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Abstract

Taxonomies of concepts are important across many applica-
tion domains, for instance online shopping portals use catalogs
to help users navigate and search for products. Task-dependent
taxonomies, e.g., adapting the taxonomy to a specific cohort
of users, can greatly improve the effectiveness of navigation
and search. However, taxonomies are usually created by do-
main experts and hence designing task-dependent taxonomies
can be an expensive process: this often limits the applica-
tions to deploy generic taxonomies. Crowdsourcing based
techniques have the potential to provide a cost-efficient solu-
tion to building task-dependent taxonomies. In this paper, we
present the first quantitative study to evaluate the effectiveness
of these crowdsourcing based techniques. Our experimental
study compares different task-dependent taxonomies built via
crowdsourcing and generic taxonomies built by experts. We
design randomized behavioral experiments on the Amazon
Mechanical Turk platform for navigation tasks using these
taxonomies resembling real-world applications such as prod-
uct search. We record various metrics such as the time of
navigation, the number of clicks performed, and the search
path taken by a participant to navigate the taxonomy to locate
a desired object. Our findings show that task-dependent tax-
onomies built by crowdsourcing techniques can reduce the
navigation time up to 20%. Our results, in turn, demonstrate
the power of crowdsourcing for learning complex structures
such as semantic taxonomies.

Introduction
Taxonomies are useful across many real-world applications
and scientific domains. Online shopping portals such as
Amazon use catalogs to organize their products in order
to simplify the task of navigation and product search for
their users. In scientific domains, many machine learning
algorithms and intelligent agents including robots also use
taxonomies to improve their performance on fundamental
tasks such as object recognition (Zweig and Weinshall 2007;
Marszałek and Schmid 2007; Wu, Lenz, and Saxena 2014; Or-
donez et al. 2013), natural language understanding (Voorhees
1993; Resnik 1999; Bloehdorn, Hotho, and Staab 2005;
Knight 1993), and others. Task-dependent taxonomies, i.e.,
taxonomies adapted to a specific application/task or to a spe-
cific cohort of users, can be extremely beneficial (Deng et al.
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2014). Such taxonomies are usually created by hiring domain
experts, which is an expensive process and thus not possible
for every single task. Alternatively, there are methods for cre-
ating taxonomies autonomously (Blei, Ng, and Jordan 2003;
Blei et al. 2004). However, these methods lack the se-
mantics/common sense of humans and often produce tax-
onomies that are inefficient in terms of their end-use. Hence,
many applications (Lai et al. 2011; Deng et al. 2009;
Zweig and Weinshall 2007) are limited to using generic tax-
onomies such as WordNet (Fellbaum 1998).

Crowdsourcing based techniques. Recently, several
crowdsourcing-based techniques (Chilton et al. 2013; Bragg,
Mausam, and Weld 2013; Sun et al. 2015) (with well-
designed algorithms and prepared questions) have demon-
strated that even non-experts have the potential to build task-
dependent taxonomies. Chilton et al. and Bragg, Mausam,
and Weld introduce techniques for creating taxonomies based
on the co-occurrence of multi-label object annotation. Sun et
al. take a Bayesian approach and propose an active learning al-
gorithm for building taxonomies. Their approach can capture
uncertainty over taxonomies by producing a distribution over
these taxonomies instead of producing one single taxonomy
as output. Most of the work (Bragg, Mausam, and Weld 2013;
Sun et al. 2015) evaluates the quality of the output taxonomies
using accuracy with respect to some gold-standard knowl-
edge base such as WordNet (Fellbaum 1998). However, there
is no quantitative evaluation of the end-to-end deployment of
taxonomies on the task for which they were developed.

Research questions. The primary goal of our work is
to understand whether crowdsourcing provides an effective
solution to create taxonomies of knowledge. To this end,
we seek to answer the following 3 research questions: (i)
do task-dependent taxonomies built by crowdsourcing tech-
niques improve the end-to-end performance compared to
using generic taxonomies built by experts?; and (ii) does the
uncertainty captured by probabilistic approaches further help
to improve the efficiency of performing the navigation tasks?
Answering these questions will in turn shed light on the third,
more general research question: 3) Can crowdsourcing-based
techniques provide practical solutions to complex structural
learning tasks such as building taxonomies?

Our approach. In this paper, we present a quantitative
study to measure the effectiveness of different taxonomies
in the context of an end-to-end application. Specifically, we
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Figure 1: Illustration of the workflow of building task-dependent taxonomies via crowdsourcing. Collection of the tags / nodes
and inference of the edges are done via crowdsourcing. Assembling edges to get a final taxonomy is performed by an algorithm.

compare the task-dependent taxonomies built by crowdsourc-
ing techniques to a generic taxonomy built by experts. To
start, we use a crowdsourcing based technique (Sun et al.
2015) to create a taxonomy using the AMT. Then, to perform
the user study for quantitative evaluation, we design random-
ized behavioral experiments on AMT for a navigation task
resembling many real-world applications, such as conducting
a product search in online shopping portals. Participants in
the user study differ from AMT workers who helped build
the taxonomy we are evaluating. As part of our user study,
we record various quantitative metrics such as the time of
navigation, the number of clicks performed, and the search
path taken by a participant to locate the target.

