
Cioppino: Multi-Tenant Crowd Management

Daniel Haas
AMPLab, UC Berkeley
dhaas@cs.berkeley.edu

Michael J. Franklin
The University of Chicago
mjfranklin@uchicago.edu

Abstract

Embedding human computation in systems for data analy-
sis improves the quality of the analysis, but can significantly
impact the end-to-end cost and performance of the system.
Recent work in crowdsourcing systems attempts to optimize
for performance, but focuses on single applications running
homogeneous tasks. In this work, we introduce Cioppino, a
system that accounts for human factors that can affect perfor-
mance when running multiple applications in parallel. Ciop-
pino uses a queueing model to represent the pool of work-
ers, and leverages techniques for autoscaling used in cloud
computing to adaptively adjust the pool size. Its model also
accounts for worker abandonment, and automatically shifts
workers between applications to improve performance and
match workers with tasks they enjoy most. Our evaluation
of Cioppino in simulation on traces extracted from a realtime
crowd system running on Amazon’s Mechanical Turk demon-
strates a 19× reduction in cost, a 20% increase in throughput,
and a 2× increase in worker preference for assigned tasks as
compared to state-of-the-art crowd management strategies.

1 Introduction

When performance is a concern for crowd-powered systems,
the slowness and unpredictability of recruiting workers can
make sending tasks to platforms like MTurk impractical. In-
stead, workers can be recruited into retainer pools before
work becomes available, and paid to wait if there are no
available tasks (Bigham et al. 2010; Bernstein et al. 2011;
Haas et al. 2015b). Most work in low-latency crowd sys-
tems has assumed that tasks are short and homogeneous.
However, at organizations that rely heavily on human com-
putation for data analysis, workers often work on a vari-
ety of tasks of varying difficulty and length (Marcus and
Parameswaran 2015). These tasks range from simple binary
question answering, such as labeling training data for ma-
chine learning models (Mozafari et al. 2014; Sheng, Provost,
and Ipeirotis 2008; Cheng and Bernstein 2015) or identify-
ing duplicate records for entity resolution (Gokhale et al.
2014; Wang et al. 2012), to complex work such as data ex-
traction (Haas et al. 2015a), text translation (Callison-Burch
2009) or video analysis (Chen et al. 2009).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A system that uses the crowd to process heterogeneous
tasks requested for different use cases has been called a
multi-tenant crowd system (Difallah, Demartini, and Cudré-
Mauroux 2016). Optimizing the performance of a such a
system presents unique challenges, as illustrated by the fol-
lowing example.

Example 1 Company X maintains a searchable database of
products with public APIs, and has hired a crowd retainer
pool of workers on a popular crowd platform to improve the
quality of their data and services. Some workers monitor and
filter incoming data containing explicit content, others ex-
tract structured records from newly scraped data sources,
and still others provide search relevance feedback to im-
prove API results. Though Company X currently hires and
trains workers separately for each of these tasks, they often
find that spikes and lulls in the volume of work leave workers
overloaded or idle.

In this paper, we address the challenges of Example 1
head on. How should Company X size their crowd to meet
demand? Can the crowd be resized adaptively? Should
workers be trained for just one type of work, or moved be-
tween task types to meet demand despite the training over-
head? Following existing work on real-time crowdsourc-
ing (Bernstein et al. 2012), we model our crowd pool as
a queueing system where crowd workers process incom-
ing tasks as they arrive. An important insight is that this
queueing system bears many similarities to a cloud-based
software-as-a-service (Saas) provider. SaaS systems handle
requests to multiple service endpoints while attempting to
maintain high overall throughput at low cost. To do so, they
leverage techniques such as elastic cluster resizing (Ali-
Eldin, Tordsson, and Elmroth 2012), handling of nodes that
fail or leave a cluster (Dean and Ghemawat 2008), and re-
source sharing between applications that run on the same
cluster (Ghodsi et al. 2011). A multi-tenant crowd system
faces many analogous challenges: sizing the worker pool for
the task workload, reacting when workers abandon the sys-
tem, and ensuring that workers are assigned tasks that they
enjoy. As a result, existing approaches to cloud service man-
agement provide insight into managing crowds.

