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Abstract

We provide an empirical analysis of peer prediction mecha-
nisms, which reward participants for information in settings
when there is no ground truth against which to score reports.
We simulate the mechanisms on a dataset of three million
peer assessments from the edX MOOC platform. We evaluate
different mechanisms on score variability, which is connected
to fairness, risk aversion, and participant learning. We also as-
sess the magnitude of the incentives to invest effort, and study
the effect of participant coordination on low-information sig-
nals. We find that the correlated agreement mechanism has
lower variation in reward than other mechanisms. A concern
is that the gain from exerting effort is relatively low across
all mechanisms, due to frequent disagreement between peers.
Our conclusions are relevant for crowdsourcing in education
as well as other domains.

1 Introduction
We study the crowdsourcing of information in applications
where it is difficult or expensive to verify contributions.
There are many possible settings, including reporting infor-
mation about businesses to improve products such as Google
Maps, assessing peer work in large-scale education, and elic-
iting emotional reactions to video content or images. The ob-
jective is to encourage individuals to invest effort and make
reports that reflect their viewpoint, even when this may be a
minority viewpoint. Given reports, algorithmic methods can
be used to aggregate the information in different ways.

The paradigm of peer prediction adopts explicit rewards
to promote effort and truthful reports. In the absence of gold
standard answers and the ability to verify reports, these re-
wards are determined based on comparisons between reports
from different participants. Peer prediction has been studied
for more than a decade, and there are now a number of mech-
anisms that have attractive theoretical properties—needing
minimal information to operate, having broad domains of
applicability, placing low reporting burden on participants,
and avoiding undesirable “group-think” style equilibria.

As far as we know, peer prediction has not yet been de-
ployed in any large-scale application.1 Peer assessment in
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1There is some empirical work on peer prediction: Gao et
al. (2014) study equilibrium selection in a simple binary setting,

MOOCs is an exciting application for peer prediction—done
well, it would enable low-cost and thus broadly accessible
education in subjects that are difficult to automatically as-
sess, such as writing, design, and public speaking.

Previous work on peer prediction has focused on the de-
sign of mechanisms that are proper (truthfulness is an equi-
librium) and strong truthful (truthfulness is the equilibrium
with highest score) (Shnayder et al. 2016). We study several
previously unexplored mechanism properties that matter for
practical deployment. First, the magnitude of the benefit of
exerting effort and being truthful over uninformed strategies
is important: in educational settings, scaling the scores arbi-
trarily to increase the relative value of effort is impossible
within a fixed grade range. Second, participants may be risk
averse, and prefer more certain strategies, even with lower
expected scores. Last, it is important to strive for fairness:
participants who evaluate their peers equally well should be
rewarded equally. These concerns apply in education and
other applications.

As a step toward deployment, we evaluate four candidate
peer prediction mechanisms on a dataset of three million
peer assessments from the edX MOOC platform. The com-
parison mechanisms include the classic output agreement
mechanism as well as more recent designs (Kamble et al.
2015; Radanovic, Faltings, and Jurca 2016; Shnayder et al.
2016). Our analysis is not experimental—we take existing
peer assessments from a system that does not evaluate scor-
ers, and compute what peer prediction mechanisms would
do given these reports. Our key results:

• The benefit from exerting effort in evaluating peers is rel-
atively low across all candidate mechanisms, due to rela-
tively low agreement between peer scores.

• The correlated agreement mechanism (Shnayder et al.
2016) has lower reward variation than other candidate
mechanisms, because it rewards reports even without ex-
act agreement between peers.

showing that agents find collusive equilibria. In contrast, Faltings,
Pu, and Tran (2014) study a many-signal setting where uninformed
equilibria did not appear to be a problem. We are not aware of
any systematic studies of peer prediction in massive open online
courses (MOOCs), though Radanovic, Faltings, and Jurca (2016)
present some initial positive experimental results from an on-
campus experiment.
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• The low peer agreement in our data set makes all mech-
anisms susceptible to student coordination on easy-to-see
but unintended signals, as described by Gao, Wright, and
Leyton-Brown (2016).

In all cases, increasing agreement between peers would
make peer prediction more practical. This can be accom-
plished by rubric design and student training, as well as us-
ing peer prediction itself to encourage effort. Because our
data comes from a system without incentives for accurate
reporting, our paper should be read as suggesting new eval-
uation criteria for peer prediction mechanisms, and raising
a question about the necessary levels of agreement between
peers, to be answered by future studies of deployed mecha-
nisms. We hope that the low peer agreement we report does
not discourage such experiments.

