition 2. Consider a worker w that has proficiency
p < pl (in all time periods t) and a payment function
Payment(X) that takes values in [0, B]. Then, the expected
payment to worker w over time period T is bounded from
above by:

E(
T∑
t=1

σw,t · Payment(Xt)) ≤ B ·
ρ0

A · η · (pl − p)
(4)

where A is defined in Corollary 1.

Proof. The expected payment at time t to a worker whose w
is:

E(σw,t · Payment(Xt)) ≤ B · E(
ρw,t

ρw,t + 1
)

≤ B · E(ρw,t)

where the inequalities are due to Payment(Xt) ∈ [0, B]
and ρw,t > 0. Furthermore, we have:

E(ρw,t) = E(ρ0

t∏
τ=1

(1 + η · scorew,τ ))

Due to the independence of scores scorew,t and the fact that
E(scorew,t) = A · (p− pl), we obtain:

E(ρ0

t∏
τ=1

(1 + η · scorew,τ )) = ρ0 · (1 + η ·A · (p− pl))t

Therefore, the total expected payment to a worker w is
bounded from above by:

E(
T∑
t=1

σw,t · Payment(Xt))

≤ B ·
T∑
t=1

ρ0 · (1 + η ·A · (p− pl))t

≤ B ·
∞∑
t=0

ρ0 · (1 + η ·A · (p− pl))t

= B · ρ0
A · η · (pl − p)

where we used the fact that p− pl < 0 and
∑∞
t=0 x

t = 1
1−x

for 0 ≤ x < 1.

The direct consequence of the proposition is that the av-
erage payoff of a low quality worker is in expectation close
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to 0 in a long run, and the result follows by dividing bound
(4) with period T . Notice that the bound in the proposition
is inversely proportional to pl − p > 0, which means that
the worse the worker is, the quicker her average payoff will
approach 0.

Proposition 2 assumes that worker w’s strategy is inde-
pendent of time. To generalize it, we investigate the situation
where a worker is allowed to base her strategy on both time
and the current value of her reputation score. For example,
a worker might decide to invest high effort and be more ac-
curate if her reputation ρw is smaller than 5, and invest low
effort and be less accurate if her reputation is greater than
5. We show that no matter what worker w’s strategy is, her
average payoff over a longer period will be equal to 0 if her
average proficiency converges to values smaller than pl. This
effectively discourages any spamming strategy that tends to
provide low quality reports.
Theorem 3. Consider a payment function Payment(X)
that takes values in [0, B] and a worker w whose aver-
age proficiency, p̂T = 1

T

∑T
t=1 pt, converges to a value

limT→∞ p̂T = p̂ < pl. Then, the expected value of the av-
erage payment to worker w converges to 0, i.e.:

lim
T→∞

1

T

T∑
t=1

E(σw,t · Payment(Xt)) = 0

Proof. As shown at the beginning of the proof of Propo-
sition 2, the expected payment at time t is bounded by
B · E(σw,t).

Now, since limT→∞ p̂T = p̂, we know that for any ε > 0,
there exists T0 ≥ 1 such that for any T ′ > T0 we have
pt < p̂+ ε. Let us put ε = pl−p̂

2 , which gives us pt < pl+p̂
2 .

For T > T0, we have :

1

T

T∑
t=1

E(σw,t · Payment(Xt))

≤ B · T0
T

+B · T − T0
T

T∑
t=T0

E(σw,t) (5)

Using the same approach as in Proposition 2, we obtain that
E(σw,t) is, for t > T0, equal to:

E(σw,t) ≤ E(ρT0,w) ·
t∏

τ=T0

(1 + η · scorew,τ )

≤ E(ρT0,w) · (1−
1

2
· η ·A · (pl − p̂))t−T0

where we used the fact that pt < pl+p̂
2 . Therefore:

T∑
t=T0

E(σw,t) ≤ E(ρT0,w)
∞∑
t=T0

(1− η ·A
2
· (pl − p̂))t−T0

≤ 2 · E(ρT0,w)

η ·A · (pl − p̂)

Since T0 and E(ρT0,w) are bounded from above, by letting
T →∞, we obtain that expression (5) goes to 0.

Simulations
We consider two simulation scenarios: (1) a multi-task
crowdsourcing setting in which workers solve a bundle of
tasks at each time step and are rewarded using a peer consis-
tency approach; (2) a crowd-sensing setting where a crowd-
sensor reports one measurement at each time step and is re-
warded with a payment rule that compares its report to a
report of a trusted sensor.

