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Abstract

Participatory sensing (PS) has gained significant attention as
a crowdsourcing methodology that allows ordinary citizens
(non-expert contributors) to collect data using low-cost mo-
bile devices. In particular, it has been useful in the collec-
tion of environmental data. However, current PS applications
suffer from two problems. First, they do not coordinate the
measurements taken by their users, which is required to max-
imise system efficiency. Second, they are vulnerable to mali-
cious behaviour. In this context, we propose a novel algorithm
that simultaneously addresses both of these problems. Specif-
ically, we use heteroskedastic Gaussian Processes to incor-
porate users’ trustworthiness into a Bayesian spatio-temporal
regression model. The model is trained with measurements
taken by participants, thus it is able to estimate the value of
the phenomenon at any spatio-temporal location of interest
and also learn the level of trustworthiness of each user. Given
this model, the coordination system is able to make informed
decisions concerning when, where and who should take mea-
surements over a period of time. We empirically evaluate our
algorithm on a real-world human mobility and air quality
dataset, where malicious behaviour is synthetically produced,
and show that our algorithm outperforms the current state of
the art by up to 60.4% in terms of RMSE while having a rea-
sonable runtime.

Participatory sensing (PS) is a low-cost, but large-scale, data
collection paradigm that relies on ordinary people (non-
experts) collecting information using mobile devices they
carry on them. It has been successfully used in monitoring
environmental phenomena, such as radiation, air and noise
pollution (Stevens and D’Hondt 2010; Brown et al. 2016).
The collection of this information facilitates a better under-
standing of these phenomena and assists the authorities in
taking actions related to better urban planning and preserv-
ing public health. For example, it may drive decisions about
the best possible locations to build a new park, parking spots
or the construction of roads.

However, people are typically willing to take only a lim-
ited number of measurements per day (which can be seen
as a budget) and have only limited information about the
environment to be monitored. Since they do not have com-
plete knowledge of the state of the environment nor how it
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is going to change over time, they are not capable of mak-
ing optimal decisions about when and where to take mea-
surements to maximise the collected information. Thus, as
argued in (Stevens and D’Hondt 2010; Zenonos, Stein, and
Jennings 2015a; 2015b), a coordination system is necessary
to guide people on when and where to take measurements,
which is important as it maximises the information learned
about the environment using minimum effort by the users.

A second key challenge in participatory sensing applica-
tions is that the very openness of this data collection ap-
proach enables the contribution of corrupted data. In partic-
ular, people can act selfishly and exploit the system for their
own benefit. Crucially, participatory sensing systems are
prone to such malicious users’ attacks (Mousa et al. 2015;
Gadiraju et al. 2015). For example, a factory owner might
falsify their readings to show normal air quality levels, while
others may fabricate higher pollution measurements to affect
the decision of authorities and policymakers about the de-
velopment of parks and roads. Recent work (Gadiraju et al.
2015), studies the prevalence of malicious users in crowd-
sourcing settings. Specifically, their results show that ap-
proximately 25% of the users participating could be char-
acterised as malicious. However, maliciousness depends on
a number of factors and it is shown that different countries
have different prevalence of malicious users. Mousa et al.
(2015), highlight the issue of trust in participatory sensing
settings and present how this problem is currently addressed.
Specifically, one approach is to use Trusted Platform Mod-
ules (TPMs), which are hardware chips that reside on par-
ticipants’ devices and which ensure that measurements are
taken by authentic and authorised sensor devices within the
system. However, TPMs can control neither the software on
a user’s device nor the actual reading the user is taking. For
example, a user can take a measurement in a controlled en-
vironment, where they can adjust pollution levels to the de-
sired level in order to bypass the TPM mechanism.

Moreover, reputation systems have been proposed that re-
quire participants to rate each other or get rated by experts
who compare their input against ground truth data (Jøsang
and Ismail 2002; Reddy et al. 2008). Also, (Reece et al.
2009; Bachrach et al. 2012; Irshad et al. 2017) provided
methods to infer users’ trust in crowdsourced classifica-
tion and image labelling tasks. However, these classifica-
tion methods are unsuitable for dealing with continuous
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spatio-temporal data, like in environmental monitoring ap-
plications, since dependencies over space and time need to
be taken into consideration. In particular, the representation
of the phenomenon must be derived as a continuous func-
tion accounting for the relationship among different mea-
surements taken over space and time. Furthermore, in many
cases ground truth data and experts might not be available.

