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Abstract
We propose techniques that obtain top-k lists of items out of
larger itemsets, using human workers to perform comparisons
among items. An example application is to short-list a large
set of college applications using advanced students as work-
ers. A method that obtains crowdsourced top-k lists has to
address several challenges of crowdsourcing: there are con-
straints in the total number of tasks due to monetary or prac-
tical reasons; tasks posted to workers have an inherent lim-
itation on their size; obtaining results from human workers
has high latency; workers may disagree on their judgments
for the same items or provide wrong results on purpose; and,
there can be varying difficulty among tasks of the same size.
We describe novel efficient techniques and explore their tol-
erance to adversarial behavior and the tradeoffs among dif-
ferent measures of performance (latency, expense and quality
of results). We empirically evaluate the proposed techniques
using simulations as well as real crowds in Amazon Mechan-
ical Turk. A randomized variant of the proposed algorithms
achieves significant budget saves, especially for very large
itemsets and large top-k lists, with negligible risk of lowering
the quality of the output.

Introduction
We address the problem of obtaining top-k lists of items out
of arbitrarily large itemsets using crowdsourcing. An exam-
ple application of a crowdsourced top-k query is selecting
applications for college admissions. Educational institutions
typically receive thousands of applications out of which they
select a small set of the higher ranked applicants. Another
example is the efficient selection of the top applicants for po-
sitions in industry, a process crucial for the success of com-
panies. In both these examples the agents performing the
comparisons between the applications are humans that ap-
ply some expertise. Non-expert crowds may be suitable in
other instances. For example, a startup company in search
of an appealing company logo may resort to the crowd to
obtain a small set of candidate logos out of a set of millions
of images. The company board can then make the final de-
cision for the logo by manually examining that small set.

Previous studies applicable to the top-k problem in the
context of crowdsourcing have major limitations. The work
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in (Marcus et al. 2011) is particularly wasteful in resources.
Approaches that require less budget are applicable to very
small top-k lists (Davidson et al. 2013) (Polychronopoulos
et al. 2013) or just to finding the maximum (Venetis and
Garcia-Molina 2012a) and are rigid with respect to the er-
ror model or the form of human computation tasks. Also,
existing proposals in the literature generally lack a robust
defense mechanism against the problem of spamming which
is rampant in crowdsourcing (Ipeirotis 2010). The main con-
tributions of our work are the following:

• We describe a class of algorithms that obtain top-k lists
from the crowd for arbitrarily large itemsets. The algo-
rithms issue comparison tasks whose total number is lin-
ear in the size of the input itemset, and the latency, mea-
sured as the number of roundtrips to the crowdsourcing
service, is logarithmic in the size of the itemset.

• We propose a budgeting strategy, that based on an ana-
lytic estimate of the impact of adversarial users to the out-
put, distributes the available budget efficiently across the
stages of the algorithm.

• We propose a randomized variant of the top-k algorithms
that can reduce the required budget drastically by taking a
negligible risk of compromising the quality of the output
result.

• We report results from experiments that test the perfor-
mance of several instantiations of the proposed methods
using simulations of human crowds and real crowds of
Amazon’s Mechanical Turk. The results show tolerance
of the proposed techniques against errors and vandal-
ism. We draw conclusions on the efficiency of the bud-
geting strategy, the randomized variant and the trade-off
among latency, cost and quality of results. Using equal
budgets, the method provides higher quality output than
unbalanced rank estimation (Wauthier, Jordan, and Jojic
2013) and tournament algorithms (Polychronopoulos et
al. 2013), while it has comparable performance with the
method in (Davidson et al. 2013) incuring much lower la-
tency. The randomized approach leads to significant bud-
get saves, that can exceed 50% with a very low risk of
losing items of the top-k list. The randomized algorithm
is particularly beneficial for very large itemsets and large
top-k lists.
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Related work
A natural approach to the top-k problem are tournament
style algorithms, as in (Venetis and Garcia-Molina 2012a)
which obtains maxima and (Polychronopoulos et al. 2013)
which obtains small top-k lists. The work in (Poly-
chronopoulos et al. 2013) has comparable performance to
the methods in (Venetis and Garcia-Molina 2012a) for the
max problem and employs a technique that addresses ran-
dom spamming but not vandalism, i.e. adversarial spam-
ming by workers who invert the correctness of results. It suf-
fers a major limitation as it can obtain top-k lists only for k’s
that are smaller than the size of the ranking tasks of human
workers. That work and relevant research on ranking tasks
in crowdsourcing (Marcus et al. 2011) has confirmed that
there is an inherent limitation to the size of crowdsourced
ranking tasks. On the other hand, the size k of a top-k
list may be high. For example, we may query a database
of millions of images for the top-100 list of images. The
tournament algorithm would not scale, since we would have
to ask human workers to provide rankings for sets of more
than 100 images, a very large task for human computation.
The method studied in (Davidson et al. 2013) is a random-
ized tournament approach in the initial stages of execution.
When this method obtains a reduced enough candidate set, it
invokes the method described in (Feige et al. 1994) to obtain
the top-k list. The method in (Feige et al. 1994) has a very
high latency, since it is essentially a heapsort algorithm for
noisy comparisons, where comparisons take place sequen-
tially and not in parallel. Thus, the technique in (Davidson
et al. 2013) is also of high latency. Moreover, the method’s
analytic results hold under specific assumptions for the er-
ror functions of human workers. In practice, it is difficult
to have any knowledge on worker error distribution a pri-
ori (Venetis and Garcia-Molina 2012b). Also, the study
does not consider the case of adversarial human workers,
which are a major challenge in human computation. Worker
tasks are restricted to pairwise comparisons, while in reality
human workers can perform tasks containing significantly
more than two items. Our proposed techniques do not have
this restriction. The work in (Ciceri et al. 2016) assumes
prior knowledge on the quality of the items, which is not re-
alistic for many applications. Relevant to our problem is the
work in (Ailon 2012), which presents a way of sampling a
quasilinear number of pair-wise comparison results for the
purpose of learning to rank, but performs full sorting with
no emphasis on the top-k. A randomized sorting algorithm
was studied in (Wauthier, Jordan, and Jojic 2013), in which
predicted permutations are more accurate near the top rather
than the bottom of the sorted list.