However, because workers are human beings, we can-
not treat them as idealized processors. Unlike CPUs, hu-
man crowd workers abandon tasks due to fatigue, confu-

Proceedings of the Fifth Conference on
Human Computation and Crowdsourcing

(HCOMP 2017)

41

sion, or boredom. Individual workers exhibit varying pref-
erences and skill for different tasks, and improve over time
as they become familiar with their work. When modeling
a crowdsourced computation system, these human factors
simply cannot be ignored.

In this work, we explicitly model a subset of human
factors which matter for system performance, and simu-
late multi-tenant crowd workloads to demonstrate the ad-
vantages of our model. The state-of-the-art in low-latency
crowd systems does not automatically adapt the workforce
size to workload changes, responds to worker abandonment
reactively as workers leave, and either ignores under-utilized
workers or assumes they have a static set of skills and cannot
be trained on new tasks.

In contrast, we describe Cioppino, a system that explicitly
models worker abandonment, task preferences, and training
overheads, and addresses them with three novel techniques.
Pool elasticity dynamically resizes the pool of workers to
meet application demand without over-recruiting, leveraging
techniques from the cloud autoscaling literature. Pool sta-
bility models the problem of worker abandonment. It main-
tains a worker pool of constant size by automatically recruit-
ing new workers in a fashion adaptive to the rate of worker
departure. Pool balance shares idle workers among appli-
cations to maximize throughput, balancing application de-
mands against worker preferences.

Together, these techniques demonstrate that adjusting
simple models to account for human behavior can improve
the performance of multi-tenant crowd systems that support
multiple concurrent crowd applications. We evaluate Ciop-
pino in simulation using both synthetic data and a trace from
a live crowd pool deployment and show a 19× decrease in
cost over the crowd worker management used in today’s sys-
tems, while doubling worker preference for the tasks they
are assigned and improving throughput by 20%.

2 The CIOPPINO System
In this section, we survey related work in the context of the
considerations that drive the design of crowd systems, then
describe the design of Cioppino.

2.1 Tradeoffs in crowd system design

Designers of performant human computation systems must
resolve a key tension between human behavior and pro-
grammatic abstraction. On the one hand, we would like to
build programmable, low-latency, low-cost, high throughput
systems that treat crowd workers as abstract computational
resources. On the other, we must acknowledge that crowd
workers are not CPUs, and that there are human factors that
will confound performance if we don’t take them into ac-
count. As a result, a good crowd worker abstraction must
model enough of these factors to avoid surprises in perfor-
mance, while not falling down the rabbit-hole of attempting
to capture all of human behavior. Here, we list some im-
portant considerations that should be taken into account by
crowd system designers, and survey related work that has
addressed them. This paper focuses primarily on tradeoffs
that improve performance by increasing throughput while
accommodating worker preferences.

Application domain. The ease with which human work-
ers understand and complete tasks of a specific type can af-
fect system performance. For example, microtasks such as
image labeling where the result is objectively correct or in-
correct, the output data is well structured, and the data do-
main is easily understood by most workers can be incorpo-
rated into systems that use simple API calls to show workers
tasks and aggregate their results. Systems that intentionally
decompose complex problems into microtasks (Bernstein et
al. 2010; Little 2009; Kittur et al. 2011) or those that recruit
experts who better understand the problem domain (Retelny
et al. 2014; Kulkarni et al. 2014) explicitly address this issue.