Our results. Our findings from the user study show that:
(i) the task-dependent taxonomies built by crowdsourcing
techniques can reduce the navigation time by up to 20%;
and (ii) the uncertainty/distribution over the taxonomies can
be exploited to help users perform navigation tasks more
efficiently. These results affirmatively answer our research
questions and confirm that crowdsourcing provides an effec-
tive solution to building task-dependent taxonomies. This, in
turn, demonstrates that crowdsourcing can provide a practi-
cal solution for learning complex structure using responses
to simple questions from non-experts. Furthermore, our de-
sign of behavioral experiments can serve as an example for
crowdsourcing-based user studies of complex systems.

The rest of this paper is organized as follows: We will
first introduce the background of building taxonomies via
crowdsourcing. Next, we will present the data collection step
and the experimental setup. Then, we will discuss the results
from the user study. Finally, we will discuss related work and
conclude.

Building Taxonomies via Crowdsourcing
We begin by reviewing background information on crowd-
sourcing based techniques to build taxonomies. The next
section will use one of these techniques to build the taxon-
omy on our dataset for evaluation via a user study.

Different Components to Specify a Taxonomy
A task/domain is specified by a set of objects. A taxonomy
represents a knowledge base that organizes the objects into a
hierarchical tree structure. Two main components are neces-
sary to specify a taxonomy completely: the set of nodes in
the tree, and the set of edges connecting these nodes. Figure 1

illustrates the workflow involved in building a taxonomy on
a toy example, as discussed further below.

Generating nodes. A natural approach of node genera-
tion is to represent the objects related to the task/domain
for which the taxonomy is being built by a set of concepts
or tags. These tags correspond to the nodes in the taxon-
omy tree. Each node is associated with a set of objects
that is tagged by the node or any of its descendant nodes.
Most crowdsourcing-based methods (Chilton et al. 2013;
Sun et al. 2015) begin by collecting a set of tags for the
objects (the first step in Figure 1). For example, CAS-
CADE (Chilton et al. 2013) shows a set of objects via their
text descriptions to the crowdsourcing workers and asks them
to provide tags they will use to refer to these objects. Sun
et al. take a similar approach. However, instead of showing
the text descriptions, the authors show visual images of the
objects and ask the workers to annotate them with tags.

Inferring edges. The next step is to specify the directed
edges that connect these nodes (the second step in Figure 1).
In the hierarchical tree of the taxonomy, each node is more
general than any of its descendant nodes. Inferring edges in
the tree is a challenging problem as it requires having global
knowledge of the complete set of nodes. In the crowdsourc-
ing setting, non-expert workers would not possess such a
global knowledge and are better at answering questions that
can be answered with local/partial knowledge. So the key
to designing crowdsourcing based algorithms for building
taxonomies is to break down the problem requiring global
knowledge into simpler problems/questions requiring only
local knowledge to answer. The algorithms then fuse the an-
swers to these simple questions to generate the final global
structure of the taxonomies (the last step in Figure 1).

Decomposing the Structure Learning Problem
We now categorize existing crowdsourcing techniques for
building taxonomies into two main categories based on how
they decompose the global structure learning problem into
simpler problems and questions.

Indirect questions to infer edges. CASCADE (Chilton et
al. 2013) and DELUGE (Bragg, Mausam, and Weld 2013) are
representative techniques of this category, which use local
questions without direct connection to the structure of the
taxonomy. Chilton et al. introduce CASCADE, a workflow
for creating taxonomies based on the co-occurrence of multi-
label annotation of items. CASCADE takes a set of objects
and the corresponding set of tags to generate simple ques-

230



tions/microtasks as follows: each microtask consists of one
object and one tag. CASCADE then asks a worker to vote on
whether the object fits the tag. In the fusion step, it creates
nested categories representing the parent-child relationship
of these tags. DELUGE improves the efficiency of this anno-
tation process to reduce the number of questions required to
learn a taxonomy with the same accuracy.