Problem statement
We define a set of items I with cardinality n. A ranking of
the itemset is a permutation of the n items. Let σ denote a
ranking. By σ(i) we denote the rank of an item i in ranking
σ, that is, its position in the ranking. So, for the top element
t in σ, σ(t) = 1. For two items i and j if σ(i) < σ(j)
we say that i is ahead of j in ranking σ. A top-k list of a
ranking σ, is the set of items that contains every item i in

σ for which σ(i) ≤ k. If the top-k list is a ranking itself,
where the positions in the list correspond to the ranks of the
items in ranking σ, the list is called a top-k ranked list.

We measure the expense of a crowdsourcing algorithm as
the total number of Human Intelligence Tasks (HITs) it is-
sues to the crowd. Each time we issue a batch of HITs to the
crowd to complete in parallel, we say that an extra roundtrip
is executed. If we desire multiple workers to provide an-
swers to the same task we need to issue separate HITs with
identical content. We measure the latency of a crowdsourc-
ing algorithm as the number of roundtrips it requires for ter-
mination.

We assume that the items in I can be ranked based on
some attribute of interest. We call this ranking the baseline
ranking, denoting it with β. Assuming β is unknown, our
goal is to obtain the k items that are close to the top-k items
in the ranking β, by issuing a limited number Q of ranking
tasks to the crowd.

A Recursive Crowdsourced Top-k Algorithm
We introduce an algorithm for the top-k problem that lever-
ages the knowledge from comparisons that the crowd has
completed to decrease the set of candidate items of the top-
k list rapidly by pruning away items that are not likely to be
in the top-k list.

The algorithm decouples the size of the human compari-
son tasks from the size of the top-k list and can output results
for arbitrarily large top-k lists.

In this section, we describe the algorithm and reason
about its correctness in obtaining the top-k list of a larger
itemset assuming that human workers provide correct an-
swers, i.e. answers that are consistent with the baseline rank-
ing. In reality, human workers can return incorrect results
and lead to errors in the output of the algorithm. In the sec-
tion Handling inaccuracy of crowds we describe techniques
that make the algorithm robust against inaccurate answers of
the crowd.

Figure 1 shows the pseudocode of the algorithm that we
call Crowd-Top-k. Its input is an instance of the top-k prob-
lem. The algorithm has two stages: the reduction stage and
the endgame stage.

We assume that the ranking tasks issued to the crowd have
a limited size s. If the itemset I is large enough such that it
can be partitioned into more than k partitions (|I|/s > k),
the algorithm is in the reduction stage. It partitions I and
obtains rankings through crowdsourcing. Once the method
gets the rankings of the partitions through crowdsourcing,
it picks the maxima, i.e. the top-1 items of each partition,
and forms a new itemset Îm. It then calls itself to obtain the
top-k list of the itemset Îm, i.e. the top-k list of the maxima
from all the partitions of I . Thereafter, it uses the knowledge
from the top-k ranked list of the maxima (structure T̂m) and
the rankings over the subsets of I , to make comparison in-
ferences and prune away items that are not candidates for
being in the top-k list of I . Every partition of I whose max-
imum item is not in the top-k list of Îm can be discarded.
This is due to transitivity of comparison results which are
consistent with the baseline ranking; the rank of any item in
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1 Crowd-Top-k(I ,k,s)

Input : Itemset I , integer k, integer s (size of
partitions)

Output: Top-k ranked list of items in I

2 if (|I|/s) ≤ k then
3 return endgameTopk(I, k, s);
4 Partition I in subsets{S1, ..., S|I|/s} ;
5 Obtain full ranking Ri of each Si through

crowdsourcing;
6 Îm ← set of max items from all subsets Si;
7 T̂m ← Crowd-Top-k(Îm, k, s);
8 C ← ∅;
9 foreach item i in T̂m do

10 C ← C ∪ i;
11 R← ranking Rv where i belongs to

Rv;//obtained in line 5
12 foreach item j in R different than i do
13 if ((T̂m(i) +R(j)) ≤ k) then
14 C ← C ∪ j;

15 return endgameTopk(C, k, s);

Figure 1: Recursive algorithm Crowd-Top-k for the top-k
problem

such a partition is at most the rank of its maximum, yet, the
maximum has lost to more than k items. Thus, no item of
the partition can be in the final top-k list. For each partition
of I whose maximum belongs to the top-k ranked list of Îm,
assuming correct comparisons, we can infer the following:
the final rank of an item of the partition is at least the rank of
the maximum of the partition in the top-k ranked list T̂m of
Îm plus the rank of the item in the partition. For items with
rank that can still be less than k, that is, their rank in the
partition augmented by the rank of the partition’s maximum
item in T̂m is less or equal than k, stay in the game and form
part of the new set of candidate items for the top-k list of I
(set C).

