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Abstract

Modern search engines have made dramatic progress in an-
swering questions about facts, such as those that might be re-
trieved or directly inferred from a knowledge base. However,
many other real user questions are more complex, such as re-
quests for opinions, explanations, instructions or advice for
a particular situation, and are still largely beyond the com-
petence of the computer systems. As conversational agents
become more popular, QA systems are increasingly expected
to handle such complex questions, and to do so in (nearly)
real-time, as the searcher is unlikely to wait longer than a
minute or two for an answer. One way to overcome some
of the challenges in complex question answering is crowd-
sourcing. We explore two ways crowdsourcing can assist a
question answering system that operates in (near) real time:
by providing answer validation, which could be used to filter
or re-rank the candidate answers, and by creating the answer
candidates directly. In this paper we present CRQA, a crowd-
powered, near real-time automatic question answering system
for complex informational tasks, that incorporates a crowd-
sourcing module for augmenting and validating the candidate
answers. The crowd input, obtained in real-time, is integrated
into CRQA via a learning-to-rank model, to select the final
system answer. Our large-scale experiments, performed on a
live stream of real users questions, show that even within a
one minute time limit, CRQA can produce answers of high
quality. The returned answers are judged to be significantly
better compared to the automatic system alone, and even are
often preferred to answers posted days later in the original
community question answering site. Our findings can be use-
ful for developing hybrid human-computer systems for auto-
matic question answering and conversational agents.

Introduction
It has long been a dream to communicate with a computer as
one might with another human being using natural language
speech and text. We are now coming closer to this dream,
as natural language interfaces become increasingly popu-
lar. Our phones are already reasonably good at recognizing
speech, and personal assistants, such as Apple Siri, Google
Now, Microsoft Cortana, Amazon Alexa, etc., help us with
everyday tasks and answer some of our questions. “Chat
bots”, or natural language agents, are being increasingly
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adapted for business and entertainment, and a number of
startups developing this kind of technology have emerged1.

Question answering is one of the major components of
such personal assistants. Existing techniques already allow
users to get direct answers to their factoid questions. How-
ever, there is still a large number of more complex questions,
such as advice or accepted general opinions, for which users
have to dig into the “10 blue links” and extract or synthesize
answers from information buried within the retrieved doc-
uments. To cater to these informational needs, community
question answering (CQA) sites emerged, such as Yahoo!
Answers and Stack Exchange. These sites provide a popular
way to connect information seekers with answerers. Unfor-
tunately, it can take minutes or hours, and sometimes days,
for the community to respond, and some questions are left
unanswered altogether.

To facilitate research on this challenge, a series of TREC
LiveQA evaluation campaigns2 was introduced in 2015,
where automatic systems attempt to answer real user ques-
tions within a 1 minute period. This task was successful,
with the winning system able to automatically return a rea-
sonable answer to more than half of the submitted questions,
as assessed for TREC by the trained judges from NIST. Nev-
ertheless, many questions were not answered well by any of
the participating systems (Agichtein et al. 2015).

In this work we explore two ways crowdsourcing can be
used to help an automatic system answer complex user ques-
tions. The main challenge is how to adapt existing “batch-
mode” crowdsourcing platforms such as Amazon Mechan-
ical Turk to real-time settings, e.g., to produce an answer
within a minute. More specifically, our research questions
can be stated as: RQ1. Can crowdsourcing be used to im-
prove the performance of a near real-time automatic ques-
tion answering system? RQ2. What kind of contributions
from crowd workers can help improve automatic question
answering and what is the relative impact of different types
of feedback to the overall question answering performance?
RQ3. What are the trade-offs in performance, cost, and scal-
ability of using crowdsourcing for real-time question an-
swering?

1http://time.com/4194063/chatbots-facebook-messenger-kik-
wechat/

2http://www.trec-liveqa.org
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Figure 1: Example of the question from Yahoo! Answers community question answering platform

To explore these research questions, we introduce our
CRQA system, which stands for Crowd-powered Real-time
Question Answering. CRQA integrates a crowdsourcing
module into an automatic question answering system within
an overall learning-to-rank framework for selecting answers
to complex questions. We report extensive experiments of
stress-testing the CRQA system, by participating in the
TREC LiveQA 2016 evaluation challenge. Specifically, the
contributions of this paper are threefold:

1. CRQA, a novel hybrid near real-time question answering
system, that uses crowd workers to rate and augment auto-
matically generated candidate answers, developed to em-
pirically explore the research questions above.