Other work (Venanzi, Rogers, and Jennings 2013), has
shown that probabilistic trust-based models can be built to
minimise the effect of the contribution of noisy measure-
ments. Specifically, they develop a method for aggregating
crowdsourced spatial estimates where the reports consist of
pairs of measurements and precisions. In other words, each
user submits a pair of their measurements and the associated
precision, which captures their confidence that their mea-
surement is correct. Then, Heteroskedastic Gaussian Pro-
cesses (HGP) are used to model trust of crowdsourced spa-
tial data. In particular, the trustworthiness of each user is
a hyperparameter of the HGP. That hyperparameter (t) is
used as an uncertainty scaling parameter which provides the
model with the ability to flexibly increase the noise around
subsets of reports associated with untrustworthy users. Then,
by training the model with the reports gathered from the
crowd, they are able to estimate the underlying spatial func-
tion and also learn the individual user’s trustworthiness.
However, the system presented in that work focuses nei-
ther on the time domain, nor on coordinating measurements
taken. It rather focuses on how to fuse data from a variety
of untrustworthy sources. Also, they require the precision of
users as an input, which might not be feasible in scenarios
where users do not have specific knowledge of the quality
of the sensor they are using. Moreover, malicious users will
not provide their true belief about their precision.

At the same time, existing approaches address the coordi-
nation issue only partially. In particular, applications involv-
ing participatory sensing assume that people are generally
trustworthy (Krause et al. 2008) and discuss optimal policies
for the online integration of sensor information in participa-
tory sensing applied to traffic monitoring data. They propose
a greedy algorithm to optimise a spatio-temporal entropy-
based criterion but they do not focus on the temporal dy-
namics of the phenomenon. Other work, (Chen et al. 2014;
2015) coordinates participants for task allocation. Specifi-
cally, the aim of their work is to assign tasks to humans
based on their mobility patterns to maximise the payoff of
tasks in a given time period. However, there is no limit
of how many tasks people can do and the tasks are com-
pletely independent from each other. Once a task is exe-
cuted, it is no longer available. On the other hand, in envi-
ronmental monitoring, measurements are dependent on each
other and since the phenomenon is dynamic, there is a need
to revisit locations to take more measurements. More rele-
vant work focuses on coordinating measurements for envi-
ronmental monitoring (Zenonos, Stein, and Jennings 2015a;
2015b) but all of the cases above assume that no malicious
users are present. In other words, they ignore the impact
of malicious measurements in the areas of interest, which
might lead to a false representation of the phenomenon.

Against this background, we present a novel trust-based

coordination system, which is able to effectively coordinate
measurements in the presence of malicious user behaviour.
In particular, extending the work of (Venanzi, Rogers, and
Jennings 2013) and (Zenonos, Stein, and Jennings 2015b),
we develop an algorithm that uses real-time information to
coordinate measurements in order to maximise the infor-
mation learnt about the environment over time taking into
consideration potentially malicious users participating in the
campaign. Specifically, our algorithm swaps low-trust users
with high-trust nearby users. At the same time, even when
low-trust measurements are taken, they will not have a great
impact on the predicted function over space and time. We
show that our method is more accurate than other standard
GP coordination algorithms. In more detail, our contribu-
tions in this paper are:

• We present the first coordination algorithm in participa-
tory sensing that performs effectively in the presence of
malicious users.

• We empirically evaluate our algorithm on real human mo-
bility and air quality sensor data and show that it signifi-
cantly outperforms the state of the art in scenarios where
a varying number of malicious users are present.

In the next section we formally define the coordination prob-
lem. Next, we present how we model the environment fol-
lowed by our proposed algorithm. Then, we evaluate our al-
gorithm in different scenarios against the state of the art. Fi-
nally, we conclude and suggest possible avenues for future
work.

The Coordination of Measurements Problem

This section formally introduces the problem of coordinat-
ing measurements in participatory sensing for environmental
monitoring subject to budget constraints and unreliability of
users concerning taking an action when requested to do so.
Then we extend the problem to capture the presence of ma-
licious users.

