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Abstract
The current state-of-the-art method for generating educa-
tional content, such as math word problems and hints, is man-
ual authoring by domain experts. Unfortunately, this is costly,
time consuming, and produces content that lacks diversity.
Attempts to automatically address the time and diversity is-
sues through natural language generation still do not produce
content that is sufficiently creative and varied. Crowdsourc-
ing is a viable alternative - there has been a great deal of re-
search on leveraging human creativity to solve complex prob-
lems, such as user interface design. However, these systems
typically decompose complex tasks into subtasks. Writing a
single word problem or hint is a small enough problem that
it is unclear how to further break it down, but also far more
complex than typical microtasks like image labeling. There-
fore, it is not obvious how to apply these worker improve-
ment methods or which ones are most effective (if at all). We
build upon successful task design factors in prior work and
run a series of iterative studies, incrementally adding differ-
ent worker-support elements. Our results show that succes-
sive task designs improved accuracy and creativity.

Introduction
For K-12 students, math is an important introduction to log-
ical problem solving, helping them to develop skills that
transfer to other fields of learning. Math word problems
help students form connections between abstract math con-
cepts and concrete situations. However, the existing pool
of educational math content is relatively small and lim-
ited in diversity, which can have negative implications on
student learning. For example, biases in word choice can
lead to word problems that vary in difficulty level for stu-
dents from different backgrounds (Freedle 2003). Further-
more, without a wide range of diverse examples, students
learn to “solve” problems by memorizing patterns rather
than truly internalizing concepts (Charles and Silver 1987;
Reusser 1988). This can also lead to cheating and gaming
tests that reuse the same problem structures, such as the phe-
nomenon where international students with weak English
skills can still score high marks on the language portions
of standardized tests (Golden 2011). Therefore, if we wish
to improve student learning, it is key that we generate many
more diverse problems.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, simply generating more problems is insuffi-
cient, as we also need to generate hints to help students when
they are stuck. An inexpensive approach is to simply have
generic hints that do not refer to elements of the problem, but
researchers have shown that contextualized hints referring
directly to the text of the word problem are more effective
at pointing students in the right direction (Reusser 1988).
Hence, we need a way to produce contextualized hints at
scale.

Although we need more content, the current state-of-the-
art method for generating math content cannot address the
problems of scale and diversity. Math word problems and
their corresponding hints are manually authored by domain
experts, an expensive and time consuming process (Rumble
2001) that produces only a small (and likely biased) corpus
of material.

An alternative approach to generating word problems and
hints is natural language generation. Prior work explores
methods to speed up and automate the production of word
problems (Williams, Sandra 2011; Nandhini and Balasun-
daram 2011; Polozov et al. 2015), but still requires consid-
erable human effort to create ontologies, and a limited ontol-
ogy vastly limits the kind of problems that can be generated.
The system most similar to ours, created by Polozov et al.
(2015), generated their problems using a template-based ap-
proach that limited creativity and diversity. They found their
word problems to be significantly worse than textbook prob-
lems across a variety of metrics designed to measure com-
prehensibility, coherency, and readability. We believe that a
cost effective, diverse and scalable approach for creating ed-
ucational content comes in the form of crowdsourcing plat-
forms, particularly Amazon’s Mechanical Turk (MTurk).

Tasks on MTurk typically fall into one of two cate-
gories: simple microtasks, like transcribing words from a
photo or completing surveys, or complex tasks that can
be broken down (Lasecki et al. 2015; Kittur et al. 2011;
Little et al. 2010; Kulkarni, Can, and Hartmann 2012;
Chilton et al. 2013). However, it is difficult to fit our do-
main into either of these categories. It is unclear how one
would break down the task of writing a single hint or word
problem into a collection of microtasks, nor are these tasks
large enough to warrant more than one worker writing a hint
or word problem together. Furthermore, although these tasks
are small, they are complex, with many constraints compris-
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ing creativity and mathematical accuracy, and it is unclear
what features a task design should have to successfully help
a worker write a word problem or hint.