The new set of candidate itemsC contains 1+2+...+k =
k·(k+1)

2 items if k < s, and (k−s) ·s+
k∑

i=k−s+1

k− i+1 for

k ≥ s, which in both cases is O(k · s). The set of candidate
items cannot be further partitioned into k partitions. For this
reduced candidate set, the algorithm calls a method that can
obtain the top-k list of small itemsets for large k and small
itemsets. We informally call the problem of obtaining top-
k lists from itemsets where k is a significant portion of the
size of the itemset as the ‘Endgame top-k’ problem. We later
describe several ways of implementing this method.

Example Figure 2 shows the execution of the Crowd-Top-k
algorithm to obtain a top-5 list (k = 5) of an itemset I0 with
320 items, using crowdsourced ranking tasks of size 4. In the
figure, we tag each item with a number which is its rank in
the baseline ranking. The algorithm is unaware of the base-

Figure 2: Example of execution of the Crowd-Top-k algo-
rithm to obtain the top-5 list of an itemset of 320 items using
crowdsourced ranking tasks of size 4

line ranking. For the top-5 items, which the algorithm aims
to retrieve, we use larger italic font. The left part of the fig-
ure is the reduction phase, and the right part of the figure is
the endgame which crawls back to the initial recursive call to
obtain the final top-k list. Initially, the algorithm partitions
the itemset into 80 partitions of size 4, and the crowd ranks
the items of each partition. We observe that item 4 happens
to fall into the same partition with item 1 in this random
partitioning. The algorithm forms itemset I1 from the max-
ima of the partitions and calls itself on I1. Since I1 is a big
itemset (80 items), the method partitions it into 20 partitions
of size 4 and obtains rankings of the items in each partition
using the crowd. Note that item 5 happens to fall into the
same partition as item 3. The method forms set I2 from the
maxima of the partitions of I1 and calls itself on I2. The I2
is small (20 items), and cannot be partitioned in more than
5 partitions, therefore, the endgame begins. The algorithm
obtains the top-5 list of I2 using a method for the endgame
top-k problem. In this example, we obtain the top-5 list T2

by exhaustive comparisons of the items in I2. Top-5 ranked
list T2 does not contain items 4 and 5, as they do not belong
to I2. The endgame proceeds by popping the recursive stack
to obtain the candidate items of the top-5 list of itemset I1.
It forms C1 from the partitions of I1 that contain the top-5
items of I2 and includes items whose rank in I2 can still be
less than or equal than k. It then obtains the top-5 ranked list
T1 of I1 performing exhaustive comparisons in C1. The list
T1 includes item 5 retrieved from the partition whose maxi-
mum is item 3. The endgame proceeds, forms candidate set
C0 from partitions of I0 and T1 and obtains the final top-5
list of I0, which includes item 4 obtained from the partition
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of I0 whose maximum is item 1. During the backtracking,
the size of each of the candidate sets Ci is less than k · s,
where s is the size of the ranking tasks.

Assuming that the size s and k are small compared to the
size of the input itemset, we can consider them fixed and
prove the following result.
Theorem 1. Algorithm Crowd-Top-k issues a number of
ranking tasks that is linear in the size of the input itemset
I and has a logarithmic latency, assuming a bound in the
size of partition s and the size of the top-k list.

Proof To reason about the algorithm’s complexity, we
first need to calculate the number of recursive calls through-
out the algorithm’s execution. At each recursive call, the
size of the candidate set is reduced by s. For k · s less than
the current size of the input itemset the recursion continues.
Thus, for the number of recusrive calls r the following con-
dition holds:

n

sr
≤ k · s⇒ n ≤ k · sr+1 ⇒ n

k
≤ sr+1 ⇒

⇒ log(
n

k
) ≤ (r + 1) log s⇒ logs(n/k)− 1 ≤ r

Thus, the number of recursive calls is:

r(n, k, s) = max{dlogs(
n

k
)− 1e, 0}

Denoting the latency of the endgame method with L (which
can be constant for some endgame methods but is by def-
inition constant if we fix k, s), the overall latency of the
Crowd-Top-k algorithm is thus:

lrec(n, k, s) = (L + 1) · r(n, k, s) + L

We denote the number of ranking tasks issued by the
endgame method, which is a function of k and s to be U .
The number of ranking tasks is at most:

tasksrec(n) = n ·
r(n,k,s)∑
i=1

1

si
+ (r(n, k, s) + 1) ·U

≤ n

s− 1
+ (r(n, k, s) + 1) · U

because the geometric series sum
r(n,k,s)∑
i=1

1
si is bounded by

limit: 1
s−1 .

Since r(n, k, s) is logarithmic tasksrec(n) ∈ O(n) for
fixed s, k.

For small top-k lists ( k < s), where the tournament al-
gorithm is applicable, the Crowd-Top-k algorithm would re-
quire n

s−1 + k2 · dlogs(
n
k )e tasks.

For example, if n = 10, 000, k = 5 and s = 10, the tour-
nament algorithm would need 2, 000 ranking tasks and 11
rountrips, while the Crowd-Top-k algorithm would require
roughly 1, 200 ranking tasks in 6 roundtrips. The algorithm
in (Feige et al. 1994), which is the same as the algorithm in
(Davidson et al. 2013) when we risk no loss for the items in
top-k list, has a latency in Ω(n), a fact that can make these
methods prohibitively time consuming for large itemsets. In
the presence of randomization, the latency in (Davidson et
al. 2013) best-case increases linearly with the size of the top-
k list.