Basic Coordination Problem

First of all, an environmental campaign is initiated to col-
lect as much information about a particular phenomenon
in an environment. An environment E is a continuous set
of spatio-temporal locations (L = {l1, l2, . . . , ln}, T =
{1, 2, . . . , E}) that the campaign initiator is interested in.
This is defined by the spatial and temporal boundaries of the
area and time interval of interest up to time E. A set of par-
ticipants A= {A1, . . . ,AM} can take a set of discrete mea-
surements 1(O) within the spatial boundaries of this environ-
ment within the time period of the campaign (O = L× T ).
The set of observations made before or at time j is denoted
as Oj ⊆ O, while the set of observations made at time j is
denoted as Oj ⊆ Oj .

A utility function u : 2O → R
+ assigns a utility value to

a set of observations. The value assigned by this function is
based on the entropy, which is a way to measure informa-
tion used in (Guestrin, Krause, and Singh 2005). Intuitively,

1Observations and measurements are used interchangeably.
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the goal is to maximise the sum of utilities over the time
period of the environmental campaign. However, each in-
dividual Ai has a specific budget, i.e., Bi ∈ N

+, which is
the maximum number of measurements that the individual
is willing to take within a day. Chon et al., 2013 show that
people tend to contribute a limited amount of information in
participatory sensing campaigns. Hence, we cannot assume
that people can take an unlimited number of measurements
but they rather have a budget. We represent the budget of all
users with B = {B1, B2, . . . , BM}.

A function r : A → {v ∈ R| 0 ≤ v ≤ 1} assigns a real
number between zero and one to users that represents their
reliability. This is the probability that they actually take a
suggested measurement when requested to do so by the sys-
tem. Each user has a personal reliability that is independent
of other users. We represent the reliability for all users with
R = {r(A1), r(A2), . . . , r(AM )}.

We denote by U the total utility earned by all the agents.
Thus,

U(OE) =
E∑

j=1

u(Oj) (1)

where u(Oj) considers the observations made by partici-
pants at the selected locations and timesteps. The coordina-
tion algorithm needs to decide when and where the citizens
should make these observations to maximise this function
given a probability distribution over people’s possible loca-
tions at each timestep and constraints of budget as well as
user reliability.

Coordination in the Presence of Malicious Users

As argued, users participating in the participatory sensing
campaigns can be malicious for their own reasons. In our
work, malicious users are those who try to mislead and
disrupt the participatory sensing campaign by intentionally
providing false, corrupted or fabricated measurements also
known as data poisoning (Mousa et al. 2015). In particular,
in our settings malicious users can perform corruption at-
tacks, which occur when the user deliberately provides cor-
rupted or forged data.

In order to capture this behaviour, we define a function
m : A → {0, 1} that assigns a binary number (zero or
one) to users, which represents whether a user is malicious
or not. This determines whether the measurement provided
is the true value of the phenomenon being monitored or a
noisy version of it. Each user has a personal value that is in-
dependent of other users, which is not known in advance.
We characterise all users, in terms of maliciousness with
M = {m(A1),m(A2), . . . ,m(AM )}.

The Environment Model

In this section, we present how we modelled the environ-
ment. We first discretised the environment in a way such that
a two-dimensional grid is created over space and the time is
divided to hourly measurements (timesteps). Consequently,
we say that locations L ⊂ L are the intersections of the grid
and T ⊂ T each timestep. In our work, we convert longi-

tude and latitude into UTM format, i.e., meters, so as to be
able to make calculations in Euclidean space.

Each location l ∈ L and time j ∈ T is associated with a
random variable Xl,j , that describes an environmental phe-
nomenon, such as noise or air pollution. We use Xl,j = xl,j

to refer to the realisation of a random variable at a particular
spatio-temporal coordinate, which becomes known after an
observation is made. In order to describe the phenomenon at
time j over the set of locations (L), given that some observa-
tions have been made in the past (Oj−1), we use XL,j|Oj−1

.
Similarly, we denote by the random variable XL,j|Oj

, the en-
vironmental phenomenon over the set of locations L at time
j given that a set of observations are made at time j (Oj).
For simplicity in the notation, and unless stated otherwise
we use Xy = XL,j|Oj−1

, XA = XL,j|Oj
and the realisation

of the measurements over the set of locations L given a set
of observations XA = xA. Given the nomenclature above,
we can now model the phenomenon.