In this work, we carefully adapt techniques from prior re-
search on MTurk task design, such as including questions
with verifiable answers (Heer and Bostock 2010; Kittur, Chi,
and Suh 2008; Franklin et al. 2011), forcing workers to read
instructions (Kittur, Chi, and Suh 2008) and enforced self-
review (Di Stefano et al. 2014). Our results show that our
successive task designs improved accuracy and creativity,
both without incurring higher monetary costs. Hundreds of
word problems and hints created in our studies have already
been included in a math game played by thousands of stu-
dents.

Background
Riddlebooks To make the general problem of crowd-
sourcing educational content more concrete, we focus on
crowdsourcing new word problems and corresponding hints
for the educational math game Riddlebooks, developed
by the Center for Game Science. Riddlebooks is designed
to cover many types of word problems, from simple
addition and subtraction all the way through to algebra. Its
educational approach derives from the highly acclaimed
Singapore Math Model system (Kho, Yeo, and Lim 2009).
This system teaches math skills by first emphasizing the
conceptual relationships between entities in a problem.
To solve a problem using the math modeling approach, a
student first represents the elements of the word problem
in a visual model, turns the model into an equation, then
uses the equation to compute the numerical answer. Riddle-
books covers just the first two steps of this process, as its
educational focus is on teaching mathematical relationships
through the model method. The Singapore math modeling
system classifies non-algebraic word problems into one of 8
model types and corresponding subtypes. In Riddlebooks,
players solve these problems by dragging on-screen blocks
and braces to model the relationship between variables (see
Figure 1).

Objectives As the math model system targets a wide
range of skill levels, we want Riddlebooks to be similarly
broad. To achieve this breadth, we must generate an equal
sampling of problems for all model types. If we asked
workers to write an arbitrary math word problem without
specifying further constraints, it is easy to imagine that we
would collect a large pool of simple addition problems.
Therefore, we need the ability to guide worker behavior to-
wards mathematical accuracy, defined as writing problems
that fit model types of our choosing. Additionally, we want
the produced content to be interesting and engaging for
students, and be varied enough to overcome the detrimental
learning effects that arise from a lack of diversity, so we
want to maximize the creativity of worker submissions.

Hinting Framework The Riddlebooks development
team created a framework of generic hints for each math
model type, based on key points where a student might need
help during the process of solving a problem. Whenever

Figure 1: Riddlebooks gameplay screen showing an ’a + b
= c’ problem and a generic hint. In the correct model, the
brace representing c (the sum) should span both bars instead
of just the ’8’ bar.

the student clicks the hint button, the game determines
their position in the framework based on the actions they
have taken so far, and displays a corresponding hint. Each
generic hint leads students towards the next step of the
framework. For example, Figure 1 shows an “a + b = c”
type addition problem. The player has identified the two
elements to be added, but the brace used to represent the
summation of the two quantities only spans one of them.
Thus, the hint prompts, “‘animals’ needs to be the total
of all important parts.” However, as mentioned previously,
contextual hints are the most useful to helping students who
are stuck. Although the framework sometimes extracts key
words from the text to contextualize hints, the result is often
stilted. Due to the hundreds of word problems in the game,
it is prohibitively expensive for a single person to write a
specific, contextual hint for each word problem, let alone
one for every single step of the hinting framework. The
framework for the previous example of adding two numbers
already consists of 10 cases where hints are needed.

Related Work
Automatic Word Problem Generation
Researchers in the field of machine learning and natural lan-
guage processing have explored various ways to automati-
cally create textual content.

In the domain of math word problems, Nandhini and Bal-
asundaram (2011) explored automatic math problem gener-
ation for students with learning difficulties . They imple-
mented two approaches, then evaluated their effect on stu-
dent performance. A template-based method was simpler to
implement, but produced questions with grammatical errors
and very similar sentence structures which caused students
to memorize solution patterns. A grammar-based method
produced problems that better supported conceptual learn-
ing, but the approach was complex to implement, requiring
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manual authoring of many grammar production rules, which
is expensive and can only be done by those with a high
level of domain-specific expertise. Furthermore, this method
still produced problems of limited diversity and quality, with
grammar errors and awkward phrasing present even in their
hand-picked example problems.