2. Large scale experiments using CRQA to answer real user
questions in a live TREC LiveQA 2016 challenge setting,
addressing RQ1.

3. Extensive analysis of the system performance, focusing
on the contributions of crowd input to the performance of
the overall system, to explore RQ2 and RQ3.
The results and findings of this work can be useful to

guide future research on hybrid human-computer question
answering, and automatic intelligent assistant systems.

System design
Before diving into the architecture of our Crowd-powered
Real-time Question Answering (CRQA) system, we will de-
scribe the setup of the TREC LiveQA shared task, which af-
fected some of the system design choices. In 2015 and 2016
versions of the task participants of the challenge developed a
live question answering system, that responded to user ques-
tions, which were sampled from the live stream of Yahoo!
Answers community question answering website. Each in-
put question consisted of a short question title, body and cat-
egory (Figure 1). A QA system had to provide an answer of
1000 characters or less within a 1 minute period using any
available data source. A reader can refer to (Agichtein et al.
2015) for more details on TREC LiveQA 2015 results and
analysis.

Our CRQA system represents a hybrid system, which in-
cludes an automatic question answering and crowdsourcing
modules. The high level architecture is presented in Fig-
ure 2. The automatic part of the CRQA system follows
an Information Retrieval (IR) approach to question answer-
ing, and generates a set of candidate answer passages from
multiple data sources. After candidates are generated, they
are ranked by a trained model, and, in the fully automatic

mode, the top candidate could be returned as the answer.
The crowdsourcing module is designed to overcome two
of the most common problems of the automatic QA ap-
proaches: lack of good candidate answers and ranking er-
rors (Moldovan et al. 2003; Savenkov 2015). More particu-
larly, CRQA asks crowd workers to provide answers to ques-
tions if they can, and additionally rate the quality of candi-
date answers. These contributions are then used to re-rank
the candidates and return the top scoring answer. The next
two sections describe the architectures of the automatic and
crowdsourcing modules of our system.

Automatic question answering module
When CRQA receives a question, it generates a set of search
queries to retrieve a set of relevant documents and extract
candidate answer passages. Search queries are generated us-
ing the following strategies:

• Question title, which most often captures the gist of the
question

• Two longest question sentences (detected by the presence
of the question word at the beginning or question mark
at the end of a sentence) from the title and body of the
question. In some cases the real user question is hidden
inside the body, while the title just provides the overall
topic of the question.

• Concatenation of the question word, verbs and top-5
terms from the question title by inverse document fre-
quency3. This strategy targets over-specific questions
(e.g., Figure 1), which often retrieve few if any search re-
sults.

To retrieve a set of potentially relevant documents and
extract candidate answer passages, CRQA relies on multi-
ple different generic and CQA document collections. Pre-
vious research has shown that many of the user informa-
tion needs are repeated, and reusing answers to previously
posted similar questions is an effective strategy for answer-
ing new questions (Carmel, Shtalhaim, and Soffer 2000;
Shtok et al. 2012). Therefore, CRQA uses multiple different
CQA data sources, namely Yahoo! Answers, Answers.com
and WikiHow.com, which potentially contain a diverse set
of questions. To retrieve similar questions we use the built-
in search interfaces of the corresponding websites. CRQA

3IDF of terms are estimated using Google N-gram corpus:
https://catalog.ldc.upenn.edu/LDC2006T13
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Figure 2: The architecture of our Crowd-powered Real-time Question Answering system, that uses crowdsourcing to augment
a list of automatically extracted candidate answers and to rate their quality

extracts top-10 similar questions and the corresponding an-
swers, posted by the community, and adds them to the pool
of candidate answers. However, quite often it is hard to find
a similar question in an archive, and many of the informa-
tion needs are unique. Therefore, we integrate web search4,
which our system queries to retrieve candidate answers from
regular web documents. We retrieve top-10 relevant web
documents and extract paragraphs of text from their main
content, as detected by a method based on (Kohlschütter,
Fankhauser, and Nejdl 2010).

In addition to the candidate answers themselves, CRQA
extracts certain meta-data, that helps to estimate the rele-
vance of a passage to the current question. For regular web
page paragraphs, it is useful to know the topic of the page
(e.g., its title) and the context (such as text that immediately
precedes the paragraph in the document). For CQA answers,
our system stores the text of the corresponding question ti-
tle, body and category. For convenience, we will refer to this
question title and web page title as “answer topic”, while the
body of the retrieved question and the preceding text block
for web candidates as “answer context”. Next, for each can-
didate answer we compute a set of features, described in Ta-
ble 1.