The measurements of an environmental phenomenon can
have a multivariate Gaussian joint distribution over all of
their locations L and timesteps T . This is an effective way
to capture the spatio-temporal relationship of different co-
ordinates. In particular, we use Gaussian Processes (GPs)
that can generalise the multivariate Gaussians to an infinite
number of random variables and thus, generalise over the en-
tire set of locations and timesteps (Rasmussen and Williams
2006) and which has been used in related work (Zenonos,
Stein, and Jennings 2015a). The main advantages of GPs in
environmental monitoring are that they can capture struc-
tural correlations of a spatio-temporal phenomenon as well
as provide a value of certainty on the predictions, i.e., pre-
dictive uncertainty. Crucially, it is sufficient to know the lo-
cations of the observations but not the actual value of the
measurement, to get the variance over the environment.

In practice, a GP is completely specified by its mean func-
tion and covariance function (or kernel). A mean function
m(x) and a covariance function k(x,x′) of a real process
f(x) are defined as follows:

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(2)

where E[X] is the expectation of a random variable X. Thus,
we can write a Gaussian Process as follows:

f(x) ∼ GP(m(x), k(x,x′)) (3)

The kernel k has a critical role in Gaussian processes. It de-
termines the covariance between f(x) and f(x′). In other
words, it specifies the relationship between two outputs
with respect to their associated input. The kernel typically
has free parameters (hyperparameters) which control the
smoothness of the function, as well as its sensitivity to mea-
surements and noise. This enables GPs to identify the co-
variance between the outputs of training data, test data and
the combination of both, which gives the predictive power
of GPs as shown below. This is expressed as:[

y
y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(4)
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where K(·, ·) are obtained by evaluating the covariance
function k for all pairs of columns. X represents the in-
put vector of training data and X∗ the input vector of test
data. For simplicity in notation, we set K(X,X) = K,
K(X,X∗) = KT

∗ , K(X∗, X) = K∗ and K(X∗, X∗) =
K∗∗.

Gaussian processes provide the mathematics of the utility
function we need to maximise. Similar to Guestrin, Krause,
and Singh (2005), we want to maximise the sum of informa-
tion obtained over time, which is captured by the entropy
over the entire environment at a specific timestep, minus
the entropy that can be obtained by taking specific measure-
ments in the next time step over the entire environment.

In other words, our utility function measures the reduction
of entropy at all locations of the environment (global metric)
by making a set of observations, and it is proportional to
the uncertainty without making any observations, minus the
uncertainty when observations are made. This is given by:

I(Xy;XA) = H(Xy)−H(Xy|XA) (5)

In terms of Gaussian processes, the conditional entropy
of a random variable Xy given a set of variables XA is ex-
pressed as follows:

H(Xy|XA) =
1

2
log(2πeσ2

Xy|XA
)

H(Xy|XA) =
1

2
log(σ2

Xy|XA
) +

1

2
(log(2π) + 1)

(6)

Using a GP to model the environment, we develop an algo-
rithm to exploit predictive uncertainty and the information
metric designed.

Moreover, in order to deal with the potentially mali-
cious users we implement a trust-based heterskodetastic GP
(HGP). A key feature of the HGP model is that it allows
variable noise across input. This varying noise feature, com-
monly referred to as heteroskedasticity, is relevant to our
participatory sensing settings where data are typically pro-
vided by devices with individual noise levels (i.e. the differ-
ent level of accuracy). As in (Venanzi, Rogers, and Jennings
2013), we model the trustworthiness of each user as a hy-
perparameter of the HGP that scales variance (σ2). While
in (Venanzi, Rogers, and Jennings 2013), however, preci-
sion is a user input, in our work, we take the variance of the
measurements taken at each timestep, so that users have no
explicit control of the accuracy of the measurements. This
is realistic since measurements are taken by mobile sensors
that users should have no direct control of. Also, unlike (Ve-
nanzi, Rogers, and Jennings 2013), we consider measure-
ments taken both over space and time.