Direct questions to infer edges. Sun et al. take a Bayesian
approach and propose an active learning algorithm for build-
ing hierarchies/taxonomies. Their approach directly asks
questions related to the structure of the taxonomy. Specifi-
cally, they ask path questions, e.g., “Should there be a path
from ‘apple’ to ‘food’ in the target taxonomy?”, stated infor-
mally as “Is ‘apple’ a type of ’food’?”. These questions can be
answered by crowdsourcing workers using only local/partial
knowledge. Sun et al. provide a probabilistic model to effi-
ciently maintain a distribution over all possible tree structures
to represent the fused knowledge from the answers obtained
from workers. At each iteration, the model updates the dis-
tribution based on the answer to a path question. Intuitively,
if a worker gives a positive answer to a path, his/her answer
will increase the probability of the taxonomy trees with that
path; otherwise, the probabilities of the corresponding trees
will be reduced.

Technique Used for Evaluation
In this paper, we are using Sun et al.’s method for building
task-dependent taxonomies and then compare them to the
generic taxonomy of WordNet. The key reasons for using this
technique are two-fold. First of all, the experimental study
performed by Sun et al. shows that this Bayesian approach
is empirically more cost-efficient compared to CASCADE
and DELUGE, for which the cost quantifies the number of
questions asked to the participants in order to produce a tax-
onomy of desired accuracy. Second, this approach outputs a
distribution over taxonomies that in turn enables various op-
erations: (i) using MAP (maximum a posteriori probability)
inference to compute the most representative taxonomy, and
(ii) estimating the marginal likelihood of edges efficiently.
These marginal likelihoods in turn allow to capture the uncer-
tainty that naturally exists in semantic taxonomies, e.g., the
answer to the question “Is ‘candy’ a type of ‘dessert’?” or “Is
‘candy’ a type of ‘sugar’?” is inconsistent depending on the
participants’ beliefs. Our second research question concerns
the use of these uncertainties, and whether it can improve the
efficiency of performing the navigation tasks relative to the
use of a single representative taxonomy.

Application Domain and Navigation Tasks
In this section, we discuss the application domain, the process
of data collection for this domain, and the navigation tasks
we use for evaluation.

Application Domain
In this paper, we consider the application domain of kitchen
objects. This domain involves objects used in the kitchen in
everyday life such as food items, kitchen appliances, cooking
utensils, etc. We chose this domain for 2 reasons: (i) the

Figure 2: This figure shows the interface provided to the
AMT workers to perform the navigation tasks: (i) the target
object is shown in the top-left panel; (ii) the top-right panel
shows the taxonomy – a navigation system; and (iii) the
bottom panel shows a subset of the images associated with
the current node clicked by the user.

navigation tasks in this domain represent simple everyday
scenarios, ensuring that the AMT workers are familiar with
the domain to perform the navigation tasks for evaluation,
and (ii) it is a rich domain that captures the intricacies of
real-world applications, such as online shopping portals.

Collecting objects for our domain. We begin by collect-
ing the most frequently used keywords in the kitchen domain.
We extract the words/phrases representing most commonly
used kitchen concepts from WikiHow1 articles using the Stan-
ford parser (Klein and Manning 2003). We then do a two-step
filtering process as follows: first, we keep the top 100 fre-
quently occurring keywords as candidates2; then, we filter
out the candidates that are not in WordNet3. This filtering
process yields a set of about 70 seeding keywords — these
are the concepts that represent the kitchen domain. We then
use these keywords to search for images via Google’s image
search engine to get exemplary images. For each keyword,
we collected about 50 images, thus giving us a total of 3, 500
images. These images represent the objects for the kitchen
domain, c.f., “Objects” in Figure 1. In the next section, we
describe the different taxonomies that we build to organize
these objects.

Navigation Task
Figure 2 illustrates a navigation task for the kitchen domain
using one of the taxonomies we evaluate. This is the same
interface provided to AMT workers during our user studies.

1http://www.wikihow.com
2The first filtering step and other parameters are set to control

the cost of doing the experiments needed for this paper. However,
we did not tune these parameters and the approaches can be applied
to larger problems.

3This second filtering step is to have a reasonable WordNet tax-
onomy that can be used as a baseline taxonomy for the comparison.
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The goal of a navigation task is to localize a target object
from the set of objects in the domain — the target object
is shown in the top-left panel of Figure 2 and randomly
picked from all candidate objects. All candidate objects are
organized using a taxonomy represented by nodes and edges
as discussed in the background section. The user has access
to this taxonomy as the navigation system, shown in the top-
right panel in Figure 2. Recall that each node in the taxonomy
is associated with a set of objects that is tagged by this node
or any of its descendant nodes. When a user clicks on a node,
a random subset of the images belonging to that node (or
any of its children) appears (the bottom panel of Figure 2).
The user can search through these images to find the target.
Or the user can use these images as an indicator of the kind
of objects expected to appear under the current node, then
click finer-grained nodes beneath the current node to look
for the target. During the navigation task, the user can also
backtrack the search path by clicking on a non-descendant
node. The task finishes when the user finds the target object
in the bottom panel and clicks on it. This navigation task
resembles many real-world applications. For example, many
online shopping portals, such as Amazon4 and BestBuy5,
organize their products in a taxonomy to help their customers
navigate and search efficiently.