Desired latency and throughput. When workers are pro-
cessing tasks at high speed, they will not behave as con-
sistently as CPUs. It is well-known that rather than work-
ing away as fast as they can, crowd workers take breaks,
exhibit fatigue or lack of attention to tasks, and eventu-
ally abandon the system entirely (Rzeszotarski et al. 2013;
Bernstein et al. 2012). If latency is an important system met-
ric and individual workers complete many tasks, these hu-
man factors must be taken into account. For example, insert-
ing microbreaks (Rzeszotarski et al. 2013) can keep workers
better focused during actual working time, and straggler mit-
igation or pool maintenance (Haas et al. 2015b; Ramesh et
al. 2012) can limit the effect of workers who are respond-
ing unusually slowly. Additionally, careful task design can
help reduce the latency of the crowd (Krishna et al. 2016;
Marcus et al. 2012).

Desired output quality. Not all workers are equally
good or fast at performing a given task, and workers ex-
hibit familiarization effects over time (Ipeirotis 2010). A
large body of work on quality control for crowdsourcing
attempts to model and address this issue. For example, al-
gorithms for combining multiple worker responses often
model workers as possessing an inherent quality score, and
weight responses according to the quality of the worker
who provided them (Ipeirotis, Provost, and Wang 2010;
Karger, Oh, and Shah 2011).

Desired availability of crowd workers. Workers can-
not be reliably provisioned on demand like cloud compute
resources, and exhibit incredibly high variance in the la-
tency with which they accept tasks posted on marketplaces
like MTurk. In addition, for complex work, new workers
may require overhead for onboarding and training. Sys-
tems where availability is a concern use techniques like
retainer pools (Bernstein et al. 2011) variable task pric-
ing (Gao and Parameswaran 2014; Cao et al. 2016), and
over-recruitment (Bigham et al. 2010) to ensure that recruit-
ment time doesn’t become an issue.

Accommodation of worker preferences. Unfortunately,
it is all too easy to design a system that optimizes for tra-
ditional system performance metrics without taking into ac-
count worker satisfaction. In addition to their skills, workers
have individual preferences for different types of work, and
will work better when motivated with interesting or mean-
ingful work (Hackman and Oldham 1976; Rogstadius et al.
2011). Whenever possible, system designers should accom-
modate worker preferences, and avoid optimizations that
will improve performance by ignoring preferences.

42

Technique Paper Section System Dynamic Addressed Crowd Pool Actions Taken

Pool Elasticity Section 3 Changing task workload Worker recruitment and release
Pool Stability Section 4 Worker abandonment Worker recruitment
Pool Balance Section 5 Excess idle workers Inter-pool worker transfer

Table 1: Summary of techniques used by Cioppino.

Figure 1: Cioppino architecture diagram.

2.2 Cioppino: a multi-tenant crowd system

In this paper, we address the challenge of managing a multi-
tenant crowd. The goal is to design a highly-available sys-
tem that supports low latency and high throughput for client
applications with varying workloads and task types. Taking
into account the considerations of Section 2.1, Cioppino is
domain-agnostic, uses retainer pools for high availability, is
compatible with existing quality control strategies, and in-
troduces several novel techniques (summarized in Table 1):
autoscaling crowd pools to improve latency and throughput,
explicitly modeling and compensating for worker abandon-
ment, and transferring workers between applications to max-
imize throughput with consideration for worker preference
and training overhead.

Our main insight is that managing crowds of human work-
ers bears a strong resemblance to distributed cluster man-
agement. For example, cluster schedulers that support mul-
tiple applications must assign each task to a compute node,
taking into account heterogeneous hardware and other fac-
tors that affect compute latency such as data placement (De-
limitrou and Kozyrakis 2014; Venkataraman et al. 2014;
Ousterhout et al. 2013). Similarly, Cioppino assigns ap-
plication tasks to human workers, accounting for varying
worker preferences and training. Handling fluctuating task
load by autoscaling compute clusters has also received at-
tention. There are a number of approaches to autoscaling
(see (Qu, Calheiros, and Buyya 2016) for a recent survey).
Techniques that translate well to the crowdsourcing setting
include modeling the system with queues or queueing net-
works (Ali-Eldin, Tordsson, and Elmroth 2012; Jiang et al.