Extending standard GPs, the trust-based HGP model has
a separate independent diagonal noise element described
by Σ = diag(θ̂1, . . . , θ̂n), where θ̂i = ti

σ2 . In particular,
each ti value is a hyperparameter of the covariance func-
tion/kernel, such that ti ∈ [0, 1] and σ2 is the average
variance of the measurements. In other words, each user’s
measurement is associated with a trust value, 1 meaning
the user’s measurement is fully trustworthy while 0 is not.
We use a trust-based uncertainty scaling technique based on

adding extra uncertainty to individual data points, depend-
ing on how much such points are trustworthy. By doing so,
the model is able to allow larger variance around untrust-
worthy points, whilst still modelling correlations in the lo-
cality of such points. This produces the effect of increas-
ing the uncertainty in users’ reports up to turning them into
completely uninformative contributions when it is close to
zero. Consequently, the hyperparameters to be learned are:
Θ̂ = {l1, l2, l3, σ2

f , t1, . . . , tn}. Estimating θ is equivalent
to finding a value for Θ̂ that results in a high p(X,y|Θ̂).
In practice, it is achieved by maximising the log marginal
likelihood log p(X,y|Θ̂):

ΘML = arg maxΘ p(X,y|Θ̂) (7)

This is given by:

log p(X,y|Θ̂) = −1

2
yTC−1y− 1

2
log |C|− n

2
log 2π (8)

where C is the kernel K (as in standard GP) with added
noise Σ.

The Coordination Algorithm

In this section, we firstly give a high level overview of the
proposed algorithm and then describe it in more details. Our
algorithm extends the adaptive Best Match (‘aBM’) algo-
rithm proposed in (Zenonos, Stein, and Jennings 2016) in or-
der to consider the effect of potentially malicious users and
the trust-based HGP model described in (Venanzi, Rogers,
and Jennings 2013) by alleviating the requirement for man-
ual user input of their estimated precision. Specifically, our
algorithm estimates the users’ trustworthiness in real time
by applying the MLE technique at each timestep2. In partic-
ular, the t value is estimated for all participants that took a
measurement at a specific timestep. This value can only be
learned after a user has already taken a measurement and it is
updated each time a user takes a measurement. At the same
time, trust values affect the mean prediction for specific ar-
eas. In particular, the contribution of less trusted users has a
lower impact on the predicted function over space and time.
By applying the MLE technique at each timestep, we incre-
mentally learn the trustworthiness of all users actively par-
ticipating. Active participants are those who are selected to
take a measurement by the coordination system in (Zenonos,
Stein, and Jennings 2016).

Therefore, at each timestep, when selecting users to take
measurements, some of these may already be associated
with trust values (if they have previously taken measure-
ments). This enables us to compare trust levels of individuals
who we have information about. Then, if the trustworthiness
of a user that is about to take a measurement is significantly
lower than the rest, we swap that user with the closest one
that still has budget left and whose trustworthiness is not
significantly different than the rest of the users. This ensures
that malicious users will be swapped out. Overall, our Trust-
based adaptive Best Match (TaBM) algorithm has two major

2We use GPML v4 toolbox and in particular a nonlinear conju-
gate gradient method.
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additions compared to aBM (Zenonos, Stein, and Jennings
2016). The first one is the application of the MLE technique
per timestep in order to learn the t values of participants’
taken measurements, which in turn is used as a hyperparam-
eter in the trust-based HGP model. Thus, the contribution of
less trusted users has a lower impact on estimating the state
of the environment. The other component is called SWAP and
it is responsible for swapping malicious or low-trust users
with more trustworthy nearby users in real-time. As a result,
people with lower trust values are not chosen to take more
measurements.

TaBM Algorithm

In more detail, the TaBM algorithm requires the number of
timesteps of the PS campaign, the budget of each participant,
its reliability and the hyperparameters of the model (line 1).
Next, simulations run offline as in (Zenonos, Stein, and Jen-
nings 2016) and a spatio-temporal mapping between partic-
ipants and locations is produced (line 2). Then, the trust-
related hyperparameters are initialised (line 3) followed by
the online component of the algorithm (lines 4 - 17). In par-
ticular, for each timestep, the Matching algorithm utilises
information provided by the offline simulations to select par-
ticipants to take measurements (line 5). This algorithm is
also explained in more detail in (Zenonos, Stein, and Jen-
nings 2016). Given the set of users to take a measurement
at a specified timestep, the algorithm calculates the average
trust of the users, if it exists (line 6). Next, the standard error
of the mean is calculated (line 7). Given these values, a trust
threshold is calculated (line 8). All the participants taking
a measurement should not have a trust value less than the
threshold as this implies they are significantly more likely to
be malicious. In order to evaluate participants, the algorithm
iterates through the participants which were selected to take
a measurement at each timestep (lines 9 - 15). If someone’s
trust value is below the threshold (line 10), then the SWAP
function is called (line 11), which is further discussed in the
following sub-section. Otherwise, the participant takes the
measurement as originally intended (line 13). Finally, given
the measurements taken, the new trust values for the partic-
ipants are estimated (line 16).