Metrics. Our primary goal is to quantitatively measure
the efficiency of the taxonomies as a navigation system. The
natural metric is the time a user spends per task, i.e., time to
localize the target object using a given taxonomy. A shorter
time suggests that the system is more efficient at guiding
users to find the target object. Another metric of interest is the
number of clicks performed before a user localizes the target
object. Intuitively, this number captures whether a taxonomy
matches the common sense. The number of backtracking
steps done by a user while navigating the taxonomy tree is
another metric we measure. A large number of backtracking
steps indicates that the taxonomy might confuse its users.

Taxonomies Used for Evaluation
In this section, we present the specific taxonomies that are
used for evaluation in our work. We compare three different
taxonomies: 1) the WordNet taxonomy (Fellbaum 1998), 2)
MAP (the most representative) taxonomy created by (Sun et
al. 2015), and 3) the multifaceted taxonomy created by (Sun
et al. 2015) to capture uncertainty.

WordNet Taxonomy
We would like to compare with a taxonomy created by do-
main experts. Ideally we want to use an expert-built task-
dependent taxonomy, however, it is not available and diffi-
cult to create. Therefore, we decided to use an expert-built
generic taxonomy in this work. We are using WordNet (Fell-
baum 1998) as it is commonly deployed by various applica-
tion domains. Moreover, many other expert-built taxonomies,
such as BabelNet (Navigli and Ponzetto 2012) and Wiki-
Tax2WordNet (Ponzetto and Navigli 2009), use WordNet as
the backbone and are built by adding more nodes or mapping

4http://www.amazon.com/gp/site-directory
5http://www.bestbuy.com/

information from other sources such as Wikipedia. Therefore,
evaluating WordNet taxonomy gives us a reasonable indica-
tion of the results we expect from other expert-built generic
taxonomies.

WordNet, a large taxonomy containing over 150,000
words, groups words that are roughly synonymous into
synsets. These synsets are then connected to each other based
on semantic relations, represented as a Directed Acyclic
Graph (DAG). To generate a WordNet-based taxonomy for
our domain, we extract a taxonomy from WordNet cover-
ing the 70 seeding keywords representing the concepts for
kitchen domain as described below.

First, we locate the nodes in WordNet’s DAG correspond-
ing to the 70 keywords. Although all 70 keywords are in
WordNet (note that we filtered the keywords to keep only
the ones that are in WordNet), it is still a non-trivial task to
locate the nodes in the DAG that are relevant to the kitchen
domain because the same word may have different meanings
i.e., it could correpond to different synsets/nodes in Word-
Net. Therefore, whenever a keyword is mapped to multiple
nodes in WordNet, we use the following heuristic to decide
which synset/node in the WordNet has the semantics related
to the kitchen domain. The heuristic will pick a synset if
it has ‘food’, ‘instrumentality’ or ‘appliance’ as its ances-
tor synsets; otherwise, it picks the synset based on priority
ordering defined by the match of the target keyword in the
lemmas (semantic sense) of the synsets. It is worth noting that
the crowdsourcing-based technique we use (Sun et al. 2015)
faces a similar problem of polysemy in collecting tags in the
first step, c.f., Figure 1. For example, ‘apple’ could represent
the fruit or the corporation. However, crowdsourcing based
techniques resolve this naturally as the tag collection process
involves showing images of the objects to the workers.

Then, after locating the nodes in the DAG for the 70 seed-
ing keywords, we greedily find the minimum spanning tree
in the DAG to cover these 70 nodes. To find this tree, the
algorithm initializes a forest with 70 nodes. At each iteration,
it picks a pair of nodes, adds their lowest common ancestor
into the forest, and connects these two nodes with the new
ancestor node. The algorithm then repeats this process until
the forest becomes a single-rooted tree. After executing this
algorithm, we have a total of 96 nodes. Figure 5 (a) shows
this WordNet taxonomy corresponding to the 96 nodes; the
70 nodes corresponding to the seeding keywords of kitchen
domain are marked in Blue.