Endgame top-k algorithms
The recursive algorithm Crowd-Top-k is generic with respect
to the method that it uses to obtain the top-k list when the
endgame begins. We are free to choose the algorithm that
obtains the top-k at the endgame, i.e. algorithm endgame-
Topk of line 3 and line 15 of the pseudocode. Each one has
a different tradeoff among cost, latency and quality of an-
swers. We explored several methods for the implementation
of the endgame. The four endgame methods described be-
low are applicable to any size of top-k lists. For smaller
top-k lists, that is, for k < s, the tournament algorithm in
also applicable in the endgame.

Human-powered sort algorithm One option is to use the
human-powered sorts algorithm (Marcus et al. 2011) which
issues a quadratic number of ranking tasks in batches. We
implemented the Compare operator proposed in (Marcus et
al. 2011) and used it to obtain top-k lists for small itemsets.
The number of HITs cannot be smaller than the lower bound
n(n−1)
s(s−1) where n is the number of items and s the size of the
batch. The algorithm’s advantage is that it issues all neces-
sary tasks in a single roundtrip. For n = k · s, which is the
base case of the recursion, it issues a number of comparison
tasks in the order of O(k2 · s2).

Unbalanced rank estimation The study in (Wauthier,
Jordan, and Jojic 2013) presents a randomized algorithm for
obtaining the sorted list of a large itemset by pairwise com-
parisons. The method is simple; every pairwise comparison
has a fixed probability of being chosen and sent to the crowd
in a single rountrip. The items are sorted based on the num-
ber of items against which they have won in comparisons.
That is, each item’s estimated rank is proportional to the
fraction of the items winning it over all items with which
it has been compared to. The authors provide an analysis for
the expected quality of the results. The quality increases as
the sampling rate increases. They prove that the expected
accuracy is significantly higher for the top items of the list.

Comparisons inference algorithm We consider a method
that is based on inferences due to transitivity. Initially, we
randomly pick some comparisons that we issue to the crowd.
Then, we choose the comparisons that are most informative,
that is, the ones that lead to the highest number of inferred
comparisons. The problem of selecting the most informa-
tive comparisons bears some similarity to the ‘Next Votes
Problem’ that Guo et al. studied in (Guo, Parameswaran,
and Garcia-Molina 2012). Finding the optimal solution is
NP-hard. The analysis in (Guo, Parameswaran, and Garcia-
Molina 2012) does not extend to the top-k problem. Since
the optimal solution is difficult, in our study, we employ a
heuristic that examines the inference gains for each of the
pairwise comparisons and sorts all unknown comparisons by
their inference gains.

Quick-sort top-k variant We consider a variation of
quick-sort adapted for obtaining the top-k. The method ran-
domly picks a pivot and finds its rank in the itemset by com-
paring against all items. The comparison tasks to compute
the rank of the pivot are all issued in parallel in a single
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roundtrip maintaining low latency. The rank of the pivot is
the number of items against which it has lost, augmented by
1. If the rank of the pivot is k the top-k list is the pivot and
all the items that have won the pivot in comparisons. If the
rank of the item is larger than k, we can exclude the pivot
from the top-k list along with all the items that it has won.
We then repeat the same process and obtain the top-k list of
the items that are still candidate members of the top-k list.

Handling inaccuracy of crowds
The key for obtaining high quality output with the Crowd-
Top-k algorithm is to obtain high quality results using
crowdsourcing for each of the subsets Si of the input itemset
I . (line 5 of pseudocode in Figure 1)

Rank aggregation of multiple answers to a ranking
task
We assign each ranking task to multiple workers and obtain
a single ranking out of the potentially different rankings that
workers provide for a particular subset.

Producing a single ranking out of multiple rankings over
the same set of items is a process called rank aggregation.
The optimal aggregated ranking is the one that minimizes its
distance from all the rankings with respect to a specific rank-
ing distance metric. Two prominent binary distance metrics
for rankings are the Kendall tau distance and the footrule
distance.

Computing a footrule-optimal aggregation is tractable.
Computing a Kendall-optimal aggregation is equivalent to
the minimum feedback arc set problem which is NP-hard.
An early result by Diaconis and Graham (Diaconis and Gra-
ham 1977) proved that the Kendall Tau distance and the
Spearman’s footrule distance are ‘equivalent’, since they are
within a factor of 2 from each other. As shown in (Fagin,
Kumar, and Sivakumar 2003), the median rank aggregation
method gives a footrule-optimal aggregation in many cases.
In (Fagin et al. 2004), median rank aggregation was proven
to be optimal, within constant factor of 2, for rankings with-
out ties. We choose it as the method of rank aggregation of
the Crowd-Top-k algorithm.

Distributing budget to ranking tasks
Human workers that contribute to Human Intelligence Tasks
can be honest or spammers. Spammers can be random
spammers or adversarial spammers (also called vandals).
For ranking tasks, a random spammer answers with a ran-
dom ranking of the items of the task, whereas an adversarial
spammer provides the correct ranking but in reverse order.

We use two different methods of allocating budget to
ranking tasks, the first for the case when we expect random
errors and spammers, and a second for when there also ex-
ist adversarial spammers in the crowd. In the former case,
we use the adaptive algorithm proposed in (Polychronopou-
los et al. 2013) that can estimate the difficulty of tasks or
the presence of an usually high number of random spam-
mers in a median rank aggregation on the fly, based on the
diversity of answers. This technique adaptively uses exist-
ing budget by allocating fewer workers to seemingly easy

tasks and placing more effort on seemingly difficult tasks.
The method is not relevant in the presence of adversarial
spammers, because vandals provide the same answer so we
cannot use diversity as a red flag. For this case, we use a bud-
geting strategy based on an analytic estimation of the impact
of vandals on the output of the algorithm.