2013) and making decisions to increase or decrease the clus-
ter size using static rules (Netto et al. 2014), currently the
state of the art for most cloud providers (Amazon 2016;
Google 2017), control theory (Grimaldi et al. 2015), or ma-
chine learning (Iqbal, Dailey, and Carrera 2016).

Figure 1 shows the architecture of Cioppino. Client appli-
cations issue requests for tasks to be completed. Incoming
tasks are enqueued and serviced by workers in a dedicated
application crowd worker pool. Cioppino recruits workers
from the crowd to perform autoscaling (Section 3) and to
compensate for worker abandonment (Section 4). Workers
are also transferred between application pools to improve
efficiency (Section 5).

2.3 System model

At its core, Cioppino is a queuing system: each type of
crowd task (or client application) maintains its own queue
of tasks, which is serviced by a pool of ci workers held
on retainer. Bernstein et al. (2012) model retainer pools as
M/M/c/c queues, in which workers arrive according to a
Poisson process and are sent away if there is no demand
for new workers. In our setup, we model task arrival, not
worker arrival in our queues. Since it is undesirable to dis-
card tasks, we model our system using M/M/C queues (the
theory of which is well-established: see Gnedenko and Ko-
valenko 1989 for an overview). In an M/M/c queue, the
arrival rate of tasks is assumed to follow an exponential
distribution with parameter λi), task completion times are
distributed exponentially with parameter μi, and incoming
tasks queue up (potentially infinitely) if there are no avail-
able workers. In practice, since we don’t know the true val-
ues of λi and μi, we periodically re-estimate them empiri-
cally from the observed task arrival and completion rates in
a recent time window.

The value of the queuing model is that it allows us to ana-
lyze the expected wait time for a task in the queue. With this
information, we will be able to estimate the optimal pool
size to service a given workload (Section 3) and estimate the
latency impact of transferring workers between application
pools (Section 5). Now, we consider the techniques Ciop-
pino uses to manage crowd workers efficiently.

3 Pool Elasticity

In order to optimize its performance, Cioppino must deter-
mine a good size for the crowd pool, and adjust that size to
meet changes in application workloads, a key consideration
since workloads fluctuate dramatically over time (Difallah et
al. 2015; Jain et al. 2017). Sizing the worker pool is an im-
portant decision. Too small, and its workers will be unable to
keep up with the workload, causing a decrease in through-
put. Too large, and workers will sit idle, incurring greater

43

cost without any performance benefits. Cioppino leverages
its core queueing theory model to identify an optimal queue
size, and uses several algorithms for cloud autoscaling to
adapt to changing workloads.

3.1 Optimal queue size

In our M/M/c queueing model where tasks are processed by
c workers, there is a tradeoff between performance and cost.
The larger c is, the lower the expected wait time for an in-
coming task (leading to system-wide decrease in latency /
throughput). However, increasing c also increases the prob-
ability of idle workers. Under the retainer pool model, we
must pay workers an additional salary to wait if there is no
available work, so idle workers have a direct cost.

We can quantify this tradeoff as follows. We write ρ =
λ
μc , a measure of the ‘traffic intensity’ of the system. In an
M/M/c queue, the probability that an incoming task must
wait is given by

ΠW =
(cρ)c

c!

(
(1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

.

This is referred to as Erlang’s C formula, and can be used to
compute both the expected wait time for incoming tasks,

E[W] = ΠW
1

(1− ρ)cμ
(1)

and the expected queue length,

E[L] = ΠW
ρ

1− ρ
.

The expected cost of our system is given by the expected
number of idle workers times the salary paid for waiting.
Following (Haas et al. 2015b), we set the salary to be s =
$0.05/minute, but this can easily be adjusted. So we have
that

E[Cost] = s(max{0, c− E[L]}). (2)

To find an optimal c∗, we must relate Equations 1 and 2.
We explicitly trade off cost and performance by minimizing
a weighted average of the two: c∗ = argminc ηE[W] +
(1− η)E[Cost], where η is a system parameter establishing
a preference for one or the other. This equation has no clean
closed form, but since it is convex, we can solve numerically
for the exact optimum c∗.