More closely related to our domain, Polozov et al. (2015)
proposed a technique for automatically generating personal-
ized math word problems that fit the Singapore Math model
system. After using answer-set programming to generate a
logical tree from a set of input predicates, their system fills
in primitive sentence templates to produce text for a word
problem. Because this text is repetitive, the text is passed
through a series of simple post processing steps like replac-
ing nouns with pronouns. However, when compared to text-
book math problems that were hand written by experts, these
generated problems still rated significantly lower in metrics
scoring readability, coherence and logical structuring - this
seems to be an inherent flaw with any template based solu-
tion. We apply a similar a template approach to our crowd-
sourced setting as a baseline highly templated, fill-in-the-
blanks style design, which was shown to produce the least
creative word problems out of our three designs.

Turk Task Design
To improve accuracy, one approach is to ask another set
of workers to verify the work of the first set of workers
produced and correct minor errors (Bernstein et al. 2015;
Ambati, Vogel, and Carbonell 2012). We believe this is un-
doubtedly an important step before deploying hints in real-
world systems. However, in this paper we focus on getting
creativity and accuracy as high as possible in the base tasks,
so as to minimize the costs associated with future verifica-
tion steps.

Prior work suggests tasks with verifiable answers can en-
courage accurate results (Heer and Bostock 2010; Kittur,
Chi, and Suh 2008; Franklin et al. 2011). Since our task
is open ended and there are many possible responses that
would still be correct, we cannot construct a task that is com-
pletely verifiable. Instead, we show guidelines against which
workers can compare their work.

MTurk’s work paradigm does not impose implicit restric-
tions of expertise on workers. Sometimes, workers will sim-
ply lack the requisite skills to complete a task successfully.
Posing preliminary tasks, known as qualification tasks, can
filter out low quality workers, only retaining those who suc-
cessfully complete the qualification task as candidates for
the actual tasks (Heer and Bostock 2010). However, we are
more interested in examining how changes in our task design
affect worker submission quality and would like to avoid
unnecessarily limiting the set of potential workers. We be-
lieve the complex nature of our task already deters dishonest
workers and low-quality workers.

Decomposing Complex Tasks
Intuitively, simpler task designs lead to better worker perfor-
mance (Finnerty et al. 2013). However, some tasks are too
complex to be displayed in a simple format. One approach
involves the task designer decomposing the complex tasks

into discrete units that can be completed by different work-
ers, then combined into a single result (Kittur et al. 2011;
Little et al. 2010; Kulkarni, Can, and Hartmann 2012;
Chilton et al. 2013). Another involves workers collabora-
tively deciding how to split up the labor of a complex task
(Lasecki et al. 2015). Although our tasks of writing creative
word problems and hints according to a set of mathemati-
cal constraints are complex, it is not clear how one would
decompose such tasks into discrete units, let alone for work-
ers themselves to decide how to structure such a breakdown.
Thus, we instead explore how careful task design (Kittur
2010) can improve worker performance.

Study: Writing Word Problems
In our first study, we showed how one can loosen task con-
straints and add self-checking to achieve more creative and
accurate submissions. We deployed three versions of a math
word problem writing task, then asked a separate group of
workers to rate the creativity of the word problems.

Some inspiration for our task designs come from a MTurk
experiment by Di Stefano et al. (2014) which showed that
workers who self-reflected on puzzle solving strategies per-
formed better on further puzzles. Similar to self-reflection,
we implement a self-checking step so that workers can com-
pare their work against our guidelines. Before submitting
their word problem, we prompt workers to check that it is
creative and makes sense. We perform this prompting step
in each of our designs.

Study Designs
Design 1: Mathlibs Similar to previous natural language
generation systems like Polozov et al. (2015), our first de-
sign aims to maximize the accuracy of responses, though
possibly at the expense of creativity. The most straight-
forward approach to maximizing accuracy is by requiring
workers to follow a template. Our main inspiration comes
from the popular game MadLibs. In MadLibs, one first
thinks of words that correspond to some part of speech, such
as nouns, verbs or adjectives. Then, these words are inserted
into fixed blanks in a paragraph to produce an amusing story.
Likewise, our first “mathlibs” design is similar in that we re-
strict workers to filling in blanks in a template.