2 Peer Assessment in Education
Peer assessment has a long history in education (see e.g.
Goldfinch and Raeside (1990) and Falchikov (1995)) and is
part of the much broader field of peer learning, which in-
cludes many types of peer-to-peer interaction in formal and
informal settings.

For readers unfamiliar with peer assessment, we briefly
summarize some lessons from its use in the classroom, to
give a broader context for our incentive-focused study. There
are two primary concerns about the scores given in peer as-
sessments. The first is reliability, whether peers agree with
each other. If not, ratings will have high variance, and many
graders will be needed for each assignment to get a good
estimate. The second is validity, whether the average peer
score is “right” (Cho, Schunn, and Wilson 2006). In the typ-
ical situation where there is no absolute notion of right, it is
typical to compare with instructor grades.

Calibrated peer review (Russell 2004) helps improve va-
lidity and reliability: before students assess each other, they
practice grading three instructor-created samples of varying
quality until they give the right grades. Good rubric design
is also critical to reliability. Orsmond and Merry (1996) note
that objective evaluation criteria are easier to assess, espe-
cially if the rater does not need to be an expert in the subject
to distinguish between the possibilities.

In the last several years, peer assessment has been de-
ployed in massive online courses at much larger scales than
before. As a concrete example, Figure 1 shows a screenshot
of the edX peer assessment system. Students submit their
responses, and are paired randomly for review.

Research in large scale peer assessment has focused pri-
marily on evaluating students’ skill at assessment and com-
pensating for grader bias (Piech et al. 2013), as well as
helping students self-adjust for bias and provide better feed-
back (Kulkarni et al. 2013). Piech et al. (2013) test several
models of student bias and reliability, testing for temporal
coherence in bias as well as correlation between high scoring
and being more reliable as a grader. Kulkarni et al. (2013)
compare peer and staff grading, and find that the median
peer grades are quite close to staff grades.

Other recent studies focus on other aspects of peer assess-
ment. PeerStudio (Kulkarni, Bernstein, and Klemmer 2015)

Figure 1: Screenshot from the edX peer assessment system,
for a public speaking assignment.

improves learning by ensuring fast feedback in large scale
peer assessment. The Mechanical TA (Wright and Leyton-
Brown 2015) study focuses on reducing TA workload in
high-stakes peer grading by reducing the need to spot-check
peer grades.

Outside of peer assessment, many behavioral economics
studies have shown that expected reward is not all-important
in determining how people behave in practice (see Erev and
Roth (2014) for a review). In our study, we are particularly
motivated by risk aversion, which causes people to choose
lower expected reward for more consistency, with high pay-
off variability leading to more random choices (Erev and
Barron 2005; Busemeyer and Townsend 1993).

3 Peer Prediction Mechanisms
Peer prediction mechanisms are modelled as follows: agents
are assigned to tasks, and observe a signal for each task that
encodes the information the system wants to elicit. The sig-
nal model includes a signal prior P (s), the probability that
an agent observes signal s, as well as a signal joint P (s, s′),
the probability that two agents who do the same task get sig-
nals s and s′, respectively.

Agents report their signals, either truthfully as observed,
or strategically to increase their expected score or avoid the
effort of observing the signal precisely in the first place.
Some mechanisms also require reporting information be-
yond the observed signal.

The mechanism compares reports, and computes a reward
for each report. A basic goal is for the mechanism to be
(strictly) proper, so that truthful reporting is a (strict) corre-
lated equilibrium—if other agents are truthful, being truthful
oneself is (strictly) a best response given the shared tasks.
We restrict our study to minimal mechanisms, which do not
require any additional information beyond a signal report, as
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these are more practical. We only include detail-free mech-
anisms, where the reward computation does not depend on
precise details of the probabilistic signal model.2

We compare the following mechanisms:
Output Agreement (OA) (von Ahn and Dabbish 2004).

For each report r, the system picks a reference report r′—
another agent’s report on the same task—and defines score
σ(r, r′) = A(r, r′), where A(x, y) is the agreement func-
tion, defined to be 1 if x = y, and 0 otherwise. The OA
mechanism is only strictly proper when the signal distribu-
tion is self-dominant, meaning that a user’s observation is
also the most likely observation for their reference peers.