Crowdsourcing-Based Taxonomies
Next, we use the method of Sun et al. for building
crowdsourcing-based taxonomies. Following the workflow
in Figure 1, we first collect tags for the object images corre-
sponding to the 70 seeding keywords representing the kitchen
domain.6 We show the 70 representative object images to the
AMT workers and ask them to provide 3 distinct tags for

6Note that we have 50 images per seeding keyword. However, in
order to make this tag collection process cost-efficient, we randomly
selected 5 images per keyword, then grouped these 5 images into
one big image, and used this as the representative object image to
collect tags.
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each image they see. Furthermore, each image is shown to 3
distinct workers. At the end, we aggregate all the tags, and
we keep only the tags that are used by more than 5 workers
to refer to these objects. We combine the newly collected
tags with the original 70 keywords to get the final set of 104
tags/nodes. We then run the sequential version of the method
proposed in (Sun et al. 2015) to learn the taxonomy over the
set of these 104 nodes. As discussed in the previous section,
the output of the method is a distribution over all taxonomy
trees with 104 nodes.

MAP taxonomy. This is the taxonomy obtained by per-
forming MAP (maximum a posteriori probability) inference
and is the most representative taxonomy (Sun et al. 2015).
Figure 5 (b) shows this MAP taxonomy corresponding to
the 104 nodes; the 70 nodes corresponding to the seeding
keywords of the kitchen domain are marked in Blue.

Multifaceted taxonomy. The MAP taxonomy ignores the
uncertainty that naturally exists in semantic taxonomies. One
reason for this uncertainty is the multifaceted classifica-
tion (Priss 2008) problem as there are different criteria that
can be considered by humans to classify and categorize ob-
jects. The most common example are online shopping portals,
where products can be categorized by price, type, maker and
so on. In order to incorporate this uncertainty, we create an
augmented taxonomy to utilize the uncertainty to create more
options for users to localize the target object in the taxonomy
(Sifer 2006). We begin by computing the marginal likelihood
of the edges from the distribution of the taxonomies obtained
above — their Bayesian approach provides a computationally
tractable method to compute these likelihoods. We then keep
only the edges that have a marginal likelihood of more than
0.1. Next, we append the MAP taxonomy tree with these
additional edges. As an example, c.f., Figure 5, we obtain
the edges from ‘sugar’ to ‘candy’ and ‘dessert’ to ‘candy’
among these high likelihood edges. The MAP taxonomy tree
(Figure 5 (b)) already has an edge from ‘dessert’ to ’candy’.
Hence, we append this tree with an edge from ‘sugar’ to
‘candy’. It is important to note that the resulting structure
after augmenting these edges is not a tree but a DAG. For
the user studies, we consider showing it to users as a tree
for easier interpretation and navigation. To convert this DAG
to a tree, we do the following: For each node x with n > 1
parent nodes represented by the set πx, we replicate the sub-
tree rooted at x for n times and add this sub-tree as a child
node to each of the parent nodes in πx. This treatment to the
DAG gives us a taxonomy with replicated nodes (as shown
in Figure 5 (c)) and we call this taxonomy a Multifaceted
taxonomy. In Figure 5 (c), the set of nodes that was replicated
and added to the MAP taxonomy at different positions are
highlighted in Red.

Structural Comparison of Taxonomies
We first compare the three taxonomies based on various struc-
tural and qualitative aspects.

Number of nodes. The MAP taxonomy (c.f., Figure 5 (b))
contains 104 nodes compared to 96 nodes in the WordNet
taxonomy (Figure 5 (a)). Note that both these taxonomies
contain the same set of 70 seeding keywords we begin with. A
careful examination reveals that the MAP taxonomy includes

many instance names that specify some seeding keywords.
For example, ‘fish’ is a seeding keyword, and ‘salmon’ is a
particular type of ‘fish’. The reason for seeing these instance
names is that we show images corresponding to the ‘fish’
object to collect the tags, and upon seeing ‘salmon’ food dish
in the image, some workers may annotate the image with
the tag ‘salmon’. These specific instance names do not exist
in the WordNet taxonomy since we generate the taxonomy
by adding only ancestor nodes of the seeding keywords in
the DAG of the WordNet. Furthermore, if we remove all
nodes related to these specific instance names from the MAP
taxonomy, we are left with 91 nodes — a number slightly
lower than the size of the WordNet taxonomy at 96 nodes.
This suggests that non-experts might use a more compact set
of tags/concepts to refer to the same collection of objects for
a certain application domain.

Depth/width of taxonomy. The MAP and the Multi-
faceted taxonomies both have a depth of 6 and a width of 16.
On the other hand, the WordNet taxonomy has a depth of 8
and a width of 8. These numbers suggest that non-experts
tend to build shallower but wider trees, while experts might
prefer creating deeper but narrower trees.

Words in taxonomy. Taxonomies built via crowd-
sourcing have more familiar keywords/concepts associated
with the nodes. The WordNet taxonomy has more ob-
scure/infrequently occurring keywords such as ‘nutriment’,
‘instrumentality’, ‘concoction’, and others. These keywords
in the WordNet taxonomy might be unfamiliar to ordinary
users, in particular non-native English speakers.