We created a representative template for each subtype of
the first 7 Singapore Math Model types, resulting in a total of
41 templates. Templates consisted of ordered textboxes that
correspond to some part of speech. Filling in the boxes pro-
duces a word problem guaranteed to be mathematically ac-
curate, exactly matching one of the Singapore Math Model
types (but not necessarily grammatically accurate or coher-
ent) (Figure 2). To enforce plot consistency, certain text
boxes are grouped. If a worker fills in one member of the
group, the contents of the others are automatically popu-
lated with the worker’s entry. To introduce the setting and
characters of their word problem, workers were allowed to
add a short, freeform introduction before the text of the word
problem.

Design 2: Freeform Word problems created using the first
system seem likely to be formulaic, so we explored methods
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Figure 2: The first design, “mathlibs” of a system for MTurk workers to write word problems. The structure is highly constrained
to fit a particular math model, which limits creativity.

Figure 3: The second system design, “freeform”. Workers can enter anything into a blank textbox for submissions, which is
intended to increase creativity compared to mathlibs problems. Structural constraints are replaced with a visual diagram.

to improve the creativity of the produced problems without
compromising accuracy. While mathlibs enforce constraints
through forced adherence to a template, here we suggest the
constraints through a visual representation of the underlying
math model that should structure a worker’s word problem.
Our hope was that giving workers the freedom to write ar-
bitrary full sentences would increase the possibility of more
interesting problems, in contrast to the highly constrained
space of possible mathlibs submissions. We call this system
“freeform”.

Figure 3 shows the MTurk UI for this design. Workers are
given a single blank text box in which to write their word
problem. We also display two sample word problems written
to fit the displayed model, providing a starting point and plot
inspiration. The model and sample problems are color coded
to emphasize the connection between model entities and plot
entities. Workers can choose from 4 contexts for the plot
of their word problem: Fantasy, Science Fiction, Animals,
and People. These contexts tie into the existing art and UI

elements of Riddlebooks. At the end of the task, workers are
shown a popup with their final submission. In addition to
questions about grammar and creativity, they are also asked
to verify that their problem fits the given math model.

Design 3: Tagged A major concern is that the second de-
sign might now be too unconstrained, allowing workers to
submit word problems that did not match the displayed math
model. Our third approach explores a two-step process that
combines the freeform hint writing step with a tagging step
to reinforce the math model constraints and impose another
layer of self-checking (Figure 4). After writing the word
problem, workers now also have to tag parts of their word
problem to show that it fits the displayed math model. We
hypothesize that this step either encourages workers to be
more careful from the outset because they know about the
second tagging step, or that while tagging their problems,
they notice and correct errors. We anticipate minimal loss of
creativity because workers can still write full sentences. We

15



Figure 4: Our third system design, “tagged,” introduces an
additional tagging step which asks workers to verify the ac-
curacy of their submission against the visual math model.
We expect self-checking to increase accuracy.

will refer to this system as “tagged”.
In this second tagging step, workers see a series of but-

tons color-coded to match parts of the model diagram and
example word problems. They are asked to tag sections of
their word problem with the color that corresponds to the
appropriate part of the model diagram. Workers can switch
freely between the problem writing and tagging steps to
make changes. At the end of the task, workers were also
shown a popup and asked to verify the accuracy of their
work.

Methodology
We did not restrict workers by any demographic informa-
tion. The only requirement for completing our task was a
task approval rate of 98% or higher across at least 1000 com-
pleted tasks, for at least some filtering. We made this choice
because we wished to study effects across a wider space of
workers.