We include OA in our study because of its simplicity.
However, it and other early peer prediction mechanisms al-
low agents to coordinate and get higher rewards by report-
ing untruthfully. In OA, all agents simply reporting the same
thing each time guarantees maximal reward.3

The next two mechanisms use the empirically observed
report prior and joint distributions. We denote these P̂ (·) and
P̂ (·, ·), respectively.

Robust Peer Truth Serum (RPTS) (Radanovic, Faltings,
and Jurca 2016). This is a version of OA in which scores are
scaled based on observed report frequencies; the system col-
lects all reports, computes the empirical prior P̂ (r) of each
report r, and defines score σ(r, r′) = A(r, r′)/P̂ (r), where
r′ is a reference report, just as in OA. This results in higher
scores for matches on uncommon reports, which has two
benefits: the mechanism requires a weaker self-predicting
condition on the signal model—seeing a signal should in-
crease the likelihood peer agents observe the same signal—
and constant reporting now has lower expected score than
truthfulness. RPTS requires that the number of tasks is large
enough to make the empirical prior accurate.

Kamble (Kamble et al. 2015). This is another scaled
version of OA. The system collects all reports, computes
the empirical joint P̂ (r, r′), and defines score σ(r, r′) =

A(r, r′)/

√
P̂ (r, r), or 0 if P̂ (r, r) is exactly 0 or 1. Similarly

to RPTS, constant reporting again has lower expected score
than truthfulness. Additionally, the mechanism is proper for
general signal distributions.

Correlated Agreement (CA) (Shnayder et al. 2016). The
CA mechanism is multi-task, so each agent reports on sev-
eral tasks (at least two). An agent is rewarded for being more

2We omit the scoring-rule based mechanism of Miller, Resnick,
and Zeckhauser (2005), because it is not detail-free and not strong
truthful, and non-minimal mechanisms (Prelec 2004; Witkowski
and Parkes 2012a; 2012b; Radanovic and Faltings 2013). We also
omit the minimal, strong truthful mechanism in Radanovic and
Faltings (2015), because it requires many more reports per task
than are typical in peer assessment.

3Jurca and Faltings (2009) attempted to fix this by rewarding
near-agreement, not perfect agreement, with several peers. Das-
gupta and Ghosh (2013) went further to design the first mechanism
that guaranteed strong truthfulness, where the truthful equilibrium
has higher payoff than all other equilibria, in settings with binary
reports. Peer assessment uses non-binary reports, so we study sev-
eral newer mechanisms that provide similar guarantees with arbi-
trary numbers of signals.

likely to match reports of peers doing the same task than
the reports of peers doing other tasks. Let rki denote the re-
port received from agent i on task k. The mechanism is de-
scribed, w.l.o.g., for two agents, 1 and 2:

1. Assign three or more tasks to the agents, two or more tasks
per agent, including at least one overlapping task. Let
Ms,M1, and M2 denote the shared, agent-1 and agent-
2 tasks, respectively.

2. The score for a shared task k ∈Ms to each agent is

σk = Λ(rk1 , r
k
2 )−

n−1∑
i=0

n−1∑
j=0

Λ(i, j) · h1,i · h2,j , (1)

where Λ : {0, . . . , n−1} × {0, . . . , n−1} → R is a score
matrix with Λ(s, s′) = 1 if P (s, s′) > P (s)P (s′), and

0 otherwise, h1,i =
|{`∈M1|r`1=i}|

|M1| is the empirical fre-
quency with which agent 1 reports signal i in tasks in set
M1, and h2,j =

|{`∈M2|r`2=j}|
|M2| is the empirical frequency

with which agent 2 reports signal j in tasks in set M2.
This definition for Λ rewards agreement on positively cor-
related pairs of signals.

3. The total score to an agent is the sum of the score across
all shared tasks.
CA is proper (not strictly), and informed truthful: the

payoff for all agents being truthful is weakly higher than
any other strategy profile, and strictly higher than any un-
informed (signal-independent) reporting strategy (Shnayder
et al. 2016). CA works with small numbers of tasks if the
designer knows the direction of correlation between pairs of
signals, needed to define Λ, or can learn these correlations
from agent reports when there are many tasks.