At the final stage of the module, answers are ranked by
their predicted quality. We chose to use the LambdaMART
learning to rank algorithm, which was proven to be very suc-
cessful for various ranking problems (Burges 2010). This
model was trained using the RankLib library5 on the data
from last year TREC LiveQA task6, which includes 1087
questions with answers provided by the participants, each of
which was rated on a scale from 1(bad) to 4(excellent) by
professional NIST assessors. In a fully automatic setup the
top ranked candidate is returned as the final answer to the

4https://datamarket.azure.com/dataset/bing/searchweb
5https://sourceforge.net/p/lemur/wiki/RankLib/
6https://sites.google.com/site/trecliveqa2016/liveqa-qrels-2015

Answer statistics
— Length in chars, words and sentences
— Average number of words per sentence
— Fraction of non-alphanumeric characters
— Number of question marks
— Number of verbs
Answer source
— Binary feature for each of the search verticals: Web,
Yahoo! Answers, Answers.com, WikiHow.com
N-gram matches
— Cosine similarities using uni-, bi- and tri-gram repre-
sentations of the question title and/or body, and answer
text, topic or context
— The lengths of longest spans of matched terms be-
tween question title and/or body, and answer text, topic
or context
Information Retrieval score
— BM25 scores between question title and/or body, and
answer text, topic or context

Table 1: The list of candidate answer ranking features used
by the automatic module of our CRQA system

question.

Crowdsourcing module
Unfortunately, fully automatic QA systems still struggle
with many difficult questions (Agichtein et al. 2015), there-
fore we decided to explore crowdsourcing as one of the
ways to help the system to deal with these questions. In-
stead of immediately returning the answers, CRQA sends
questions and top-7 ranked candidates to crowd workers and
waits for the responses. We chose to give 7 answers based
on the average number of rated answers in our preliminary
studies (Savenkov, Weitzner, and Agichtein 2016). Since in
TREC LiveQA systems had only 60 seconds to answer each
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Figure 3: User Interface for workers in our Crowd-Powered Question Answering system

question, we start a timer when a question arrives, and the
system waits to receive all worker contributions until the
timer reaches 50 seconds to leave some time to generate the
final answer. To help resolve the cases when the automatic
QA module was not able to generate good candidates, we
ask workers to provide their own answers, if possible. Addi-
tionally, workers are expected to rate the provided answers,
which should help to improve the ranking. Figure 3 presents
the user interface of our crowdsourcing module.

The overall algorithm for obtaining crowd input for real-
time question answering is the following:

1. When a system receives a question, it is posted to workers,
who have 50 seconds to provide their input

2. Workers are asked to write an answer if they can provide
one (optional)

3. Otherwise they need to wait for answer candidates to ap-
pear

4. When a system is done generating and ranking candidates,
it posts top-7 answers for rating (which usually happens
∼ 15 seconds after the question is posted)

5. Workers receive a list of answers and rate them until the
timer expires. Answers, provided by the workers, are also
rated by other workers. Each answer is rated on a scale
from 1 to 4, using the official TREC LiveQA rating scale:
• 1 – Bad: contains no useful information
• 2 – Fair: marginally useful information
• 3 – Good: partially answers the question
• 4 – Excellent: fully answers the question

6. The worker interface displays 3 answers at a time, and
when an answer gets rated, it disappears and its place is
taken by another answer from the pool. The interface dis-
plays only the first 300 characters of the answer, which
was experimentally shown to be enough on average to

make a good judgment. Full answer can be revealed upon
clicking the “show all” link.

7. When the question expires, it disappears, and workers
wait for the next question

To hire the workers we used Amazon Mechanical Turk
platform7. Since the challenge was to run the system
“live” over the period of 24 hours, we adapted the retainer
model (Bernstein et al. 2011; Bigham et al. 2010), i.e., work-
ers were paid to stay on our interface and complete the tasks
for 15 minutes. Specifically, to obtain an even distribution
of workers over the 24-hour period of the TREC LiveQA
shared task, we posted 10 tasks every 15 minutes. Since not
all assignments were accepted right away, the number of
workers for each question varied and could be greater than
10. When a worker first gets to our crowdsourcing interface,
she is shown task instructions (Table 2) and asked to wait for
the questions to arrive. The workers were paid $1.00 for a 15
minutes task, no matter how many questions they received.