In crowds that undergo quality control (e.g. crowds tested
with the Gold Standard Data method of Crowdflower) we
generally see zero or negligible percentage of vandals and
we only expect random errors and incidental random spam-
ming, as in fact even honest workers may approximate the
behavior of random spammers if fatigue or other factors low-
ers their quality. A less moderated crowd such as that of
Amazon Mechanical Turk can have a non-negligible per-
centage of vandals. As noted in a previous study (Venetis
and Garcia-Molina 2012b), the distribution of errors by hon-
est workers is very difficult to obtain, because it depends on
the similarity of items in the baseline ranking. However, it is
feasible to estimate the percentage of vandals in the crowd
by sampling from the crowd using a known dataset. This
is because vandals provide a very special answer to ranking
tasks; if the answer we obtain is close to an inverted ranking,
we can infer that this is likely the result of vandalism.

Addressing vandalism In the presence of adversarial
spammers, we need to assign the largest possible number
of workers to each aggregation. The suitable number of al-
located workers depends on the budget constraints and the
impact that the prevalence of vandals in a particular aggre-
gation can have on the final output result. We provide an
analytic estimate of this impact based on a simplified er-
ror model. Exploiting this analysis, we devise a principled
method for allocating workers, given a particular budget Q
for ranking tasks. In the experimental study, we check the
robustness of the method under realistic error assumptions.

We assume the percentage of vandals in the crowd is
known. In practice, it is feasible to estimate the actual per-
centage, by sampling answers from the crowd using a set of
items for which the correct ranking is known, before execut-
ing the algorithm.

We approximate reality by assuming that workers are ei-
ther correct or adversarial.

We define error in the output top-k list, as the percentage
of items of the top-k list that we lose; in other words, the
number of non-members of the top-k list that appear in the
final set of k items that is returned by the algorithm.

We denote with mi the number of workers that we assign
to a ranking task at recursive depth i, where m0 is the num-
ber of workers we allocate per partition at the initial call of
the algorithm. We denote with zi the number of partitions at
recursive call i, with z0 being the number of partitions at the
initial execution.

We seek the vector (m0, ...mr(n,k,s)) that minimizes the
expected error due to vandalism, where r(n, k, s) is the num-
ber of recursive calls of the algorithm (see proof of Th. 1) .

We denote the probability that a worker is a vandal, which
is roughly equal to the percentage of workers in the crowd,
by v. We assume that we have a limited budget Q of crowd-
sourced ranking tasks.
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Picking a worker from the crowd is a Bernoulli trial, so
the probability that an aggregation of m workers contains
d vandals is B(m, d) =

(
m
d

)
vd(1 − v)m−d. When a rank-

ing task is performed by multiple workers and the majority
of those workers are adversarial, the aggregation will return
an inverted ranking because the median ranks of all items
will be inverted. Therefore, the probability that median rank
aggregation outputs an inverted ranking is:

g(m) =
m∑

i=dm2 e

B(m, i)

In the worst case, all the items of the top-k list that belong
to a partition can be lost due to the adversarial behavior. This
is because the minimum item of the partition, which is erro-
neously indicated as maximum, is likely smaller than the
maxima of other partitions and would be excluded from the
candidate set, along with all the items in the partition.

Since the partitioning is random, the expected number of
items of the top-k list in a partition is k/zi.

Thus, for the expected error e due to vandalism of a single
partition at recursive depth i:

E(e) ≤ g(mi) ·
k

zi

Using the union bound of the expected error across all
partitions across all recursive calls:

E(err) ≤
r(n,k,s)∑
i=0

zi · g(mi) ·
k

zi
= k ·

r(n,k,s)∑
i=0

g(mi)

where r(n, k, s) is the number of recursive calls.
We seek solution (m0, ...mr(n,k,s)) that minimizes the

above error bound subject to the budget constraint:

r(n,k,s)∑
i=1

zi ·mi ≤ Q

This is an optimization problem that resembles a non-
linear variant of the knapsack problem (assigning a negative
sign to the error bound to convert it to a maximization prob-
lem). Solving the above optimization problem provides us
with a budgeting strategy that distributes the available bud-
get to ranking tasks across recursive calls. For large itemsets
that require several recursive calls, exhaustive search of all
combinations that maximally satisfy the budget constraint is
infeasible due to combinatorial explosion. We thus employ
a greedy approach similar to the ones used for knapsack to
obtain an approximately optimal solution to the optimization
problem.

Randomized variant
We propose and implement a randomized variant of the re-
cursive algorithm Crowd-Top-k that reduces the cost of the
endgame by undertaking a small risk of losing items of the
top-k list from the final result.

The key observation that allows us to devise a random-
ized algorithm is that forming the new candidate set using

the top-k maxima and items from partitions where the top-k
maxima belong is necessary because of the non-zero proba-
bility that more than one items of the top-k list of the given
itemset may fall in the same partition. Therefore, the top-
k list T̂m of the maxima, and the top-k list of the itemset
always have a non-empty intersection but are often not the
same.

We call the event that exactly w items of the top-k list of
the itemset fall in the same partition a w-fold collision. The
top-w item of a partition whose maximum belongs to T̂m,
can belong to the top-k list of I with a probability that is at
most the sum of the probabilities of f -fold collisions taking
place, for all f where w ≤ f ≤ k. If this bound is low
enough so that it is in practice negligible we can keep in the
candidate set only the top-(w − 1) items of the partitions
whose maxima belong to T̂m instead of the number of items
that are necessary in the standard version of the algorithm.
In the extreme case where a f-fold collision, where f ≥ 2,
is highly unlikely, executing the endgame is redundant; the
top-k list of the itemset is most likely T̂m itself, i.e. the top-k
list of the maxima of the partitions. We can quantify an up-
per bound of the probability of aw-fold collision happening.
As an example, for an itemset of 1, 000, 000 items, partition
size of 5 and k = 10, the probability that more than one
of the items of the top-k list fall in the same partition can-
not exceed 2.5 · 10−4. Thus, skipping the execution of the
endgame and returning the top-k list of the maxima T̂m as
the top-k list of the entire itemset carries a risk of at most
0.025% of missing items of the top-k list. We can deem this
as low, and in many cases, it is significantly lower than the
risk of losing items due to vandalism or errors by the crowd.