3.2 Autoscaling algorithms

For an application i, the optimal queue size c∗i that we de-
rived in Section 3.1 depends on the parameters λi, the rate
of incoming new tasks, and μi, the rate at which individual
tasks are completed. While we expect μi to remain fairly sta-
ble over time for a specific task type, λi varies with the ap-
plication workload, which is not guaranteed to be constant.
Our empirical estimate of λi is intentionally calculated over
a recent window of time to take this into account, and every
time we observe a change in λi, we must re-size the pool to
compensate. Inspired by the literature on cloud autoscaling,
we implement two approaches to autoscaling in Cioppino:
rule-based autoscaling and control-theoretic autoscaling.

Figure 2: Control system block diagram.

Rule-based autoscaling. Most cloud IaaS providers (e.g.,
EC2 (Amazon 2016), GCE (Google 2017), etc.) currently
offer threshold-based policies for autoscaling application
hardware, for example, “add 2 VMs to my application if
the average CPU utilization among current VMs rises above
80%”. This approach is attractive because it is easy to de-
ploy and understand, but writing effective rules requires
deep understanding of the application workload. In Ciop-
pino, we allow rules to be written based on system perfor-
mance metrics (e.g., queue length, observed throughput, ob-
served latency, pool size) or queueing model metrics (e.g.,
λi, μi, or our optimal estimate for ci).

All rules are composed of a condition that triggers the rule
and an action to take if the rule is triggered. A condition
relates a parameter to a threshold, and may contain multiple
clauses connected by boolean operators. For example, the
following rule recruits a new worker whenever the queue
builds up or the pool becomes smaller than the estimated
optimum:

if Li > 10 or c∗i − ci > 5

then action("recruit", 1).

Rules that rely on c∗i have particular promise, since they re-
tain the ease-of-use of metric-based rules, but rely on the
system model instead of requiring administrators to under-
stand application workload.

Control-theoretic autoscaling. Systems for cloud au-
toscaling use a variety of control-theoretic models to com-
pute the number of additional VMs that need provisioning,
including fixed-gain controllers, adaptive controllers, and
fuzzy models (Lorido-Botran, Miguel-Alonso, and Lozano
2014). Since to our knowledge this work represents the first
attempt at autoscaling crowd pools, we limit ourselves to
fixed-gain PID controllers, which use a simple linear model
to relate the control action to the observed error in the pro-
cess variable or parameter of interest. Figure 2 shows a
block diagram of our closed-loop control system. At each
iteration of the loop, the user provides a target value (set
point) for the process variable. The controller computes the
desired change in the number of crowd workers, then takes
action to recruit or release workers. In a PID controller, the
desired change in the number of workers is computed as

ut = Kpet +Ki

t∑
j=0

ej +Kd(et − et−1).

The first (Proportional) term reflects the current gap between
the set point and the observed value of the process variable

44

(et). The second (Integral) term reflects the history of ob-
served errors. The third (Derivative) term reflects the cur-
rent rate of change in error. The relative magnitude of these
terms are controlled by the three weight parameters Kp, Ki,
and Kd. We tune these parameters manually, though tech-
niques for offline and online autotuning of PID systems has
received considerable attention in the literature. In our ex-
periments, we evaluate PID controllers built on two process
variables: system throughput, for which et is the number
of arrived tasks minus the number of completed tasks at
timestep t; and pool size, for which et is the optimum c∗i
minus the pool size ci at timestep t.

4 Pool Stability

There are a number of challenges to running crowd retainer
pools in production systems. One crucial limitation is that of
worker abandonment.