SWAP Function

The SWAP algorithm is responsible for removing malicious
users from the set of selected users that are required to take
measurement at any given timestep and substituting them
with nearby high-trust ones. In more detail, this algorithm
requires the details of the particular user currently exam-
ined, as explained in the algorithm above, the details of all
other agents and the threshold calculated in the algorithm
above (line 1). Next, an empty set named evaluated is cre-
ated to keep track of the users examined (line 2). While the
size of that set is less than the total number of agents the
algorithm searches for a suitable user to substitute the ma-
licious one (line 3). The set of candidate users is created
by removing any already evaluated users from the set of all
participants (line 4). In order to find a suitable substitution
the algorithm looks for the nearest neighbours of the mali-
cious one (line 5). Once, the nearest neighbour is found, it

Algorithm 1 Trust-aware adaptive Best-Match (TaBM) Al-
gorithm

1: input: E (timesteps), B (budget), R (reliability) Θ̂ (hy-
perparameters) A (agents)

2: S1,...,N , C1,...,N ←SISCAS(E,B,R) {Simulations
running offline (Zenonos, Stein, and Jennings 2016)}

3: t = zeros
4: for j = 1 to E do
5: S∗j ← MATCHING(E, j,B, S1,...,N , C1,...,N ){Online

mapping of users to measurements (Zenonos, Stein,
and Jennings 2016)}

6: average trust = 1
|S∗|

∑|S∗|
s=1 ts

7: sem = std(t)
|S∗| · 1.96{standard error mean for 95%

confidence level}
8: threshold = average trust− sem
9: for i = 1 to |S∗j | do

10: if ti < threshold then
11: SWAP(S∗i ,A,threshold)
12: else
13: Take measurement
14: end if
15: end for
16: ΘML = arg maxΘ p(S∗j , y|Θ̂) {y is the actual mea-

surements taken by people in S∗j }
17: end for

is checked that it satisfies certain properties (line 6). Specifi-
cally, the user should have some budget left and a trust value.
Given, that these are satisfied, the algorithm checks whether
the new user’s trust is above the threshold (line 10). Then,
the substitution is made (line 11) by removing the malicious
user from the set of selected users and adding the new one. If
not measurement is found the user is not swapped but their
measurement has a low impact on the overall prediction of
the phenomenon.

Algorithm 2 SWAP Function
1: input: A (agent), A (agents), threshold (trust value)
2: evaluated = ∅
3: while |evaluated| < |A| do
4: A* ← remove(A, evaluated)
5: AN ← nearestneighbour(A,A*)
6: if AN = ∅ or tAN = ∅ or BAN = 0 then
7: Return
8: end if
9: Append AN to evaluated

10: if tAN > threshold then
11: Substitute A with AN

12: end if
13: end while

Empirical Evaluation

In this section, we evaluate the algorithm developed using
real human mobility patterns and air quality sensor data. In
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the first part, we introduce our benchmarks and give a de-
scription of the experiments performed. Finally, we discuss
our findings.

Benchmarks

The algorithm developed was benchmarked against the
state-of-the-art algorithms which are introduced below:

• Greedy: This algorithm is based on (Krause, Singh, and
Guestrin 2008). It iterates through possible measurements
available at each timestep, finding the one that produces
the highest utility. It keeps adding measurements until a
budget k is met. In our setting, k is derived from the total
budget of people available at each timestep. In particu-
lar, we divide the total budget available by the number of
timesteps left.