The last column of Table 2 lists payment per word prob-
lem in the three task versions. Payment increased between
the first and second versions to speed up responses, and de-
creased between the second and third versions to see if task
completion speed would remain at a reasonable level de-
spite lower payment. However, the effects of payment on
task completion time are not a focus of this paper. Fur-
thermore, we do not anticipate these payment differences

to have a significant effect on work quality, as suggested
by some prior work (Marge, Banerjee, and Rudnicky 2010;
Mason and Watts 2010; Mao et al. 2013).

Analysis
We first compare the accuracy rate of word problems that
were created using the freeform and tagged systems. The
first author manually coded each problem into two cate-
gories, based on whether or not its underlying mathemati-
cal structure fit the displayed math model. This rating pro-
cess was not blind. We did not perform ratings on math-
libs problems, as they are all 100% accurate due to the
underlying template structure. We performed a chi-square
test of independence to examine the relationship between
problem accuracy in the freeform and tagged systems. As
expected, tagged problems were found to be significantly
more accurate at 52.95% than freeform problems at 44.28%
( χ2(1, N = 1250) = 8.96, p = 0.0028) (Figure 2). This
suggests tagging caused workers to engage more deeply in
our task and pay more attention to our requirements, leading
to higher performance.
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Figure 5: Mean creativity ratings for each of the three sys-
tems. Ratings were scored on a scale of 1 to 5. Higher values
of repetitiveness and similarity are considered worse based
on our questions (see Table 3).

Upon further analysis, we realized several prolific work-
ers wrote many problems in the freeform and tagged ver-
sions of the experiment, meaning their personal accuracy
ratings could possibly mask any changes in overall accuracy
due to interface improvements. We define prolific workers
as those who wrote 10% or more of the total word prob-
lems in a version. As shown in Figure 6, this cutoff only ex-
cludes outliers: two in the tagged system, and just one in the
freeform system. We performed another analysis excluding
these workers, and our results still show a significant im-
provement from 31.24% for freeform problems to 60% for
tagged problems (χ2(1, N = 950) = 77.65, p < 0.0001).
Notice that the tagged problems’ accuracy increased after
excluding prolific workers, while freeform problems’ de-
creased; we suspect this is due to some prolific workers be-
ing more accurate and others inaccurate, as opposed to dif-
ferences in the task structure. Our accuracy results are sum-
marized in Table 2.

We also conducted an experiment to analyze the rela-
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Details Z = -2.36, 0.0483
Variance Z = -1.39, ns

Originality Z = -1.49, n.s
Repetitiveness Z = 1.88, n.s

Similarity Z = 0.78, n.s
N = 233

(a) Mathlibs vs. freeform

Details Z = 1.51, n.s
Variance Z = 1.99, ns

Originality Z = 0.96, n.s
Repetitiveness Z = -1.34, n.s

Similarity Z = -2.13, n.s
N = 209

(b) Freeform vs. tagged

Details Z = 3.63, p <0.0008
Variance Z = 3.08, p <0.0059

Originality Z = 2.75, p <0.0165
Repetitiveness Z = -3.08, p <0.0059

Similarity Z = -2.88, p <0.0110
N = 238

(c) Tagged vs mathlibs

Table 1: Results from analyzing creativity ratings on word problems created using the three systems. Pairwise analyses were
conducted with the Steel-Dwass All-Pairs method.

tive creativity of word problems generated using each sys-
tem. MTurk workers, different from the set who wrote word
problems, first read five word problems chosen from one
of the three systems, and which were written for one of
three randomly selected math model types. They then an-
swered five 5-point scale questions about the creativity of
that group. Since the structure of the mathlibs system in-
cluded hard-coded numeric values, which could artificially
limit perceived creativity, we replaced those with randomly
generated numbers. Because our data was non-parametric,
we performed a Kruskall-Wallis test for statistical signifi-
cance for all conditions, then used the Steel-Dwass All Pairs
method to examine pairwise differences between systems.
Results are shown in tables 1a, 1b, and 1c. As expected,
word problems created using the tagged system were sig-
nificantly more creative compared to those written using
the mathlibs system. Although there was only one signifi-
cant comparison between the mathlibs and freeform systems
(1a), Figure 5 shows that the mean creativity ratings for the
freeform system are all better than those of mathlibs.