Formally, the probability q(w) of a w-fold collision oc-
curing at a given partition at recursive call i is:

q(w) =

(
k

w

)
· 1

zi

w

· (1− 1

zi
)k−w

and for the probability across all partitions at recursive call i
we can use the union bound to obtain: Pr[w, i] ≤ zi · q(w).

The probability r(c, i) of losing an item of the top-k at
recursive call i by promoting only c ·k items to the endgame

methods instead of O(s · k) is bounded by :
w=k∑
w=c+1

zi · q(w).

The randomized variant takes a risk threshold as addi-
tional input. This represents the level of risk of losing items
of the top-k list due to the randomization which the user
of the algorithm deems acceptably low. The algorithm then
pre-calculates the value ci for each recursive call i, which
maintains the total risk bound less or equal to the risk thresh-
old, according to the above upper bound. During the exe-
cution of the algorithm, at each recursive call i, the algo-
rithm invokes the endgame top-k method for ci items of each
partition, which correspond to the top-ci items of partitions
where items of T̂m belong, instead ofO(s) items in the non-
randomized case. For ci = 1, there is no invokation of the
endgame top-k algorithm; the algorithm returns the top-k
list of the maxima T̂m as the top-k list of the itemset.
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Experimental study with simulated crowds
Methodology
Data We conducted experiments using synthetic data and
a simulation of crowds to evalutate the performance of the
proposed algorithms.

Each item has a distinct integer value that represents its
quality and neighboring items in the baseline ranking have
value distance of one. We also experimented with the more
realistic assumption of the Gaussian distribution, which fa-
vors our methods since the top items are easier to distin-
guish, but in the interest of fairness we report results under
the equi-distant assumption for the value of the items.

Modeling of human workers Human workers can be ei-
ther honest workers or spammers, where spammers can be
either random or adversarial as described above.

Honest workers report the truth consistent with the value
of the items but with occasional random swaps according
to the Thurstonian model (Thurstone 1927) that describes
how human agents distort the perception of physical stimuli.
The same model is also used in (Venetis and Garcia-Molina
2012a) and (Polychronopoulos et al. 2013).

Parameters of experiments
Parameter Range Default
Size of itemset 1,000-100,000 10,000
k (size of top-k list) 5-50 50
Size of partition - 2-10
Random spam 10%-40% 20%
Vandals 1%-15% 1%
Error rate 10%-40% 25%
Budget 4K-1.5M 15K

The above table shows how we vary the experimental pa-
rameters and their default values.

Error measure The error measure we use is: εr =
Σk

i=1V (βi)−Σk
i=1V (ei)

V (β1)−V (βk) as in (Polychronopoulos et al. 2013)
where β1, ..., βk are the items in the baseline top-k list and
V (βi) is the quality value of item i.

Cost metric We model the amount of work, and thus the
cost, of a HIT as c = s·log2 s

2 , where s is the size of the
ranking tasks. If all HITs have the same size throughout the
execution of the algorithm, the amount of work is propor-
tional to the number of HITs. Otherwise, HITs with higher
sizes require more effort.

Results
Comparative study for small top-k lists We compare the
Crowd-Top-k algorithm against the tournament algorithm
which is applicable to small top-k lists (smaller than the size
of a ranking task). We set the minimum number of workers
per aggregation to 3, for high quality. We use the tourna-
ment algorithm itself as the endgame method of the recur-
sive algorithm Crowd-Top-k. We also compare against the
algorithm in (Feige et al. 1994) using roughly 100,000 pair-
wise comparisons, which is equivalent to 6000 ranking tasks
of size 10 according to the cost metric.

Figure 3 shows the result of an experiment that obtains
the top-5 list of 10, 000 items with a fixed budget of 6, 000,
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Figure 3: Comparative performance of the Crowd-Top-k al-
gorithm and the tournament algorithm for increasing error
rate

default spammer percentage and increasing error rate. The
Crowd-Top-k algorithm performs better for all error rate lev-
els while the spread between the performance of the two
methods increases for higher error rates. For an error rate of
10% the Crowd-Top-k algorithm yields results with almost
zero error. The results confirm the superiority of the recur-
sive approach to the tournament algorithm. The number of
roundtrips fluctuates for the two methods, ranging from 11
to 30, due to the adaptive allocation of tasks to human work-
ers. The method of (Feige et al. 1994) has a very high la-
tency (> 10, 000 roundtrips) which makes it unsuitable in
real settings and for this setting it also achieved poorer qual-
ity results than the recursive algorithm.

Performance of the Crowd-Top-k algorithm for large
top-k lists (k > s) We conducted experiments with several
instantiations of the Crowd-Top-k algorithm for large top-k
lists using different methods for the endgame.

The human-powered sort algorithm (Marcus et al. 2011)
for the endgame was highly inefficient for the top-k prob-
lem in terms of required budget and tolerance to errors, so
we omit the results of its performance. We tune the meth-
ods we tested appropriately to use the same budget so that
the comparison is fair and meaningful. The budget is set
to 15, 000 pairwise comparison tasks (s = 2) for obtaining
the top-50 list of an itemset of 1, 000 items. We report the
results of five different methods to obtain the top-k list:
• Unbalanced rank estimation (URE) proposed in (Wau-

thier, Jordan, and Jojic 2013) to retrieve the top-k list out
of the entire itemset.