4.1 Worker abandonment

In an idealized model of retainer pools, the requester hires
a pool of workers, employs them until the desired work is
complete, then pays and releases them. In reality, especially
in online crowd marketplaces, workers abandon tasks with-
out warning for a variety of reasons—fatigue, boredom, ac-
cidentally closing browser tabs, etc. For example, (Bernstein
et al. 2011) found that about 10-20% of workers abandoned
the pool before accepting their next task, and analysis of
the CLAMShell trace described in Section 6.1 shows that
workers on average only remain in the pool for 5-6 minutes.
As a result, a production deployment of crowd worker pools
must account for abandonment by constantly recruiting new
workers to the pool. Cioppino introduces a novel mechanism
to do so called pool stability.

4.2 Pool stability

Though it would be nice to be able to simply recruit another
worker every time one leaves, the delay associated with hir-
ing new workers might leave the pool short-handed for a sig-
nificant period of time. Here, we examine three recruitment
strategies to mitigate this effect: rule-based, average-rate,
and hybrid. These approaches are evaluated in Section 6.2.

Rule-based recruitment. As with autoscaling tech-
niques, rules can be explicitly defined to respond to worker
abandonment. Cioppino permits rules of the form:

if ci < thresh, then action("recruit", n).

Rules can also be defined in terms of the rate of abandon-
ment. As before, rules are easy to define and apply, but hard
to tune without knowledge of the dynamics of abandonment.

Average-rate recruitment. Rule-based approaches might
perform poorly if the rule condition is poorly tuned to
the abandonment rate. Average-rate recruitment seeks to
avoid this problem. It continually maintains a count nwindow

of the number of workers who abandoned the pool in
the last twindow seconds, then recruits âi = nwindow

twindow

workers every second. If âi is non-integral, then the al-
gorithm recruits �nwindow

twindow
� workers, and with probability

nwindow mod twindow

twindow
recruits an additional worker. In ex-

pectation, this achieves the correct rate.
Hybrid recruitment. Average-rate recruitment avoids

overreacting to spikes in abandonment by recruiting at a
constant rate based on the empirical observed average. How-
ever, it ignores the current size of the pool, and cannot react
if the pool size grows too large due to over-recruitment. Hy-
brid recruitment seeks to achieve the best of both worlds. It
runs the average-rate recruitment algorithm, but additionally
uses a threshold-based rule to prevent recruitment if the pool
is too large. That is, it can be summarized with the rule:

if ci < thresh, then action("recruit",

avg rate recruitment(awindow, nwindow)).

5 Pool Balance

Autoscaling each application’s pool individually will suc-
cessfully adjust to changing workloads, but it may result in
inefficiency because it doesn’t take into account the scaling
needs of other pools. Cioppino uses a novel algorithm called
Pool Balance to determine when it is efficient to shift work-
ers between applications, taking into account two subtleties:
first, there is a training overhead associated with assigning
a worker a task type they’ve never done before; and second,
worker preferences should be taken into account when per-
forming transfers.

Algorithm 1 Pool Balance.
best tset score = −∞, best tset = None
for tset in generate candidate tsets():

completion times = {}
preferences = {}
for pool in All Pools:

new pool = simulate transfer(tset, pool)
completion times += completion est(tset, new pool)
preferences += net preference(new pool)

perf score = perf ts(completion times)
h score = h ts(preferences)
net score = ω∗ h score + (1− ω)∗ perf score
if net score > best tset score:

best tset = transfer set
best tset score = net score

apply tset(best tset)

5.1 Approach overview

Algorithm 1 describes our algorithm for choosing a set of
idle workers to transfer to other pools (a transfer set, consist-
ing of zero or more (worker, destination-pool)
pairs). For each transfer set we consider, we simulate the
transfers, then estimate how it will affect the processing of
currently backed up tasks and the preferences of workers for
their current work. Because the space of possible transfer
sets is large, we use heuristics to limit the candidate transfer
sets we consider. Our algorithm runs in a loop during system
execution: periodically, it generates candidate transfer sets,
evaluates them, and applies the best one.