Multi-task Crowdsourcing
In the first scenario, we consider a synthetic dataset in which
each task has an underlying true binary answer, a or b, with
the prior probability of an answer set to a generic value:
Pr(θ = a) = 0.4 and Pr(θ = b) = 0.6. Apart from worker
w, whose responses we analyze, there are another 50 work-
ers whose proficiencies are generated uniformly at random
from the interval [0.5, 1]. Each worker is assigned with 12
randomly chosen tasks in a bundle of tasks containing 100
tasks. These values are set for all bundles of tasks, in total
500 of them (i.e., T = 500 from a workerw’s point of view).

We examine the properties of the PropeRBoost payments
with respect to a state of the art peer consistency mecha-
nism introduced in (Dasgupta and Ghosh 2013), which we
scale so that the payments take values in interval [0, 1].2 To
estimate the performance of worker w at each time step, the
PropeRBoost algorithm uses expression (1), where Pr(θ̂F =
X) is estimated by randomly sampling a task not solved by
worker w and calculating 1θ̂F=X — in expectation this ex-
pression is equal to prior Pr(θ̂F = X). Furthermore, the
implementation of the PropeRBoost’s estimatorF is defined
by the algorithm from (Karger, Oh, and Shah 2011), which
has provable bounds on the quality of estimations. Initial
value of reputation ρw is set to ρ0 = 0.1, while α is set us-
ing the expressions in Proposition 1 and Corollary 1, with q
estimated from the data (q ≈ 0.9) and proficiency threshold
pl set to pl = 0.7. Parameter η is equal to η = 0.25.

Let us first examine the payments provided to a worker w
by the baseline algorithm for two basic strategies: random -
defined by proficiency p = 0.6; honest - defined by profi-
ciency p = 0.85. These payments are shown in Figure 1 for
time periods t ∈ {1, ..., T}. The difference in payments be-
tween the two strategies is relatively small; closer inspection
reveals that, on average, the payments for honesty are larger
than for random reporting by about 0.09. If we take into ac-
count that the payments have large standard deviations for
both strategies (around 0.07), it is unlikely that a worker
would notice any difference in payments for the two strate-
gies because the payments are received in an online manner
(after solving each bundle of tasks). By taking into account
that a worker experiences higher cost of effort for honesty
than for spamming, random reporting seems more profitable.
Furthermore, the payments for random reporting do not de-
crease over time, meaning that the mechanism gives away a
large amount of monetary rewards in return for random data.

2Since we randomly assign the tasks, it can happen that a
worker w has no peers for certain tasks, in which case the pay-
ments are set to 0.5.
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Figure 1: Payments for different strategies calculated by the
mechanism of (Dasgupta and Ghosh 2013) (every 5th step is
shown).

Let us now examine the scales for a worker w that the
PropeRBoost algorithm outputs for strategies: random; hon-
est; switch - reporting honestly for the first half of the re-
porting period and reporting randomly in the second half of
the period; keepRep - reporting honestly when reputation ρw
is lower than the initial reputation ρ0, while reporting ran-
domly when reputation ρw is above its initial value ρ0. The
evolution of scales over time is shown in Figure 2. The scale
for random reporting quickly converges to 0. On the other
hand, the scale for honesty converges to 1. In other words,
the difference between the average payments for honesty
and random reporting is maximal in a long run. If the worker
switches her strategy from honest to random, i.e., she uses
the switch strategy, the area below the switch curve in the
first half of the reporting period is approximately equal to the
area below the switch curve in the second half of the report-
ing period, indicating that the total utility of PropeRBoost is
not overly negative (see Theorem 1). A more sophisticated
reporting strategy is the keepRep strategy, where a worker
tries to maintain the same scale using the least effort as pos-
sible. The average level of proficiency is still greater than
minimal acceptable level pl, i.e., it is equal to 0.71.
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Figure 2: PropeRBoost scales for different strategies (every
5th step is shown). Black and yellow dashed line represents
the initial scale.

Finally, we show the evolution of the payments of
PropeRBoost when the payment function is the mechanism
of (Dasgupta and Ghosh 2013). By comparing Figure 3 with
Figure 1, one can easily see the effectiveness of the PropeR-
Boost algorithm - it provides much clearer separation be-
tween rewards for the two different strategies than the tradi-
tional scaling approach does.
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Figure 3: PropeRBoost with the payment mechanism of
(Dasgupta and Ghosh 2013) for different strategies (every
5th step is shown).