Uncertainty. The taxonomy in Figure 5 (c) captures some
interesting information about the uncertainty of the edges.
One example is the ‘blender’ node. As per the MAP taxon-
omy in Figure 5 (b), ‘blender’ is a type of ‘kitchen appliance’.
However, in the Multifaceted taxonomy, a ‘blender’ could
also be a kind of ‘container’. This uncertainty captures the
notion of multifaceted classification: humans use different
attributes to classify the same objects/ concepts. Some users
classify ‘blender’ according to its essential functionality as an
appliance, while others believe that‘blender’ can be used as
a ‘container’. Keeping two ‘blender’ nodes in one taxonomy
thus potentially provides users with more choices in navi-
gating the taxonomy to find the target objects. A user who
believes ‘blender’ is a ‘container’ will not find the target ob-
ject directly in the MAP taxonomy, leading to more clicks and
backtracking steps. But the user can quickly locate ‘blender’
in the Multifaceted taxonomy. The taxonomy in Figure 5 (c)
also illustrates other sorts of uncertain edges. For example,
some users are confused about the relation between ‘dough’
(flour mixed with less water) and ‘batter’ (flour mixed with
more water). In the Multifaceted taxonomy, we can see edges
from ‘dough’ to ‘batter’ and from ‘batter’ to ‘dough’. These
kind of cycles suggest that people see these two nodes as
synonyms.

User Study for Quantitative Evaluation
We performed our user study on AMT by recruiting workers
to perform navigation tasks. Each worker participating in
the study is allowed to accomplish the navigation task only
two times: one task uses the WordNet taxonomy, and the
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Table 1: Means ± standard deviations of time, the number of
clicks, and the backtracking steps (bts) for finding one target.
MF stands for Multifaceted taxonomy.

Metrics Taxonomies
WordNet MAP MF

time(s) 60.2± 76.3 49.8± 57.2 47.9± 63.2

clicks 6.0± 6.7 4.4± 5.2 4.0± 5.7

bts 2.3± 3.3 1.3± 2.7 1.1± 3.0

other task uses either the MAP taxonomy or the Multifaceted
taxonomy. The order of these two tasks is chosen randomly.
We do not allow workers to perform tasks with both the
MAP and the Multifaceted taxonomies as they might learn
one taxonomy from another, thereby affecting the validity of
the study. We ran these online experiments on AMT for 3
days restricted to US workers with more than 95% approval
rate, and over 800 distinct workers participated in the study.
Considering only the tasks successfully accomplished by
the workers, we have the following number of completed
tasks: 730 using the WordNet taxonomy, 343 using the MAP
taxonomy, and 436 using the Multifaceted taxonomy.

Task-Dependent vs. Generic Taxonomies
We first compare the efficiency of using task-dependent tax-
onomies to the generic taxonomy to answer the first research
question (viz., Do task-dependent taxonomies built by crowd-
sourcing techniques improve the end-to-end efficiency com-
pared to generic taxonomies built by experts?) Among the
three taxonomies we use, both the MAP and the Multifaceted
are task-dependent taxonomies, and the WordNet taxonomy
is generic.

Table 1 shows the summary statistics and the average per-
formance of tasks for three metrics, including: time, number
of clicks, and number of backtrackings per task, where back-
tracking indicates that a user navigated back up through the
taxonomy after discovering a potential dead end. Figure 3
shows the distribution of the different metrics for the different
types of taxonomies. Significance testing involves unpaired
t-tests.

Results show that using the WordNet taxonomy performs
significantly worse than using both the MAP and the Mul-
tifaceted taxonomies regarding all three metrics (p < 0.05).
Among the three taxonomies, the Multifaceted taxonomy
performs the best. It outperforms the WordNet taxonomy
by 20% with respect to time, by 33% with respect to the
number of clicks, and by 49% with respect to the number of
backtrackings.

These findings show that non-expert workers at AMT can
build useful task-dependent taxonomies. The task-dependent
taxonomies are designed for the kitchen application domain
and can therefore be deployed by navigation tasks to achieve
efficient navigation performance. On the other hand, the
generic taxonomy does not consider any task information.
Although it is created by experts and is correct in its content,
it does not provide the best possible navigation performance
in the desired target domain.

Table 2: Means ± standard deviations of different metrics for
finding a target from the nodes with uncertainty. MF stands
for Multifaceted taxonomy.

Metrics Taxonomies
MAP MF

time(s) 49.1± 44.9 41.3± 44.6

clicks 4.3± 4.9 2.8± 2.5

bts 1.6± 2.5 0.8± 1.4

MAP vs. Multifaceted Taxonomies
We examined the tasks using MAP or Multifaceted tax-
onomies and tried to answer the second question (viz., Does
the uncertainty captured by probabilistic approaches help?).
To determine the effect of using uncertainty information,
we segmented all the 70 nodes into two groups (with and
without uncertainty) based on whether there are replicated
nodes in the Multifaceted taxonomy. We did this because:
1) the MAP and Multifaceted taxonomies are different only
on these nodes, and 2) these nodes have high uncertainty,
letting us evaluate the difference between using and not using
uncertainty information in the taxonomies.