We should note, that the setup of TREC LiveQA shared
task was favorable for the retainer crowdsourcing model,
as the questions were arriving almost every minute uni-
formly over 24 hour period, which diminishes the waiting
and worker idleness problems (Lasecki et al. 2013). An in-
teresting challenge, that we leave for future work, is how
to adjust such a crowd-powered QA system to varying ques-
tions volume, while optimizing the costs. One idea is to allo-
cate crowdsourcing resources to the incoming questions pro-
portionally to the expected effect, i.e., order the questions by
the expected performance of the automatically generated an-
swer. There are also certain techniques to optimize the costs
of the retainer model (Bernstein et al. 2012a). In addition, it
is also possible to reduce the latency associated with hiring
new workers on crowdsourcing platforms on demand, e.g.,

7http://mturk.com
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using quikTurkIt approach from (Bigham et al. 2010).

Instructions
1. This HIT will last exactly 15 minutes
2. Your HIT will only be submitted after these 15 min.
3. In this period of time you will receive some questions,
that came from real users on the Internet
4. Each question has a time limit after which it will dis-
appear and you will need to want for the next one
5. If you know the answer to the question, please type it
in the corresponding box
6. At some point several candidate answers will appear
at the bottom of the page
7. Please rate them from 1 (bad) to 4 (excellent)
8. Do not close the browser or reload the page as this
will reset your assignment.

Table 2: Crowdsourcing task instructions, displayed to the
user when she first gets to the task

Answer re-ranking and selection
The last stage in CRQA is answer re-ranking, which ag-
gregates all the information received from the crowdsourc-
ing and produces the final answer to the question. The in-
put of the re-ranking module is a set of candidate answers
with quality ratings provided by the crowd workers. Dur-
ing the TREC LiveQA 2016 run we used a simple heuris-
tic model, which ordered the answers by the average rating,
and returned either the top candidate, if its average score was
≥ 2.5, or the longest worker contributed answer. After the
challenge was over, we collected all the questions and an-
swers, that were shown to the crowd workers. The quality of
each candidate answer was judged using traditional batch-
mode crowdsourcing on the above mentioned scale from 1
(bad) to 4 (excellent). Then, on a subset of the questions
along with worker contributions, we trained a new model to
re-rank the answers given all available crowdsourcing infor-
mation. The rest of the questions from TREC LiveQA 2016
run were used to evaluate the quality of the model. This
time, for convenience, we used Gradient Boosting Regres-
sion Trees (Friedman 2002) from scikit-learn Python pack-
age, and trained a regression model to predict the quality
of the answer candidates. The features, used for answer re-
ranking are listed in Table 3.

Answer-based
— The length of the answer
— Source of the answer (Crowd, Web, Yahoo! Answers,
Answers.com or WikiHow.com)
— Original rank of the candidate answer or -1 for an-
swers provided by the crowd workers
Worker ratings
— Number of ratings provided
— Minimum, maximum, median and average ratings

Table 3: The list of features used for answer re-ranking based
on crowdsourcing input

Experiments
Experimental Setup: TREC LiveQA
The experimental evaluation of our CRQA system was done
on data from the official run of TREC LiveQA 2016 shared
task, which happened on May 31, 2016. All participating
systems were running for 24 hours and received questions
sampled from the live (real-time) stream of questions, posted
to Yahoo! Answers. In total, each system received 1,088
questions, and responses were recorded by the organizers.
Overall statistics are provided in Table 4. As we can see, on
average, workers were able to provide at least one answer to
each question, and 6 ratings for each answer.

Name Value
Number of questions received 1088
Number of completed 15 min assignments 889
Avg number of questions per assignment 11.44
Total cost per question $0.81
Avg number of answers provided by workers 1.25
Avg number of ratings per answer 6.25

Table 4: Aggregate statistics of CRQA crowdsourcing tasks
on TREC LiveQA 2016

Answer Quality Evaluation
We collected all the questions along with system candi-
dates from the official TREC LiveQA 2016 run. In addi-
tion, on June 2, two days after the TREC LiveQA chal-
lenge has completed, we crawled community answers for all
task questions. To obtain the quality labels for these answers
and answer candidates, that were shown to crowd workers
during the task, we used traditional (batch-mode) crowd-
sourcing. All the answers were randomly shuffled and rated
on a scale from 1 (bad) to 4 (excellent) by workers hired
on Amazon Mechanical Turk8. Existing research demon-
strated, that such crowdsourced labels correlates well with
the official ratings, provided by the professional NIST as-
sessors (Savenkov, Weitzner, and Agichtein 2016). Each an-
swer was labeled by 3 different workers, and we averaged
the scores to get the final quality labels for the candidates. As
mentioned previously, we split the questions multiple times
randomly into the training set to build a re-ranking model,
and used the other split to evaluate the quality of the model.