We expected the mathlibs problems to be significantly
less creative than problems in the other two systems, but
the absolute differences seem small. We were particularly
surprised that the creativity metrics for the mathlibs sys-
tem are already quite high (Details and Originality were
above 3.00 on average) despite the use of a single restric-
tive template. We suspect that the freeform introductions be-
fore main mathlib text encouraged higher detail and origi-
nality ratings. If this is indeed the case, then mathlib cre-
ativity scores are somewhat misleading, as we are primarily
concerned with improving creativity in the completely tem-
plated main body of the word problem. It is unclear how
to separate these two notions of creativity without compli-
cating the rating task. However, we still think the statisti-
cally significant improvement across all five metrics shows
the more freeform systems are able to produce more creative
output.

It is possible that the example word problems we showed
caused some workers to use them as the basis for their own
problems, resulting in a less diverse result set and thus dilut-
ing the impact of tagging on worker performance. We also
hypothesize that more data would increase the statistical sig-
nificance of this data. Although we did not emulate every
aspect of Polozov et al.’s system (2015), results suggest that
our tagged system may produce more creative problems than
templated approaches.

Note that although our results indicate the tagged system

Version # Tasks Overall Without Prolific Price per Task
Mathlibs 392 100% 100% $0.50
Freeform 531 44.28% 31.24% $0.75 - $1.00
Tagged 489 52.95% 60.0% $0.50 - $0.15

Table 2: Tagged problems were more accurate than freeform
problems, even when excluding work from prolific workers.
The last column lists prices paid to workers per task.

Question Scale
On average, how detailed are these word problems? Simple - Detailed
Comparing the word problems to each other, how
varied are they?

Similar - Varied

On average, how original are these word problems? Unoriginal - Original
Reading these word problems one after another,
how repetitive do they seem?

Distinct - Repetitive

Comparing the word problems to each other, how
similar are they?

Different - Similar

Table 3: Questions asked about the creativity of word prob-
lems.

generates the most creative output, the accuracy is consider-
ably worse than the perfect accuracy attained by the math-
libs system. However, as we feel that more creative word
problems are key to improving student learning, we believe
this is a good tradeoff in our setting. Additionally, it is much
easier to boost accuracy after the fact (e.g. with verification
tasks) than it is to boost creativity. Thus, we use the highly
templated mathlibs system primarily as a baseline.

Overall, our analysis suggests that adding the additional
self-check step in the tagged system helped improve accu-
racy over the freeform system and creativity over the math-
libs system, while trending in creativity improvements over
the freeform system. While Stefano et al. (2014) showed
the effectiveness of self-reflection on problem solving strate-
gies, here we show its effectiveness on improving output in
constrained problem writing.

Study: Writing Hints for Word Problems
After developing systems for generating word problems, we
needed a process to fill out contextualized hints that replace
the generic hints in the hinting framework. Since the frame-
work is seeded with an initial set of generic hints, this set of
hint writing tasks can be seen as rewriting a generic hint in a

17



(a) Freeform (b) Tagged

Figure 6: Histograms for word problems written per worker, expressed as a percentage of total word problems written.

more contextualized manner. For example, a generic hint of
“This problem has things being added together. What are
they?” could have the contextualized hint of “Which two
groups of students are you adding together?”. To analyze the
effect of various design constraints on worker accuracy, we
deployed two versions of a math hint writing task on MTurk.
Each task involved workers writing a hint for one of the math
word problems collected in the previous study.

Study Designs
Design 1: Baseline Some inspiration for our first hint-
ing task design comes from prior work. Mao et al. showed
that one of the major concerns of MTurk workers is that
their work does not meet requester standards. Low qual-
ity work can lead to rejected submissions, which reduces a
worker’s approval rating and restricts the pool of tasks they
can complete. To alleviate this concern, a set of guidelines
is displayed against which workers can compare their work.
Additionally, before completing our task for the first time,
workers are required to go through a tutorial. Prior work by
Kittur et al. (2008) suggests that forcing workers to process
content can increase their work quality.