First, we compare the performance of the taxonomies on
the group of nodes with uncertainty. The evaluation metrics of
the two taxonomies are summarized in Table 2. The average
time, the number of clicks, and the number of backtrackings
using the Multifaceted taxonomy are consistently lower than
using the MAP taxonomy. Among the three metrics, both the
numbers of clicks and backtracking results are significantly
different between the two taxonomies, with both p values
< 0.01. The difference on the time metric is not as significant
as the other two metrics given the p value of 0.218. We
hypothesize that the time does not exactly reflect the time
taken by users to navigate through the taxonomy because it
also includes the time spent for searching for target images.

Next, we report the backtracking rates of the nodes with
uncertainty in Table 3. The backtracking rates tell us how
often a user has to backtrack at least once to localize the target
object. Looking at the backtracking rate of MAP taxonomy,
users backtrack more often on the nodes with high uncertainty
than on the nodes without uncertainty (54% vs. 37%). This
suggests that the uncertainty over nodes in the taxonomy
does capture the uncertainty users have when they perform
navigation tasks.

The results also show that using the Multifaceted taxonomy
clearly outperforms the MAP taxonomy on searches relating
to the nodes with uncertainty, as confirmed by a reduction
of the average backtracking rate from 54% to 37% (about
30% marginal improvement). Although the paired t-test is
not significant (p = 0.06), using the Multifaceted taxonomy
outperforms the MAP taxonomy for most nodes. This is not
surprising since Multifaceted provides alternative paths for
uncertain nodes, thereby avoiding the backtracking required
by the MAP taxonomy.

We examined the common patterns of user searching for
target nodes with uncertainty using the MAP and Multi-
faceted taxonomies. Figure 4 shows how users look for candy
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(a) Time (in secs) per task. p• < 0.05;
p? < 0.01.

(b) Number of clicks per task. p• < 0.001;
p? < 0.0001.

(c) Number of backtracking steps per task.
p• < 0.0001; p? < 0.0001.

Figure 3: Boxplots showing the evaluation metrics by the types of taxonomies. The red bars represent the median, and the blue
boxes represent first and third quartile of the distribution. Two statistical significance tests are performed: “•” compares the
WordNet taxonomy with the MAP taxonomy and “?” compares the WordNet taxonomy with the Multifaceted taxonomy.

Table 3: The backtracking rates (%) of nodes with uncer-
tainty when different taxonomies are used. MF stands for
Multifaceted taxonomy. “w/ uncertainty” means the group of
nodes with uncertainty, and “w/o uncertainty” indicates the
group of nodes without uncertainty.

Node BT-MAP(%) BT-MF(%)
‘sauce’ 44 17
‘flour’ 100 8
‘salad’ 0 18
‘grill’ 67 100

‘stove’ 60 88
‘blender’ 75 89

‘microwave’ 100 90
‘pot’ 100 14

‘fork’ 0 0
‘juice’ 20 33

‘candy’ 67 17
‘chicken’ 50 25

‘batter’ 80 60
‘dough’ 33 20

w/ uncertainty 54± 31 37± 34

w/o uncertainty 37± 34 36± 27

using different taxonomies. We show the parts of the tax-
onomies relevant to the target node candy, and highlight the
path taken by the users to look for candy. When doing so,
about half of the users first go through sugar from sweet
because they might believe that candy is a type of sugar. The
other users take the path from sweet to dessert. The MAP
taxonomy does not consider the uncertainty information and
puts candy only as a child of dessert. Users going in the
direction of sugar could not find the target in the MAP tax-
onomy and therefore have to backtrack and search the other
alternative path, from dessert to candy. On the other hand,
the Multifaceted taxonomy consider the uncertainty over the

(a) The sub-tree for ‘candy’
from the MAP taxonomy.

(b) The sub-tree for ‘candy’ from
the Multifaceted taxonomy.

Figure 4: Illustration of the search paths taken by a user to search
for ‘candy’. The following abbreviations are used: ‘fo’ for ‘food’,
‘sw’ for ‘sweet’, ‘su’ for ‘sugar’, ‘de’ for ‘dessert’, and ‘ca’ for
‘candy’. The green edges indicate the path-taken by a user, the red
edge indicates a backtracking, and ∗ indicate the target.

location of candy. Therefore, it puts candy under both pos-
sible locations. Hence, the users could find candy by taking
either path in the Multifaceted taxonomy. Using uncertainty
reduces the backtracking rate for sugar from 67% to 17%.