Methods compared. We compared CRQA system against
several baselines:

• Automatic QA: fully automatic QA system

• CRQA: automatic QA system with the crowdsourcing
module and trained re-ranking model

• Re-ranking by score: a simplified version of CRQA re-
ranking model, which selects the answer with the highest
average ratings, provided by the crowd workers during the
task.

8There was no time limit for rating this time
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• Yahoo Answers: traditional, non-real-time community
question answering site (Yahoo! Answers), from which
the challenge question originated. The answers were col-
lected two days after the challenge, thus allowing the Ya-
hoo Answers community extra two days to collect the an-
swers.

Metrics. To evaluate the methods we used the metrics pro-
posed by the organizers of the LiveQA task:

• avg-score: average score over all questions (missing an-
swers receive a score of 0)

• avg-prec: average score over all answered questions

• succ@i+: the fraction of answers with score i or greater
(i=2..4)

• prec@i+: the number of answers with score i or greater
(i=2..4) divided by the number of answered questions9

Table 5 summarizes the performance of the baselines and
our system. As we can see, the average score and precision
of answers generated by CRQA system is higher than the
baseline ranking and even community answers on the Ya-
hoo! Answers platform. However, community answers have
higher percentage of “4 (excellent)” scores. Figure 4 shows
the distribution of scores for the original system ranking, our
crowdsourcing system and Yahoo! Answers. Two peaks on
the distribution of scores from Yahoo! Answers community
suggest, that there are essentially two kinds of responses:
non-useful (e.g., spam) or excellent that fully answers the
question. In addition, around 20% of the questions did not
get any answer from the community. Automatically gener-
ated answers, on the contrary, are rarely empty, but on av-
erage provide only marginally relevant information, which
often does not answer the questions, and therefore rated “2
(fair)”. The introduction of the crowdsourcing module al-
lowed CRQA to cover couple percents of the questions, for
which the automatic system was not able to generate any
candidates, as well as select better candidates when it was
possible using crowd ratings.

Therefore, we can conclude, that crowdsourcing can ef-
fectively help the automatic QA system to improve the per-
formance of question answering, by providing worker gen-
erated answers and rating existing candidates. To get some
insights into when crowdsourcing is more and less effective,
we looked into the quality of the generated answers across
different Yahoo! Answers categories. Overall, CRQA im-
proves upon the baseline fully automatic QA system across
all the categories. However, the absolute value of the av-
erage quality gain is different, e.g., crowdsourcing had the
biggest impact on the quality for the “Travel” category,
which was one of the hardest for the fully automatic sys-
tem (Savenkov 2015). On the other hand, for “Arts & Hu-
manities”, “Pets” and “Home & Garden” categories crowd-
sourcing was less efficient (but still improved the quality).
One of the reasons is that questions from these categories
often require certain expertise or prior experience, which
makes it harder for crowd workers to contribute. To study

9Since for each answer we averaged 3 ratings by different work-
ers, the number of answers with the average score of 4 is low

Figure 4: Histogram and kernel density estimation of an-
swer scores for original candidate ranking, CRQA model
re-ranking and Yahoo! Answers answers

this hypothesis we further sampled questions with lowest
and highest differences in answer quality between the au-
tomatic system and CRQA. Many of the questions, where
crowdsourcing actually hurt the performance required some
special knowledge, e.g., “Can someone help answer ques-
tions about scapholunate ligament surgery rehabilitation?”
or “What was pol pot’s vision of an agrarian society? ”. Ex-
amples, when crowdsourcing helped the most, include cases
of automatic system failures, e.g., no answer candidates or
candidate, that only repeat the question and was ranked first
by the system.

To summarize, our Crowd-powered Real-time Question
Answering system substantially improves the quality com-
pared to the baseline fully automatic system, and gener-
ated answers are often even preferred to responses posted
by CQA community.

Analysis and Discussion
In this section we will analyze some of the results of our
experiments and discuss their implications.