• adaptive Best-Match: This algorithm is presented
in (Zenonos, Stein, and Jennings 2016). It consists of two
main components (offline and online). The former is re-
sponsible for searching through the space of candidate so-
lutions to produce a number of mappings of participants
to spatio-temporal locations. It is adaptive in the sense
that it considers the reliability of users to select which
one within in a particular cluster should take a measure-
ment, in order to maximise the expected utility while at
the same time saving budget for future iterations. The on-
line component handles the real-time situation, finding the
best match between the simulation output from the offline
algorithm and the real-time situation. This is similar to
our algorithm but it does not have the trust capabilities.

• Best-Match: This is an algorithm presented in (Zenonos,
Stein, and Jennings 2015b). The Best-Match algorithm
works similarly to adaptive Best-Match. However, it is
conservative in terms of the measurements taken. Specif-
ically, when a cluster is selected in the simulations, all
of the people belonging to that cluster are instructed to
take a measurement. In real-time, the people belonging to
the cluster that matches the offline simulations are again
instructed to take the measurement. In other words, this
algorithm does not take in consideration the reliability of
users nor whether they are malicious.

Also, since the optimal algorithm is computationally infea-
sible we developed an upper bound to the algorithm that can
be easily calculated. The upper bound is described below:

• Upperbound with Optimal HGP: We relax the assump-
tion that people have a limited budget, we assume full
knowledge of human mobility patterns and assume that
people are reliable. Thus, all participants are assumed to
take measurements at every timestep and the total utility
can be trivially calculated. We use a HGP model with trust
values 0 for malicious and 1 for trustworthy users.

Experimental Setup

To empirically evaluate our algorithm, we compare its per-
formance against the algorithms described above in terms of

Root mean Squared Error (RMSE) defined below:

RMSE =

√√√√ 1

|L|

|L|∑
l=1

(yl − y∗l )2 (9)

where |L| is the total number of locations of interest. This
is a metric used typically to measure the accuracy of regres-
sion models and it captures the differences between the pre-
dicted and observed values. In our settings it is interesting
to use this metric to capture the effect/increase on RMSE
when malicious measurements are taken over time. In this
work, we focus on air quality in terms of fine particulate
matter (PM2.5) in Beijing, where the levels of air pollution
are known to be high and thus it is of considerable interest
to both the authorities and the people living there. We use
an air quality dataset (Zheng, Liu, and Hsieh 2013), which
contains one year’s (2013-2014) fine-grained air quality data
from static air quality monitoring stations in Beijing. We use
this data to train our GP model, and in particular learn the
hyperparameters and the mean values over the spatiotempo-
ral locations of interest. These include the dynamism of the
phenomenon (l3) and smoothness over latitude and longi-
tude (l1, l2). The sensors are scattered in Beijing and take
measurements every hour.

Air quality exhibits spatial variations (PM2.5 is different
depending on where you are in Beijing) as well as temporal
variations (it is different depending on the time of the day).

Ideally, at the same time the human mobility patterns are
learned using a human mobility prediction system. In this
work, however, we use data from the Geolife trajectories
dataset (Zheng et al. 2009; 2008; Zheng, Xie, and Ma 2010),
which contains sequences of time-stamped locations of 182
people in Beijing over a period of 5 years (2007-2012), as re-
ported by portable GPS devices. We preprocess the dataset,
and take the location of each user every ten minutes. We also
take patterns of different weeks or months from the same
pool of participants’ trajectories. This is used as the ground
truth to compute the upper bound in our experiments. In par-
ticular, we experiment with up to 1000 users per timestep. In
order to make the system more realistic, we provide a prob-
ability distribution of the users’ potential future locations.
This is to simulate the behaviour of a real human mobility
prediction system that is able to provide us with these prob-
abilities over possible locations. In particular, in this work,
we assume that the correct locations have a high probability
of being assigned a higher probability than the rest of the
locations as in (Zenonos, Stein, and Jennings 2016).

Also, in our work, we assume that people have an average
budget of two measurements per day, which is consistent
with findings in real participatory sensing systems (Chon et
al. 2013). Moreover, we cannot assume that participants will
always be willing or able to take a measurement when re-
quested, even if they initially agreed on contributing a num-
ber of measurements. Related work has shown that only 83%
of smartphone users engage with notifications on their de-
vice within five minutes of receiving them (Sahami Shirazi
et al. 2014),which implies some desired measurements will
be missed. Furthermore, we vary maliciousness between
0.1 − 1 for the experiments shown in Figure 1 and is fixed
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to 0.25 for Figure 2 and Figure 3 as this is shown to be a
typical prevalence of malicious users in the crowdsourcing
domain (Gadiraju et al. 2015).