Related Work
Crowdsourcing for user studies. Crowdsourcing platforms
provide easy, on-demand and low-cost access to a large
pool of diverse participants, thereby opening up oppor-
tunities to conduct large-scale online user studies (Kit-
tur, Chi, and Suh 2008; Mason and Suri 2012). In the
computer science community, crowdsourcing-based user
studies have been widely deployed to evaluate the perfor-
mance of algorithms in various application domains, such
as graphical perception design (Heer and Bostock 2010;
Micallef, Dragicevic, and Fekete 2012), web search (Alonso
and Baeza-Yates 2011; Chandar and Carterette 2012), rec-
ommendation systems (Maryam and Popescu-Belis 2012),
computer vision (Deng et al. 2015), etc.
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(a) WordNet taxonomy for the kitchen domain.

(b) MAP taxonomy built by crowdsourcing (Sun et al. 2015) for the kitchen domain.

(c) Multifaceted taxonomy capturing uncertainity built by crowdsourcing (Sun et al.
2015) for the kitchen domain.

Figure 5: Three taxonomies for the kitchen domain used for evaluation. In (a) WordNet and (b) MAP taxonomy, the 70 nodes
corresponding to the seeding keywords of the kitchen domain are marked in Blue. In (c) Multifaceted taxonomy, a small set
of nodes with high uncertainty (highlighted in Green) are replicated and added to the MAP taxonomy at different positions
(highlighted in Red). The following abbreviations are used in these taxonomies: ‘kitc-appl’ for ‘kitchen appliance’, ‘cook-uten’
for ‘cooking utensil’, ‘w-c’ for ‘whipped cream’, ‘home-appl’ for ‘home appliance’, and ‘kitc-uten’ for ‘kitchen utensil’.

Evaluating ontologies. Taxonomies are usually major
components of an ontology; hence, the methodologies for
evaluating ontologies significantly overlap with the eval-

uation of taxonomies. When a ground-truth ontology or
knowledge base is available, precision-recall-based metrics
inspired from information retrieval evaluations have been
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used (Maedche and Staab 2002). However, these methods
are inadequate otherwise. On the other hand, data-driven
methods (Porzel and Malaka 2004) evaluate target ontologies
to match the knowledge included in some existing corpus
or test data set. However, they do not quantify the qual-
ity/utility of a target ontology in terms their efficiency of
performing the desired task. One orthogonal direction for
evaluating taxonomies is to study the cognitive feasibility
of the taxonomy by measuring participants’ reactions to the
relations entailed by the structure of the taxonomy (Ever-
mann and Fang 2010). Building on the ideas of Evermann
and Fang, (Mortensen, Musen, and Noy 2013) proposed
a crowdsourcing-based user study to evaluate/verify target
ontologies. However, (Mortensen, Musen, and Noy 2013;
Evermann and Fang 2010) rely on microtask methods of on-
tology verification wherein participants answer simple binary
questions, such as “Is every ‘heart’ an ‘organ’?”.

Task-driven evaluation of taxonomies. Task-driven eval-
uations (Brewster et al. 2004) directly measure the end-to-end
performance of different taxonomies. These methods (Brew-
ster et al. 2004) define simple microtasks, e.g., binary ques-
tions to evaluate the accuracy and coverage of the taxonomy
content. The downside of these methods is that only local
knowledge of the target taxonomy usually suffices to answer
these questions. Our approach is a type of task-driven eval-
uation method. However, unlike the traditional task-driven
methods that focus on assessing the content via simple ques-
tions, our approach focuses on evaluating the efficiency of
using a taxonomy for doing inference: We rely on a more so-
phisticated navigation task to assess the taxonomy as a whole,
representing a knowledge base in a hierarchical structure.

Conclusion
In this paper, we evaluated crowdsourcing-based techniques
for building task-dependent taxonomies. Our experiments
show that task-dependent taxonomies built by crowdsourc-
ing techniques can significantly improve the efficiency of
navigating and searching for target objects compared to
using a generic taxonomy created by experts. The results
also show that using multifaceted taxonomies to capture
uncertainties over node positions reduces the number of
clicks/backtracking steps performed by users to find objects.
These results demonstrate that crowdsourcing-based tech-
niques can be deployed for complex structural learning tasks
such as building semantic taxonomies.

In future work, it would be interesting to extend the analy-
sis to more application domains and evaluate other popular
taxonomies. In particular, applying this analysis to domains
with existing expert-built task-dependent taxonomies, such
as Amazon shopping catalog, would be useful. Another in-
teresting future direction would be evaluating the quality
of taxonomies in doing other types of tasks besides naviga-
tion tasks, for example, evaluating the performance of using
taxonomies to teach users the knowledge of the domain.
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