3.1 Scaling Scores
To be practical for peer assessment, a mechanism’s scores
must be positive, and have bounded range—like any other
grade, course teams need a way to say that assessing peers
on an assignment counts for a particular number of points,
and it is unreasonable to tell students that they may get an
unboundedly high score with a very small probability, com-
pensating for much more likely low scores.4

We set the scores for all mechanisms to be in [0, 1] to
make comparisons consistent. For RPTS and the Kamble
mechanism, we do this by “clamping”—imposing a mini-

mum on the report prior P̂ (r) and the joint factor
√
P̂ (r, r),

respectively, and scaling to ensure the resulting score is in
[0, 1]. We choose the minimum value to balance between
effective score range and frequency of clamping in our
dataset—whenever clamping applies, it breaks the mech-
anism’s theoretical guarantees, effectively underpaying for
unlikely reports.5 An undesirable side-effect of this adjust-
ment is that typical reports, with high priors by definition,

4The bounded range means that the standard theoretical trick
of linearly scaling payoffs until the difference between truthful re-
porting and other strategies is big enough is not viable.

5For RPTS, we make the minimal prior value 0.1, and divide
scores by 10. This makes the expected score for uninformed report-
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Category Example Count
Courses “Eating, Then and Now” 254
Submission prompts “What is food?” 682
Evaluation criteria “Correct grammar” 1983
Submissions “Cheese is the best food” 354312
Peer assessments 3/5 points 3090452

Table 1: Dataset summary, with examples of each item.
There are approximately 1500 assessments for an average
evaluation criterion.

will only use a small fraction of the score range, and only
unlikely reports with prior close to the minimum will get
scores close to 1.

For the CA mechanism, we remapped scores from the
base range of [−1, 1] into [0, 1]. The effect is that the ex-
pected score for uninformed reporting is 0.5, regardless of
the reports of other learners.

All the mechanisms use a single reference peer as de-
scribed, and can be modified to give the average score over
several such peers. For example, for OA, given a set of ref-
erence reports r1, . . . , rn from n different peers on the same
task, the mechanism could instead give score

σ(r) =
1

n

n∑
i=1

A(r, ri), (2)

and similarly for the other mechanisms. Choosing a random
reference peer or averaging across all reference peers has
no effect on the expected score of a mechanism, but does
affect the score variability. We study both variants below in
Section 7 (see Figure 11).

4 The edX Dataset
The dataset in our study consists of peer assessments from
edX, a site that offers open online courses, and includes data
from 2014-2016.6 Each peer assessment is a tuple

(course, item, submitter, submission,
submission_time, scorer, criterion,
points),

corresponding to a scorer assessing the given submission
along a particular evaluation criterion, and giving it a score.

As a preprocessing pass, we keep only the latest evalua-
tion for each (scorer, submission) pair, and discard
criteria with fewer than 100 assessments. This leaves just
over three million assessments, across about 2000 evalua-
tion criteria, in 254 courses. Table 1 shows summary counts.

ing is 0.1. For Kamble, we make the minimum value of
√

P̂ (r, r)

0.25 and divide scores by 4. These values balance between clamp-
ing too often and having the typical scores use a significant fraction
of the [0, 1] range.

6A summarized dataset of the joint report probabilities for
each of the 1983 evaluation criteria is available at https://github.
com/HarvardEconCS/shnayder-peer-prediction-analysis. The full
dataset of individual students’ assessments is sensitive, and cannot
be shared.
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Figure 2: Prompts per course.
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Figure 3: Histogram of evaluation criteria per prompt.

Submissions for each prompt are assessed on several eval-
uation criteria. For example, a short essay in a writing class
may be judged on four criteria: grammar, style, argument,
and appropriate citations. Figure 3 shows the number of
evaluation criteria per prompt. Most prompts have four or
fewer evaluation criteria. For each evaluation criterion, stu-
dents can select a point value corresponding to a particular
rubric option (e.g. 5/5, “Perfect grammar.”), and each crite-
rion induces a separate, empirical signal distribution. Most
courses in our dataset only used peer assessment one or two
times; a few courses had weekly or bi-weekly peer assess-
ment assignments. Figure 2 shows the full distribution of the
number of prompts per course.

Many evaluation criteria have several hundred assess-
ments (median 733), with a few from large courses having
ten thousand or more (Figure 4). The mean is about 1500.