Worker answers vs ratings
First, let’s look at the contribution of additional answers and
ratings provided by the workers. These two types of con-
tributions are complimentary to each other and attempt to
solve different problems. Table 5 shows the performance of
our question answering system using each of these types of
feedback independently. The results demonstrate that both
answers and ratings have positive effect on the performance.
Even with limited time, workers were able to reliably rate
candidate answers, which helped the system to select a bet-
ter final answer and improve the model precision. However,
this method does not help the system in cases, when it was
not able to generate any good candidates in the first place,
therefore using ratings only has lower average answer score
than using worker generated answers. By asking the crowd
to provide a response if they can answer the question, CRQA
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Method avg-score avg-prec succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+
Automatic QA 2.321 2.357 0.697 0.297 0.026 0.708 0.302 0.026
Re-ranking by score 2.416 2.421 0.745 0.319 0.031 0.747 0.320 0.031
Yahoo! Answers 2.229 2.503 0.656 0.375 0.045 0.737 0.421 0.050
CRQA (ratings + ans.) 2.550 2.556 0.799 0.402 0.034 0.800 0.402 0.034

worker ratings only 2.432 2.470 0.750 0.348 0.030 0.762 0.354 0.031
worker answers only 2.459 2.463 0.759 0.354 0.029 0.760 0.355 0.029

Table 5: Evaluation of the baselines and system answers quality based on the ratings of answers obtained via crowdsourcing.
The scores are averaged over 100 different 50:50 splits of 1088 questions into the training and test set. The differences between
average score and precision of CRQA and the original ranking are significant at p-value < 0.01

(a) avg-score: Average score per question (b) avg-prec: Average score per answer (ignoring non-answered
questions)

Figure 5: Plot showing how the quality of the final answer depends on the number of workers per question

covers this gap, which is important as in a real scenario even
a fair answer would probably be better for the user than no
answer at all. Of course, given limited time and the fact that
a random worker might not possess an expertise required,
such answers do not always perfectly answer the question.
Table 6 gives some examples of worker generated answers
with low and high quality scores.

To summarize, ratings of answer candidates and worker
generated answers both have similar positive effect on the
performance of our question answering system. What is
more important, the contributions are independent and there-
fore it is beneficial to use both of them in the final system.

Selection of answer candidate for rating
Predicting the quality of answers and ranking them to se-
lect the best is quite challenging for automatic question an-
swering (Surdeanu, Ciaramita, and Zaragoza 2011). Exter-
nal feedback, such as noisy answer ratings, obtained from
the crowd workers, provides valuable information, which,
as our results demonstrate, can help a QA system to better
re-rank the answers. However, the capacity of crowdsourc-
ing for answer ratings is limited, as systems often deal with
hundreds and thousands of answer candidates for a given
question. In this work, we chose to rate only top-7 answers
according the automatic system ranking. This decision was
made based on the average number of ratings workers could
provide in the allotted time. However, the order in which

the answers are shown can also have a strong effect on the
system performance, because the answers are typically rated
one by one in the order they are displayed on the screen. To
study the effect of the answer presentation order on the final
answer quality, our system implemented two different strate-
gies, which were selected at random for each question and
each worker. The first strategy ordered the answers accord-
ing to their predicted relevance score, and the other shuf-
fled the answers randomly. The later strategy provides a uni-
form coverage for all the answers selected for rating, while
the former puts more emphasis on the currently top scor-
ing candidates. To analyze the performance of each of the
strategies we compute averages score of answers, generated
using the corresponding ratings. The average score for an-
swers generated when candidates are shuffled is 2.508, and
it is 2.539 when the candidates are sorted according to their
model ranking score. This suggests, that it is beneficial to
allocate more of the workers attention on the top scoring
candidate answers.

Cost analysis
In this section we analyze the costs of crowdsourcing for
real-time question answering. In our study we paid workers
$1.00 per single 15 minutes task, where we expected to re-
ceive 15 questions. Each 15 minutes we had 10 assignments
for different workers, which translates to $15.00 per 15 min-
utes. Since not all assignments were accepted, overall, our
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Question Answer Score
Is Gotu Kola a good herb for mental health? How long does it take to
work??

yes 1.66

Can I write any number on line number 5 of a W2? would like to set
up my W2 were I get the most out of my paycheck and not have to pay
taxes at the end of the year...