Likewise, our baseline design (Figure 7) shows a check-
list of our guidelines as the worker writes their hint. At the
top of the page, workers see a math word problem. Then,
they view two diagrams that visually represent the mathe-
matical relationships between elements of the word prob-
lem. One diagram represents a student’s incorrect diagram,
and the other represents the next step in the hinting frame-
work. Below this, workers see a generic hint correspond-
ing to a step in the Riddlebooks hinting framework. Finally,
workers write a custom hint that contains the same level of
detail as the generic hint, but refers to story elements of the
word problem. Workers can hover their mouse over any task
element to display a tool tip explaining its purpose.

Design 2: Faded Tutorial Compared to writing word
problems, the process of creating a hint here requires more
steps, so it is crucial that the worker understands every part
of the process. Thus, the tutorial is of utmost importance.
Prior work suggests that fading in answer choices on survey
questions reduces satisficing (Kapelner and Chandler 2010),
so we think requiring workers to step through the tutorial

might prompt them into reading instructions more carefully
and thus further enforce our guidelines. Our second design
Figure 7 modifies the first page of the tutorial so that task
elements fade in one after the other. At first, only the first
task element, the word problem, is shown. After the worker
hovers over it to read the explanation tooltip, the second task
element, the incorrect diagram, appears, and so on. We also
modified the tutorial example hints to fit closer to the tone
of the generic hint. Since our criteria for rating accuracy was
the same for both versions, we do not think this change had
a significant effect on worker performance.

Methodology
As before, we did not restrict MTurk workers by any demo-
graphic information. The only requirement for completing
our task was a task approval rate of 95% or higher across
at least 1000 completed tasks, which was more permissive
than our previous choice of 98%. We made this change to
explore effects across a larger worker space. Workers were
paid $0.05 per submission.

Analysis

Version Tasks Overall w/o Prolific Dates Run (2016)
Baseline 2138 50.0% 42% Feb 12 - Feb 25

Faded Tutorial 684 84.0% 58% Apr 5 - Apr 12

Table 4: Accuracy results for each version of the hint writing
task, overall and with excluding prolific workers.

Accuracy was determined this time by whether the hint
was appropriate for the generic hint’s position in the frame-
work (see Background section) and whether it was contextu-
alized (i.e. referred to story elements of the word problem).

We randomly sampled 100 hints from each design. The
first author manually rated them as accurate or inaccurate
according to a set of guidelines: the hints had to apply cor-
rectly to the error situation, not give away the answer, and
refer to story elements in the word problem. We did not con-
sider hints to be inaccurate based on grammatical or spelling
errors. The rating was blind between versions. Examples of
each error type, drawn directly from worker submissions, are
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Figure 7: The layout of our baseline hinting task.

shown in Table 5. Results of a chi-square test for indepen-
dence show that the accuracy improvements of hints written
in each successive version (Table 4) are statistically signifi-
cant χ2(1, N = 2822) = 9.30, p = 0.00229 from 50.0% in
the baseline version to 84% in the faded tutorial version.

Although this difference is very large, the result does not
take prolific workers into account. One major concern is that
the difference in accuracy between versions could be sim-
ply due to getting lucky (or unlucky) from a few very good
(or very bad) prolific workers. In this case, we did observe
a single worker who completed almost 80% of the second
version’s hints. Therefore, we rated accuracy again after ex-
cluding workers who had produced at least 10% of the hints
in a particular task version. This is a reasonable cutoff as it
only excludes outlier workers (Figure 8), three in the first
version and one in the second. The resulting accuracy rates
are 42% in the baseline version versus 58% in the faded tu-
torial version ( χ2(1, N = 2822) = 53.04, p < 0.0001).
Although a smaller change compared to the initial analysis,
this is still a relatively sizeable boost in accuracy, which sug-
gests that the faded tutorial does in fact improve accuracy.

Our results show that a faded, step by step tutorial can
improve work quality, likely by encouraging workers to
pay more attention to instructions. Kapelner and Chandler
(2010) showed previously that an approach of fading in con-
tent can cause survey respondents to pay closer attention
to answer choices, and our results show that this technique
can induce better task performance by making workers pay
more attention to the instructions. This faded tutorial ap-

proach could also easily generalize to many other creative,
constrained tasks.