The next section presents the results of our experiments.
Our experiments involve comparing the execution time of
the algorithms and the performance in terms of RMSE with
different numbers of participants (up to 1000 per timestep)
and different degrees of maliciousness. We compare algo-
rithms in terms of execution time, as the problem we address
is NP-hard (Krause, Singh, and Guestrin 2008) and thus no
optimal solution is tractable but at the same time a solution
should be given in a reasonable amount of time.

At the same time, the RMSE measures the accuracy of
the air quality heatmap created by taking measurements over
time. Also, the more people, the more complex the problem
becomes in terms of finding the best solution. Furthermore,
people are associated with uncertainty about whether they
will actually take a measurement when they are asked to do
so.

Finally, in order to obtain statistical significant in our re-
sults, we performed two-sided t-test significance testing with
α = 0.05 significance level.

Results

Figure 1 shows that the TaBM algorithm outperforms the
benchmarks with respect to the RMSE. Crucially, at the
same time, it is not significantly different from the optimal
approach. Also, we observe that the more malicious users
exist in the system, the more the RMSE increases for all the
algorithms as expected.
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Figure 1: Total RMSE over space and time with a varying
percentage of malicious users. The error bars indicate the
95% confidence interval.

Figure 2 shows that the TaBM algorithm outperforms the
benchmarks by up to 60.4% with respect to the RMSE for
250 users. Also, it is consistently better for all number of
users in the participatory sensing campaign. What is mostly
evident from our results, is that a trust-based heteroskedastic
GP approach with SWAP capabilities significantly improves
the accuracy of the coordination algorithm.
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Figure 2: Total RMSE over space and time with a varying
number of users. The error bars indicate the 95% confidence
interval.

Figure 3 shows that aBM, Best-Match and the Optimal
HGP has similar runtime. However, the TaBM algorithm
is more computational expensive than these algorithms but
with the significant trade-off in performance as discussed
above. The Greedy algorithm has significantly higher com-
putational cost compare to the rest of the algorithms, as the
algorithm needs to consider all of the participants one by one
until the k best observations are found at each timestep. In
particular, we were not able to calculate the total RMSE and
runtime for 1000 participants as it was very computationally
intense to do so.

Overall, the TaBM algorithm makes more accurate pre-
dictions in terms of RMSE in all scenarios. Specifically, it
overcomes the issue of malicious measurements over time
by correctly learning to place a low degree of trustworthiness
on potentially malicious users and then swap low-trust users
with high-trust nearby users. This effectively allows impor-
tant spatio-temporal measurements to be taken as accurately
as possible. Finally, the results show that our method is more
accurate and considerably more informative in estimating air
quality levels on a prominent air quality dataset.

Conclusions and Future Work

We introduced the problem of coordinating measurements
in participatory sensing settings in the presence of malicious
users. This is the first approach in dealing with malicious
users in participatory sensing coordination algorithm. In par-
ticular, we developed a novel algorithm that maximises the
total utility gained over a period of time constrained on the
number of measurements each user is willing to take and
evaluated in terms of RMSE and execution time. We demon-
strated how efficient the Trust-based adaptive Best-Match
(TaBM) algorithm is compared to the state-of-the-art algo-
rithms. An empirical evaluation on real data showed that
(a) Trust-based adaptive Best-Match is significantly better
than the adaptive Best-Match, Best-Match and Greedy al-
gorithms in terms of total RMSE, (b) Trust-based adaptive
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Figure 3: Average runtime for 24 timesteps and a varying
number of users. The error bars indicate the 95% confidence
interval.

Best-Match is significantly faster than the Greedy approach
and comparable to the adaptive Best-Match and Best-Match.

There are a number of potential avenues for the future.
In particular, the trust model could be expanded. It can be
given a Bayesian treatment in order to take into considera-
tion knowledge about users’ behaviour and efficiently up-
date this over time. Also, more types of attack could be
considered. In particular, sophisticated attacks like ‘on-off’,
where the user alternates between normal and malicious be-
haviour or collusion attacks, where more than one malicious
user collaborates to cause more damage than each one acting
alone.
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