W2 1.33

I need help with my mum? Something traumatic happened to me about
4 years ago i randomly asked my mother why when I lived with you in
your home country a man that was our neighbour used to call me his
daughter and the younger kids that lived there called me there cousins
and one boy called me his sister?

yes 1.0

Is it bad not wanting to visit your family? It’s nt bad. Just be honest with them.
They may be upset but they should un-
derstand

3.0

Any health concerns with whey protein? So I workout 3-5 days a week
and i drink a whey protein isolate after each workout. Since I workout
almost everyday, is it ok for me to just drink a shake everyday?..

As long as you use it as directed, there
should not be any major problems. You
may want to consult your doctor just in
case, but I would not be too concerned.

3.0

Foot pain unable to walk? Hi so today woke with some pain, I’m able
to put weight on my heel with no problem or pain. But the area between
my heel and toes hurts really bad when I try to go with the motion of
taking a step. Its not swollen and I do not remember hurting it at all

Possible gout in your foot, also possi-
ble you may have strained it during the
previous day.

3.0

What is a good remedy/medicine for stomach aches? Specifically ones
caused by stress or anxiety?

Chamomile tea should help 3.66

Table 6: Examples of answers provided by the crowd workers and their average quality scores

experiment cost $0.88 per question, and in this section we
will discuss some ideas to reduce it.

First, we will study the effect of the number of workers
on the performance of our CRQA system. For this experi-
ment we randomly sampled certain percentage of workers
and removed all contributions (answers and ratings) of oth-
ers. Figure 5 plots the dependency of the performance of our
QA system on the number of workers.

Intuitively, more workers mean more reliable answer rat-
ings and more answer candidates, which improves the per-
formance of the question answering system. However, we
can observe diminishing returns, the cost per extra gain in
performance metrics decreases as the number of workers
grows. Half of the overall performance improvements could
be achieved with only 3 workers per question, which would
save ∼70% of the costs.

An alternative cost-reduction strategy is selective crowd-
sourcing, which would only ask for workers feedback for
some of the questions. Such a strategy would be necessary
to scale a crowd-powered question answering system to a
higher volume of questions. There are multiple different ap-
proaches for such selective crowdsourcing: e.g., a system
can only ask for crowd contributions if it did not generate
enough candidate answers or the predicted quality of the
top scoring candidates was low (Carmel and Yom-Tov 2010;
He and Ounis 2006). We leave these questions for future
work, as here we focused on the scenario, proposed by the
organizers of the TREC LiveQA shared tasks, where ques-
tions arrive one by one and it is possible to utilize crowd
input for every question.

To summarize, in the explored real-time QA scenario it
is possible to reduce the costs of crowdsourcing by reduc-
ing the number of workers, although with some performance

losses. Our analysis suggests that paying ∼30% of the orig-
inal cost would give ∼50% of the performance improve-
ments.

Related Work
Using the wisdom of a crowd to help users satisfy their in-
formation needs has been studied before in the literature. For
example, offline crowdsourcing can be used to prepare an-
swers to tail search queries (Bernstein et al. 2012b). In this
work, log mining techniques were used to identify poten-
tial question-answer pairs, which were then processed by the
crowd to generate the final answer. This offline procedure
allows a search engine to increase the coverage of direct an-
swers to user questions. In our work, however, the focus is
on online question answering, which requires fast responses
to the user, who is unlikely to wait more than a minute. An-
other related work is targeting a different domain, namely
SQL queries. The CrowdDB system of (Franklin et al. 2011)
is an SQL-like processing system for queries, that cannot be
answered by machines only. In CrowdDB human input is
used to collect missing data, perform computationally dif-
ficult functions or matching against the query. In (Aydin et
al. 2014) authors explored efficient ways to combine human
input for multiple choice questions from the “Who wants to
be a millionaire?” TV show. In this scenario going with the
majority for complex questions is not effective, and certain
answerer confidence weighting schemas can improve the re-
sults. CrowdSearcher platform of (Bozzon, Brambilla, and
Ceri 2012) proposes to use crowds as a data source in the
search process, which connects a searcher with the informa-
tion available through the users of multiple different social
platforms. In general, such websites open up many oppor-
tunities to interact with their users, in particular, identify
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users who might possess certain knowledge and request it
by asking questions. For example, (Nichols and Kang 2012;
Nichols et al. 2013; Mahmud et al. 2013) showed that it is
possible to get the information about airport security wait-
ing times or product reviews by posting questions to a so-
cial network users, who identified themselves as being at an
airport or mentioned the product of interest correspondingly.
While in this work, we primarily focused on more traditional
way of hiring the crowd workers using Amazon Mechanical
Turk, integration with social services is an interesting direc-
tion for the future work.