• Recursive algorithm Crowd-Top-k with unbalanced rank
estimation (URE) as the method for the endgame.

• Recursive algorithm Crowd-Top-k with the comparisons
inference algorithm as the method for the endgame. We
obtain the same number of pairwise comparisons (three
times the size of the dataset) from the crowd in all
roundtrips.

• Recursive algorithm Crowd-Top-k using the quick-sort
top-k variant algorithm for the endgame.
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Figure 4: Comparative performance of methods for large
top-k lists

• Method described in (Feige et al. 1994) for the top-k prob-
lem which has the same order of latency with (Davidson
et al. 2013) and it is in fact the same algorithm when it is
not randomized.
Figure 4 shows the results of the five methods for default

error noise and increasing percentage of random spammers.
The unbalanced rank estimation method has the smallest la-
tency as it uses a single roundtrip but provides the poor-
est quality results. The Crowd-Top-k algorithm using the
quick-sort top-k variant in the endgame is the method that
makes the most efficient use of the budget providing the
highest quality output. The method of (Feige et al. 1994)
is providing results of comparative quality, yet, the latency
is prohibitively high (>2000 roundtrips). The Crowd-Top-k
method using unbalanced rank estimation for the endgame
maintains the error low and the latency at 9 roundtrips. It is
a balanced approach that provides low output error with low
latency. The Crowd-Top-k method with the comparisons in-
ference algorithm provides good results comparable to those
of the quick-sort top-k variant for lower spammer percent-
ages and with lower latency but as the spammer percentage
increases the output error approaches that of the unbalanced
rank estimation. The comparisons inference algorithm is
vulnerable to error propagation which explains the increase
in the output error as spammers increase.

Handling of vandals We described a method that returns
the number of workers that we should allocate to the rank-
ing tasks at each recursive call for a given budget, in the
presence of vandals (adversarial spammers). The probabili-
ties we use in our analysis were upper bounds obtained from
union bounds and may not be tight.

A question we need to address is whether the budgeting
strategy works efficiently in practice. We conducted exper-
iments to evaluate the performance of the budgeting strat-
egy. For an itemset of 1,000 items, s = 2 and k = 20 the
algorithm is called 5 times, one initially and 4 recursively.
The budgeting algorithm returns a vector V = (m0, ...m4)
where mi is the number of workers per partition at recursive
call i, with m0 being the workers per partition at the ini-
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Figure 5: Performance of budgeting strategy

tial call of the algorithm. If the budgeting strategy provides
a roughly optimal budget arrangement we expect the error
of the output to increase when we use a different budget ar-
rangement. In particular, we expect the error to get higher as
the distance of the vector that represents the budget arrange-
ment from the vector of the optimal budget arrangement V
increases.

Figure 5 demonstrates the error for three levels of van-
dals in the crowd, at 5% and 10% and 15%. We evaluate
the Crowd-Top-k algorithm with URE for the endgame us-
ing several budget arrangements that maximally satisfy the
budget constraints, that is, even one pair of extra workers
at some stage would exceed total available budget for rank-
ing tasks which stands at 5,000. The total budget stands at
17,000. The x-axis represents the Manhattan distance to the
vector V that the budgeting method returns as optimal ar-
rangement.

We assume that the estimation of the vandal percentage
of the crowd stands at 10%. The random errors performed
by honest workers are at the default level. For an actual
percentage of vandals at 10% we observe that in the vicinity
of vector V , that the budgeting strategy returns, we obtain
the lowest error results. It is reasonable to assume that the
vandal percentage estimate may be an underestimate (e.g. -
50%) or an overestimate (e.g. +50%), since it is the result
of sampling. We thus report results for the same level of
vandal percentage estimate at 10% but for the actual levels of
budget standing at 5% and 15%. We observe that the results
are qualitatively the same as when the actual percentage is
at 10%, and the lowest error is in the vicinity of the vector
V of the budgeting strategy.

The results confirm the relevance of our analysis and show
that our strategy distributes the budget efficiently across the
algorithm’s stages even for difficult comparisons where hon-
est workers do not always provide correct answers. In par-
ticular, for budgeting vectors that are close to V the per-
formance is virtually unchanged (can be slightly inferior, or
even slightly superior as V is not necessarily the real opti-
mal arrangement since it is derived from an analysis based
on union bounds), while for vectors with high distance from
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V , the error increases in all cases. We also observe a small
sensitivity of the budgeting strategy to errors in the estimate
of the vandals percentage from crowd sampling.

Performance of randomized variant We expect the ran-
domized approach to be more efficient for very large item-
sets and large k’s. This is because for large k’s we feed
many items to the endgame, and the number of pairwise
comparisons increases quadratically with k. Also, for large
itemsets the risk of w-fold collisions during partitioning de-
creases. We evaluate the randomized recursive algorithm
Crowd-Top-k with URE for the endgame, for a large itemset
of 100,000 items, k = 50, and partition size of 10. The size
of comparison tasks is different in the reduction stage of the
algorithm and the endgame stage (10 and 2 respectively). In
the interest of fairness, we report the amount of work ac-
cording to the cost metric rather than the number of HITs.
Otherwise, reporting only the number of HITs would favor
the results, since the randomized approach achieves budget
saves only for the comparison tasks that take place in the
endgame stage, which in this case are smaller and therefore
require less effort.