4.1 Probabilistic Models for Reports
We now explore the details of the assessments for different
prompts, looking at the number of options (i.e., the num-
ber of possible signals) for different evaluation criteria, the
probabilities of those signals, and the correlation structures
between them.

Figure 5 shows the distribution of the number of dis-
tinct options per criterion. An initially surprising observa-
tion: there are several criteria where students had one option
in “assessing” their peer. The explanation is creative course
teams using the peer assessment tool for open ended peer
feedback, without wanting numerical assessment. We ignore
these criteria in our analysis. On the other extreme, there
was a course team that specified 21 score options for a cri-
terion. Going forward, we focus on just models with two to
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Figure 4: Histogram of the number of assessments across
evaluation criteria. Note the log scale.
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Figure 5: Histogram of models by number of criterion op-
tions (possible signal values).

six score options, since they account for the vast majority of
the data.

Our dataset contains student reports, not the true signals
observed by students. This is the best we can do without a
prohibitive amount of manual grading, and we assume that
the reports are a noisy approximation of the true signals.
Since students are participating in a free class without much
outside incentive for completion, doing the evaluation at all
is indicative of exerting some effort.7 From here on, we use
report and signal interchangeably, unless explicitly distin-
guished.

We call a given signal distribution, corresponding to an
evaluation criterion in the dataset, a model. Let P (s) rep-
resent the prior probability of an agent seeing signal s on
an arbitrary task. Let P (s, s′) denote the joint probability
that two agents will see signals s and s′. We are also inter-
ested in what the joint distribution would be if signals were
independent but with the same prior. This is the product-of-
marginals distribution, written Q(s, s′) = P (s)P (s′). Fi-
nally, we useP (s′|s) to denote the signal posterior: the prob-
ability an agent observes s′, conditioned on another agent
observing s on the same task.

We look next at the signal priors P (s), which are im-
portant to the design, applicability, and robustness of peer-
prediction mechanisms. The prior for an evaluation criterion
is the probability with which each score appears. Figure 6

7Nevertheless, as MOOCs start to provide credentials based on
peer-assessed work, we believe it will become increasingly impor-
tant to provide explicit credit mechanisms for peer assessment.
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Figure 6: Signal priors by number of possible signal values,
with all distributions for fixed number of signals on the same
axis. The red line marker is the average for that signal. There
is significant variation among models, with a clear trend to-
ward higher scores.
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Figure 7: Histograms of observed and submission-
independent “default” agreement between reports, per eval-
uation criterion. The means are weighted by the number of
assessments for that criterion.

shows a plot for each number of signals k, plotting all distri-
butions of size k on one plot, along with the average values.
There is significant variation, but the priors are clearly non-
uniform, with higher values more likely. An interesting sec-
ondary feature is that for k ∈ {5, 6}, non-zero scores below
the median (1, and {1, 2}, respectively) tend to go unused.
This suggests that most submissions are either very bad or
incomplete, or ok-to-great, with few in between.8

An obvious question about a peer assessment system is
whether peers usually agree. We look at this in several ways.
A summary metric is the probability that two random peers
assessing the same submission will report the same assess-
ment. This probability is 61% in our dataset. To give a base-
line, the probability that two peers assessing random sub-
missions to the same prompt would agree is 52%. The high
baseline probability makes sense in light of the non-uniform

8It also suggests that course teams may be able to simplify their
rubrics, giving fewer options without losing many meaningful dis-
tinctions.
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Figure 8: Average delta matrices and their sign structure.
The positive areas along the diagonal correspond to the ordi-
nal structure of peer assessment—nearby signals are likely
to be positively correlated.

priors. Since many reports are of the highest possible signal
(61% overall), two random assessments for different sub-
missions frequently agree on that by chance. Figure 7 shows
the distributions of observed agreement of same-submission
reports and “default” agreement, if two reports for different
submissions are chosen for a particular criterion. The verti-
cal lines give the mean probabilities across the dataset, with
criteria weighted by number of reports.

Another way to look at agreement is to look at the cor-
relation between pairs of signals. For this, define the Delta
matrix ∆ (Shnayder et al. 2016), an n×nmatrix, with entry
(i, j) defined as

∆s,s′ = P (s, s′)− P (s)P (s′), (3)

or equivalently as the difference between the joint and
product-of-marginals distributions:

∆ = P (·, ·)−Q(·, ·) (4)

The delta matrix encodes the correlation (positive or neg-
ative) between different realized signals. The average values
in this Delta matrix, grouped by prompts with the same num-
ber of reports, are shown in Figure 8, along with the sign
structure which gives the direction of the correlation. As ex-
pected in a setting where the signal values are ordered,9 the
correlations are positive along the diagonal—if one student
thinks the right score is 3/5, it increases the likelihood that
their peer will say 2, 3, or 4.