Many works have used crowdsourcing to get a valu-
able information that could guide an automatic system for
some complex tasks. For example, entity resolution system
of (Whang, Lofgren, and Garcia-Molina 2013) asks ques-
tions to crowd workers to improve the results accuracy. Us-
ing crowdsourcing for relevance judgments has been stud-
ied extensively in the information retrieval community, e.g.,
(Alonso, Rose, and Stewart 2008; Alonso and Baeza-Yates
2011; Grady and Lease 2010) to name a few. The focus
in these works is on document relevance, and the quality
of judgments crowdsourced offline. Whereas in our paper
we are investigating the ability of a crowd to quickly as-
sess the quality of the answers in a nearly real-time set-
ting. The use of crowdsourcing in IR is not limited to rele-
vance judgments. The work of (Harris and Srinivasan 2013)
explores crowdsourcing for query formulation task, which
could also be used inside an IR-based question answering
system. (Lease and Yilmaz 2013) provides a good overview
of different applications of crowdsourcing in information re-
trieval.

Crowdsourcing is usually associated with offline data col-
lection, which requires significant amount of time. Its ap-
plication to (near) real-time scenarios poses certain addi-
tional challenges. (Bernstein et al. 2011) introduced the re-
tainer model for recruiting synchronous crowds for interac-
tive real-time tasks and showed their effectiveness on the
best single image and creative generation tasks. VizWiz mo-
bile application of (Bigham et al. 2010) uses a similar strat-
egy to quickly answer visual questions. Our work builds on
these ideas and uses the retainer model to integrate a crowd
into a real-time question answering system. The work of
(Lasecki et al. 2013) showed how multiple workers can sit
behind a conversational agent named Chorus. Similarly to
our work, Chorus used crowd workers to propose and vote
on responses to user messages. However, our CRQA system
represents a hybrid approach to question answering, where
the automatic QA module proposes certain answer candi-
dates, and workers can judge their quality as well as propose
additional responses. Such an approach allows us to focus on
more complex informational questions, for many of which
the workers might not know the answer, but still can con-
tribute by estimating the quality of automatically generated
candidates. Chorus, on the contrary, considered somewhat
simpler tasks (e.g., things to do in a new place, dinner date
ideas, etc.), but focused more on maintaining a coherent di-
alog, which poses additional challenges, such as building a
working dialog memory, keeping the users engaged with the
dialog using gamification. These ideas can be combined with

the ideas of our work to build more intelligent assistants, that
do not rely completely on the expertise of the workers. An-
other use of a crowd for maintaining a dialog is presented in
(Bessho, Harada, and Kuniyoshi 2012), who let the crowd
handle difficult cases, when a system was not able to au-
tomatically retrieve a good response from the database of
twitter data.

Conclusions and Future Work
In this paper we presented CRQA, the first, as far as we
know, real-time question answering system that integrated
crowd work within an automatic QA system. Specifically,
we explore different methods of obtaining input from the
crowd, and use a machine-learned answer re-ranking model
that incorporates the crowd input as features to select the
final system answer to return to the user.

We report a large-scale experiment, in which over a thou-
sand real user questions were submitted to the CRQA system
in real time, as part of the LiveQA 2016 challenge. CRQA
was able to successfully answer these questions in under 1
minute, with over 80% of the answers subsequently rated to
be fair or better by human judges. Importantly, CRQA sig-
nificantly improved question quality and coverage compared
to the starting automatic system, and, surprisingly, was of-
ten able to return a better answer, compared to the traditional
CQA system with millions of users (Yahoo! Answers) with
answers collected more than two days after the original post-
ing time.

The described CRQA implementation is a promising step
towards efficient and close integration of crowd work and
automatic analysis for real-time question answering. It raises
many promising issues and opens directions for future work,
such as the performance of the crowdsourcing module when
given less or more time to work, selective crowdsourcing
for only the questions deemed “difficult” for the automatic
system; more efficient online learning for obtaining ratings
from the crowd and integrating them into the ranking model;
and investigating additional features and sources of evidence
for improving the joint ranking of the system and crowd in-
put. This paper provides a flexible and powerful framework
for combining the powers of crowdsourcing with automatic
question answering techniques, for building the next gener-
ation of real-time question answering systems.
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