Figure 6 demonstrates the error as the risk increases from
zero (non-randomized) to 3 · 10−4 for default errors by hon-
est workers and vandals at 1%, 3% and 5%. The risk is the
probability that we lose some item of the top-k list from the
final result, due to the randomization. We observe that the
error is essentially unchanged and even paradoxically de-
creases slightly instead of increasing in some cases. This
happens because the risk of loss remains negligibly low,
but the number of items that we send to the URE method
drops significantly. For constant parameter c = 200 of the
URE method, the sampling rate increases, and for a smaller
dataset this leads to an enhanced output. Still, the required
budget decreases because the number of all possible pair-
wise comparisons decreases quadratically, and we require
significantly less budget to achieve comparable or even su-
perior quality. We can see the use of budget, expressed in
required amount of work, in the following table.

Risk 0 3 · 10−8 3 · 10−6 3 · 10−4

Amount of work
(in million) 1.511 0.908 0.782 0.649
Budget save 0% 42% 48% 57%

Figure 7: Example of an increased difficulty pairwise com-
parison task with polygons addressed to real workers of
Amazon Mechanical Turk

The figures in the table above show that we achieve a bud-
get save that approaches 50% for a very low risk of 3 · 10−6

and even larger saves for higher levels of risk, without no-
ticeable change in the quality of results.

Experimental study with real crowds
Methodology
Data We tested three types of item sets of cardinality 320.
For k = 5 and s = 4, the algorithm runs in the same way
as the example of figure 2, yet, we used quick-sort style
endgame instead of exhaustive. The first item set is a set of
squares whose edges range from 60 to 380, increasing one
pixel at a time. The difference in size among squares is easy
to discern, therefore, we consider the overall task of finding
the top-5 squares as an easy task. The second itemset is a set
of polygons with vertices 4-10 alternately and their area in-
creasing by a constant factor, a unit area. Setting the task as
the comparison of the areas of the shapes, we expected the
items of the second item set to be harder to compare than the
squares. Thus, we consider this dataset as being of medium
difficulty. Finally, we created a polygon dataset decreasing
the size of the unit area so that the polygons become very
difficult to compare. In figure 7 we can see a snapshot of a
pairwise comparison task among polygons.

Workers We used the workers of Amazon’s Mechanical
Turk without imposing any restrictions nor requiring quali-
fication tests. We paid $0.01 per task, which is the lowest
rate for a task. The application shuffles the shapes at each
round as dictated by the algorithm at every roundtrip, con-
structs HTML forms with the shapes on the fly, and uploads
the forms to a certified server of UC Santa Cruz through
SFTP. Uploading to a certified server was necessary to en-
sure that workers can fetch the data through HTTPS and sub-
mit the results without security warning messages from their
browser. If a HIT remained unanswered for more than 25
minutes, it was more likely that it would remain so indef-
initely, since new tasks would come on the top of the list
of tasks at Mechanical Turk’s page making our tasks less
visible. Due to this, the application automatically reposts
belated HITs after that time, disposing the previous ones.

Error measure The error measure is the same as for the
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Figure 8: Comparative performance using Amazon’s Me-
chanical Turk crowd

simulations, having the areas of the squares as values, and
considering the area difference among consecutive shapes in
the baseline ranking to be the unit area for all three datasets.

Algorithms We tested the Crowd-Top-k algorithm with
quick-sort style endgame. We allowed for a risk of loss of
less than 2% by allowing at most 3 items from each partition
to proceed to the endgame. First round uses 1 worker per
item and second round 3. Using 7 workers for each compar-
ison in the endgame this corresponds to roughly 800 HITs
overall, of which 160 were ranking tasks and the rest pair-
wise comparisons. This corresponds to a cost of approxi-
mately 1220 according to our cost metric, though for both
tasks we paid the same lowest possible rate and the work-
ers contributed to them with no problem. It is fair though
to reason in terms of cost since a hypothetic platform may
allow for lower compensation rates. We also tested the algo-
rithm in (Davidson et al. 2013) assuming logX = 1 which
roughly corresponds to δ around 15%. This requires roughly
800 pairwise HITs when posting 3 comparisons in the upper
levels of the X-tree. Finally, we tested its non-randomized
version which is essentially the algorithm in (Feige et al.
1994) requiring roughly 1,300 pairwise comparison HITs.

Results

The results in figure 8 demonstate a comparable perfor-
mance of the three tested methods in terms of quality of re-
sults for all three levels of difficulty. What is significantly
different is the difference in latencies. The Crowd-Top-k
has an approximate latency of 13 roundtrips and 72 minutes,
while the algorithm of (Davidson et al. 2013) has a latency
of 214 roundtrips and 508 minutes (there is only one task
in each roundtrip but the total time is significantly higher
than the Crowd-Top-k’s latency, because of the parallel ex-
ecution of tasks in each roundtrip of Crowd-Top-k). The
non-randomized version has a latency of 420 roundtrips and
roughly 1170 minutes. The latency of those methods would
get prohibitively high for even bigger datasets as it would
increase linearly, while the Crowd-Top-k algorithm would
scale as the latency increases logarithmically.

Conclusions
The techniques we propose make efficient use of available
budget and overcome major limitations of prior art. The
algorithms have the flexibility to use different methods for
solving the ‘endgame’ problem based on the preferred trade-
offs for latency and quality of results, given a specific bud-
get. They demonstrate high tolerance to random spammers,
vandals and errors even for unrealistically high spammer
percentages and errors. Applying the randomized approach
to very large itemsets, we can reduce the necessary cost dras-
tically, with negligible risk of lowering the quality of results.
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