5 Analysis I: Appropriateness
As a first analysis step, we look at how often the technical
conditions required for the validity of different peer predic-
tion mechanisms hold in our dataset.

We start with the self-dominant condition, which is re-
quired for OA to have a truthful equilibrium:

P (s|s) > P (s′|s) ∀s′ 6= s. (5)

A model is self-dominant if seeing a signal makes this
signal the most likely signal for a peer. Figure 9a shows the
breakdown. Most models do not satisfy this condition. An
interesting observation is that it does not always hold even

9As opposed to an unordered classification setting like labeling
images as cars, animals, or people.
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(a) Self-dominant breakdown of observed models.
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(b) Self-predicting breakdown of observed models.

Figure 9: Breakdowns of models by the self-dominant and
self-predicting conditions, needed to achieve truthfulness in
OA and RPTS, respectively.

for binary models. This happens when one signal is much
more likely than another: if an agent observes a very unlikely
signal, she may still expect a peer to observe the more likely
signal with probability more than 0.5.

Another condition is self-predicting, and is needed for the
RPTS and related 1/prior mechanisms to have their intended
properties:

P (s|s) > P (s|s′) ∀s′ 6= s. (6)

In words, an agent’s peer is more likely to see a particular
signal if the agent also sees that signal. Figure 9b shows the
breakdown. This condition is weaker than the previous two,
and holds for the majority of size three models, though not
for most larger ones. This means that RPTS is manipulable
in peer assessments with many options, though experiments
would be needed to see whether students find the manipula-
tions in practice.

6 Analysis II: Expected Score
As a second analysis step, we examine the incentives for in-
vesting effort in doing a careful assessment of a peer’s sub-
mission. For example, if a student can expect 50 out of 100
points by reporting randomly, and only 55 by carefully re-
viewing their peer, she may decide that the effort that care-
ful review would take is not worth it. We omit OA from this
analysis, because as discussed above, it is not strong truth-
ful, and if enough students are willing to misreport, constant
reporting will actually increase their scores.

We look at this numerically in Figure 10: the “actual” his-
tograms show the expected scores for truthful reporting for
all criteria. For all mechanisms, less than half the criteria
have expected scores that are more than 0.05 above random
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(a) RPTS. With score rescaling,
the expected score for random
reporting is 0.1.
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(b) Kamble. With score rescal-
ing, the expected score for ran-
dom reporting is 0.25.
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(c) CA. The expected score
for random reporting is 0.5.

Figure 10: Histograms for expected scores vs. ideal scores
with perfect agreement on reports, per mechanism. For all
mechanisms, the relatively low agreement between student
reports makes expected scores for truthfulness only slightly
better than for random reporting, when compared to the
overal range of possible scores. “Ideal” scores, if peers
agreed perfectly, are much higher, so there is a need to im-
prove agreement.

reporting. The benefit to being honest is fairly small because
of the noise in peer assessments.

To understand whether the small benefit from truthful-
ness relative to the working range of the scores is inher-
ent (i.e., due to the non-uniform marginal distribution on
reports) or due to the relatively low agreement between
peers, we also plot the “ideal” expected scores that stu-
dents would get in each mechanism, with the same sig-
nal prior but perfect agreement on reports. These are much
higher, suggesting that there is an opportunity to address
this problem by training students to peer assess more con-
sistently; e.g., through better assessment rubrics, encour-
aging effort through schemes such as peer prediction, and
through non-incentive-based methods (e.g. adding “Please
do a good job. Your peers depend on it!” to the instructions),
and compensating for student bias, for example using the
methods described in Piech et al. (2013). Another pragmatic
workaround may be to clamp scores more severely in order
to expand the working range of scores.10

Finally, some peer assessment exercises are simply not
appropriate for peer prediction: if submissions are judged
very subjectively (e.g. “do you like this art by your peer?”),
it would be better to ask for peer feedback and reward par-
ticipation rather than trying to reward accuracy.