Limitations and Future Work
In our word problem writing task, all tasks for a given model
type had the same example problems, shown prominently to
the workers as they completed the task. Some workers could
have based their work off the examples, resulting in lower
overall creativity in the submissions. Future work could ex-
plore approaches that better encourage diversity, such as dis-
playing randomly selected examples from a larger, varied set
or displaying contrasting examples of accurate versus inac-
curate word problems (Cheng and Bernstein 2015).

The text of word problems and hints should flow naturally
before being shown to students. Although we considered
creativity and mathematical accuracy in our rating metrics,
we did not judge the grammatical accuracy and coherence of
worker submissions. Improving these through crowdsourc-
ing is an area of future work. If we limit our word problems
to only those written by native English speaking workers,
we hypothesize that they are already more comprehensible
and grammatically correct than problems produced by natu-
ral language generation systems, but further study is neces-
sary to be conclusive.

Our results also show that some workers will dominate the
results space by completing high volumes of tasks. Some can
be relied on to produce consistently good work, while others
cannot. Although prior work has already investigated mea-
sures to prevent dishonest workers from ruining results (Kit-
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(a) Baseline (b) Faded tutorial

Figure 8: Histograms for hints written per worker, expressed as a percentage of total hints written. We define prolific workers
as workers who wrote 10% or more of the total hints in a version.

Error Incorrect Hint Reason
Missed instructions ”Find the total of the 2 parts” Doesn’t refer to any parts of the word problem.

Doesn’t match the generic hint ”89 HORSES THE KING” Horses and a king were both mentioned in the word problem, but the hint doesn’t convey the desired info.
Gives away the answer 12 elk + 8 wolves = 20 animals Although contextual, this hint provides too much information compared to the generic hint.

Table 5: Examples of common errors noticed in the incorrect hints written by MTurk workers.

tur, Chi, and Suh 2008; Kulkarni, Can, and Hartmann 2012),
there is little exploration on the effect of positive prolific
workers, who are important for tasks where the primary ob-
jective is high volumes of accurate work, rather than a wide
sampling of participants. To gain insight into the minds of
these individuals, we reached out to the prolific worker who
completed 80% of the second version’s hints (with an accu-
racy rate of 92%) and asked what motivated them to work.
They replied:

I like HIT’s [human intelligence tasks] that involve
writing. The price was right for the work... I like HIT’s
that are not brainless

This anecdotally suggests that prolific high-quality work-
ers can be motivated by factors outside of pure financial in-
centives, leading to interesting questions for settings where a
minority of workers complete the majority of work. For ex-
ample, if one designs a system that relies heavily on output
from Turk, and a single worker is the driving force behind
keeping the system going, what happens to the system if they
decide to stop working?

Another future direction is automatic selection of the best
hints for each student. In our studies, we have produced a
large set of hints, but it is unclear which of these hints to ac-
tually show students. In this paper we manually evaluated
hints based on mathematical accuracy, but we truly want
to show each student the hint that will best maximize their
long-term learning. One promising option is to treat hints as
actions in a reinforcement learning framework, with reward
derived from the measured learning and engagement of each
student. This should allow us to automatically determine the
best path of hints for a particular student through the vast
space of hints generated through MTurk, thus resulting in
more personalized and targeted educational experiences. We
believe this is a rich area of future research.

Conclusion
Large quantities of diverse content are important to math
education. We explore the application of crowdsourcing to
the new setting of math word problems and hints, we exam-
ine various design factors to improve worker creativity and
submission quality, showing how one can adapt techniques
from prior work to improve worker accuracy and creativity.
Hundreds of word problems and hints produced by work-
ers through our systems have been augmented into Riddle-
books, which has been played by thousands of students in
a recent algebra challenge. Additionally, results from both
studies suggest further avenues of research into designing
tasks that attract individual prolific workers, which can lead
to higher volumes and success rates of task completion in
crowdsourcing work from other domains.
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