Crowd-sensing
Our crowd-sensing test-bed is based on a real dataset con-
taining levels of UFP (ultra fine particles) over Zurich ur-
ban area — the full description of the dataset can be found
in (Hasenfratz et al. 2014) — and a region based Gaussian
Processes model that incorporates the spatial features of the
terrain, as described in (Jutzeler, Li, and Faltings 2014). One
chunk of data contains aggregated measurements over the
period of two weeks for 200 locations. In total, we have 22
chunks of data, 2 for each of 11 different months. Half of the
data is used for training the GP model and the other half for
testing purposes. To simulate finer-grained periods of time,
e.g., hourly sensing periods, we iterate through the dataset
800 times and generate for each test value in the data, 800
artificial measurement. These measurements are obtained by
sampling from a normal distribution with a mean equal to
the test value and a standard deviation equal to the half of
the standard deviation of the prior (the prior is obtained from
the GP model). In total, we have 8800 periods, which, if the
base period is 1 hour, corresponds to approximately 1 year.

We score crowd sensor w using the measurement of a
trusted sensor, which measures at a different location. The
locations of the two sensors are randomly chosen at each
time period t from 200 available locations. To measure per-
formance π̂w, we convert the measurement of sensor w into
a binary signal using a simple rule: if the measurement is
greater than the mean of the prior at the location of sensor
w, then the binary signal is equal to 1; and otherwise is 0.
We do the same conversion for the mean of the posterior
at the location of w calculated using the measurement of
the trusted sensor and the GP model (this defines the binary
signal of the trusted sensor). The binary signal of sensor w
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represents X , the binary signal of the trusted sensor repre-
sents θ̂F , while the noiseless measurement of w represents
θ. From the data we estimate the accuracy of θ̂F (q ≈ 0.6)
and the proficiency of a good sensor (p ≈ 0.86). Since the
mean of the prior is used as a threshold in the binary conver-
sion, we know that Pr(θ = 0) = Pr(θ = 1) = 0.5, which
also implies Pr(θ̂F = 0) ≈ Pr(θ̂F = 1) ≈ 0.5 for q that is
not substantially biased towards a particular value of θ. By
defining pl = 0.75 and pu = 0.85, we obtain that a good
value of α is approximately 0.05, and the good value of η is
approximately 0.02 (see Theorem 2). The initial reputation
is set to ρ0 = 0.1.

As a baseline payment method, we consider the quadratic
scoring rule (Gneiting and Raftery 2007) that takes values
in [0, 1] and has two input variables: (1) the measurement
of a trusted sensor; (2) the posterior probability distribution
function of what a trusted sensor reports given the measure-
ment of sensorw. The latter is calculated with the GP model.
Using the same set of strategies as in the previous section,
we analyze the baseline and our boosting mechanism. No-
tice that the measurement in the random strategy is obtained
by sampling from a normal distribution with the mean equal
to the real measurement and the standard deviation that is 4
times larger than the standard deviation of the prior.

As shown in Figure 4, the payments of the quadratic scor-
ing rule for strategies honest and random are almost indistin-
guishable: the mean of the payments for the honest strategy
is equal to 0.58 and the standard deviation is equal to 0.09;
for the random strategy, the mean is equal to 0.56 and the
standard deviation is equal to 0.1.
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Figure 4: Payments for different strategies calculated using
the quadratic scoring rule (every 20th step is shown).

Figure 5 shows how the scales of PropeRBoost evolve for
different strategies. We obtain qualitatively the same results
as in the previous section, with the keepRep strategy result-
ing in the average proficiency equal to 0.81 > pl. Figure
6 confirms that using PropeRBoost in crowd-sensing can
lead to significantly more separated payments between hon-
est and random reporting than the traditional approach does.
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Figure 5: PropeRBoost scales for different strategies (every
20th step is shown). Black and yellow dashed line represents
the initial scale.
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Figure 6: PropeRBoost with the quadratic scoring rule for
different strategies (every 20th step is shown).

Conclusion

This paper investigates the problem of incentivizing workers
who repeatedly interact with a crowdsourcing system. We
have designed a novel boosting mechanism, PropeRBoost,
that improves existing incentive schemes in terms of the dif-
ferentiation between low and high quality performance. The
main property of the mechanism is that it can provide work-
ers with positive payments so that: 1) good workers receive
average payments that are close to the maximum, i.e., close
to the average with the maximum scale; 2) spammers receive
near minimal payments. We consider these two properties to
be of a great significance when it comes to understanding
the reward system: workers are more likely to respond to an
incentive when it clearly demonstrates its effectiveness.

The most challenging future step of this work is to experi-
mentally compare the effectiveness of PropeRBoost with the
effectiveness of the existing incentive mechanisms. While
most of the existing mechanisms are designed for a single
shot scenario, PropeRBoost relies on the repeated interac-
tions of workers with the mechanism, making experimenta-
tion a more significant challenge.
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