10However, this should be done with caution because it would
break the incentive guarantees. For example, with RPTS, if we in-
crease the minimal allowed prior to 0.25, then when a student got
a signal that was less likely than 0.25, she could want to misreport,
giving a more common response instead.
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Figure 11: Overall coefficient of variation and expected per-
report coefficient of variation of scores of different mecha-
nisms, with and without averaging scores across all peers.

7 Analysis III: Variability
Most of the theoretical analysis in the peer prediction liter-
ature focuses on expected value, and says that agents prefer
one strategy to another if the former has higher expected
payoff.11 However, variability in scores is also likely to be
important for several reasons. First, fairness is important, es-
pecially in education: two students who do work of equal
quality should get the same score. A second reason is risk
aversion: a student whose expected score is 5 points will be
happier to always get 5 points rather than a 25% chance of 20
points, and might prefer a more certain strategy with lower
expected score. Finally, students are likely to learn better
with consistent feedback.

Risk aversion is concerned with overall score variability,
while for fairness, variance in scores ex ante, before seeing
task, is ok—different types of tasks may reasonably give dif-
ferent expected scores.12 We are more concerned about vari-
ance in score given a signal—as a student, if I assess two
very similar submissions, give each the same score, but get
very different feedback, I may feel cheated.

Since the mechanisms that we study have different effec-
tive score ranges, variance is not a good metric for com-
parison. Instead, we use the coefficient of variation; i.e., the
standard deviation divided by the mean. This is a standard
way of comparing distributions with different scales.

Figure 11 shows the coefficient of variation for each
mechanism, both overall and conditioned by signal. The
signal-conditional value is the average of the individual co-
efficients of variation for each signal, weighted by the num-
ber of reports of that signal. In other words, it is the a priori
expected coefficient of variation, before receiving a signal.
Averaging scores for all peers always reduces the coefficient

11One partial exception is Shnayder, Frongillo, and
Parkes (2016), which uses replicator dynamics to model population
learning rather than assuming equilibrium play based on expected
rewards. The replicator dynamics evolve based on expected scores
in a continuous population, so the core focus on expected score is
still present.

12For example, in RPTS, unlikely reports have a higher expected
score, so a student who gets a rare bad submission would expect
more points than a students who gets a good submission.
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Figure 12: Per-report coefficients of variation for all mecha-
nisms, averaging scores for all peers.
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ful vs low-effort scores us-
ing the CA mechanism, for
a single criterion.
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Figure 14: Fraction truthful
at indifference across eval-
uation criteria.

of variation, and the CA mechanism has the lowest overall
variation.13

Figure 12 shows the details behind the averaged, per-
signal bars in Figure 11. OA, RPTS, and Kamble all show
similar patterns, because they are all based on output agree-
ment and only adjust the relative payoff for each signal.
The coefficient of variation for each k and signal is roughly
inverse to the frequency of that report (recall Figure 6)—
unlikely reports match less frequently, so get more varied
scores. The coefficients of variation for CA are much more
uniform across signals, because it rewards agreement be-
tween correlated signals as well as exact agreement.

Overall, CA appears to be better than the others candidate
mechanisms in terms of variance. Unlike CA, RPTS, Kam-
ble, and OA all rely on exact agreement, and so effectively
work based on the difference between the diagonals of the
joint and product-of-marginals distributions. As the number
of signals goes up, there is less and less probability of two
signals being exactly equal, making these mechanisms more
fragile, relying on rare rewards for their guarantees, and in-
creasing variance.

13RPTS has a bigger drop in variation from overall to per-signal,
which makes sense because it uses different score ranges for dif-
ferent signals, so the overall distribution has high variance.

8 Analysis IV: Risk of Collusion
We now look at another potential problem with peer pre-
diction. As Gao, Wright, and Leyton-Brown (2016) point
out, students can potentially correlate on a low-effort sig-
nal, based on unintended and easy-to-observe properties of
a submission such as length, id number, title, and so forth,
thus matching without exerting effort. The suggested solu-
tion in Gao, Wright, and Leyton-Brown (2016) is to give
up on peer prediction entirely, and use trusted TAs to spot
check student evaluations. While that is certainly effective
when TAs are available, we are working in a model without
TAs, and look instead at the limits of what is possible un-
der this kind of collusion. In particular, assuming that peer
assignment is done randomly, we examine what fraction of
the students needs to collude to benefit. It is likely in a large
class that agreeing on such a correlation scheme would only
be done by a fraction of the students.14

We focus on the CA mechanism here as the most promis-
ing candidate given the reward variance results above,15 and
assume a uniform distribution of low-effort signals, as in
Gao, Wright, and Leyton-Brown (2016). Figure 13 shows
the expected CA scores for a particular evaluation criterion
chosen as an example, as the fraction of the population that
is truthful varies, with the rest assumed to collude on a per-
fectly correlated low-effort signal. As expected given the
ideal vs. actual score histograms in Figure 10c above, scores
for the perfectly correlated low-effort signal are much higher
than truthful scores. A large fraction of the population must
be truthful to get better scores than a subpopulation with per-
fect correlation. The intersection of the lines is the indiffer-
ence point.

Figure 14 shows a histogram of the points of indifference
for all the evaluation criteria. The values are quite high—
80% or more of students have to be truthful for that to be
the best strategy, given that the rest agree on a single per-
fect low-effort signal with uniform prior. The pattern is not
very sensitive to how uniform the prior for the low-effort
signal is, as long as it is not too extreme. It is quite sensi-
tive to the score for truthful reporting, and to the assumption
that all colluding students agree on a particular correlation
method.16

The best solutions are to improve the likelihood of agree-
ment for truthful reporting, which would make truthful
scores go up and bring the indifference point lower, as well
as spot checking and allowing complaints for low scores,
as in Mechanical TA (Wright and Leyton-Brown 2015). To
see the effects of improved agreement on the intended sig-
nal, we sort the assessment criteria by amount of correlation,

14We also note that there are reasons to expect collusion to be
difficult in practice: students typically submit written feedback, not
just score, and so still have to look at submissions. Students can
complain if they get unfair evaluations, and students who are obvi-
ously cheating can be punished. Similarly, even a low percentage
of spot checking can discourage cheating if the punishment is sub-
stantial.

15The results for Kamble and RPTS are similar.
16It seems difficult to agree on such a method in practice in a

large online course, without tipping off the course team by dis-
cussing it in some public forum.
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Figure 15: Histograms of the fraction truthful at indifference
across evaluation criteria, with all criteria split into quartiles,
sorted by amount of correlation. As correlation increases,
the necessary fraction truthful goes down.

as measured by total variation distance between the joint
and product-of-marginals distributions (equivalently, the ex-
pected score of the CA mechanism). Figure 15 plots a sepa-
rate histogram of the points of indifference for each quartile.
The increased correlation in higher quartiles means a signif-
icantly lower point of indifference.

9 Conclusion
We examined patterns of reports in a MOOC peer assess-
ment system, and simulated four peer prediction mecha-
nisms applied to these reports. We found that agreement be-
tween peer reports is low overall, which raises some con-
cerns about the use of peer prediction in this domain. On the
other hand, we caution that the data comes from a system
without incentives for accurate reporting. Incentive mech-
anisms are designed to boost effort and thus should im-
prove agreement between reports. Ideally, the increased ef-
fort needed to be accurate will also improve student learning.
Better agreement can also come through better student train-
ing and encouragement, and through bias-reduction tech-
niques based on machine learning.

We argued that reward variance is an important consider-
ation alongside expected score, for reasons of fairness, and
find that the CA mechanism is better in this regard than
mechanisms that only reward students based on exact agree-
ment. An experimental follow-up question is whether the
variability is low enough to be used in practice. A theoretical
question is whether mechanisms with lower variability can
be designed. We showed that collusion on unintended prop-
erties of submissions could be profitable with a small collud-
ing sub-population, given the low base agreement rate, and
suggest that improving agreement between peers and moni-
toring by the course team will help deter this behavior.

There are many directions for further research. In peer
prediction, this includes exploring more mechanisms, per-
haps using the information-theoretic framework from Kong
and Schoenebeck (2016), which provides a general way to
design mechanisms in a variety of settings. Another impor-
tant direction is to find ways to handle user heterogeneity.

Our view is that these mechanisms are well enough under-
stood that experiments and real deployments are both fea-
sible and necessary to complement the theory. A concrete
suggestion for a low-risk first implementation is to use peer
prediction to give students feedback on how well they are
assessing each other, without factoring the results into stu-
dent grades. This should allow comparisons between mech-
anisms as well as an examination of the effects of ungraded
feedback.
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