45

5.2 Estimating queue completion time

The function completion est in Algorithm 1 estimates
the time it will take for an individual queue to empty given
its current length Li and its current workforce ci. This esti-
mate is equivalent to the expected wait time of the next item
to arrive in the queue, E[Wi|Li]. To compute the estimated
waiting time, we observe that the task will wait in line until
Li items have been processed and exited the queue. Let Dk

be the kth interdeparture time since the arrival of the last task
in the queue. Then E[Wi] = E[

∑Li

k=1 Dk]. Clearly, the Dk

are independently exponentially distributed with mean 1
ciμi

.
The sum of n independent exponentially distributed random
variables with identical mean μ is Erlang-distributed with
shape parameter n and rate μ, so we have that:

E[Wi] = E

[Li∑
k=1

Dk

]
= E[Er(x;Li, ciμi)] =

Li

ciμi
. (3)

When we transfer workers between pools, however, workers
must learn to do the new task type. Thus, we adjust Equa-
tion 3 to account for training time, making one conservative
assumption to simplify the analysis: that new workers aren’t
added to the pool until all workers have completed train-
ing. A transfer thus breaks queue processing time into two
phases: during training, the queue can’t make use of new
workers, but once training is done, it can. Let us assume that
training times, like task times, are exponentially distributed
with parameter tri, let kTS

i be the number new workers in
pool i under transfer set TS, and let cTS

i be the total workers
after TS is applied: ci + kTS

i = cTS
i .

First, we analyze the expected length of the training pe-
riod. Training ends when all workers have finished training,
so (using that the expectation of the maximum of n inde-
pendent exponential random variables with parameter λ is
1
λ

∑n
j=1

1
j — see (Lugo 2011) for a proof):

E[ttrain] = E[max(tri,1, . . . , tri,kTS
i

)] =
1

tri

kTS
i∑

j=1

1

j
.

During training, the queue processes tasks at an average
rate of μi(c

TS
i −kTS

i), so an expected μi(c
TS
i −kTS

i)
tri

∑kTS
i

j=1
1
j

tasks exit the queue during training. Call this quantity Ltr.
Now we can express the adjusted E[Wi] in terms of the train-
ing and post-training phases:

E[WTS
i] =

{
Li

(cTS
i −kTS

i)μi
if Li ≤ Ltr,

E[ttrain] +
Li−Ltr

cTS
i μi

otherwise.
(4)

That is, if the queue is small enough to be completely pro-
cessed during training, then the expected processing time is
as if the new workers didn’t exist. If not, then the expected
processing time is the expected training time plus the time
to process the tasks that weren’t processed during training,
using the newly trained workers.

5.3 Evaluating candidate transfer sets

Performance. Now that we have an estimate for the ex-
pected time to process an individual queue, we can evalu-
ate the performance utility of a transfer set TS. First, we

compute the set W = {E[WTS
i] : 0 ≤ i < |Apps|} us-

ing Equation 4. Then, we compute the performance score
PerfTS (the perf ts function in Algorithm 1) by eval-
uating the utility of this set. In our experiments, we use
PerfTS = 1/median(W), though other utility functions
could be used based on system performance goals.

Worker preferences. PerfTS only accounts for the per-
formance effects of a transfer set. However, transferring a
worker may be undesirable if the worker doesn’t enjoy the
task type of the destination application, and two equally effi-
cient transfer sets might not be equally sensitive to workers’
task type preferences. To model this, let pi,j ∈ [0, 1] repre-
sent the jth worker’s preference for the task type of applica-
tion i. In simulation, we generate the pi,j uniformly at ran-
dom, but in a live system new workers could establish pref-
erences for the available task types when they join. To evalu-
ate a transfer set TS, in addition to computing E[WTS

i], we
compute the net preference of the transfer set,

HTS =
∑

i∈Apps

∑
j∈AppsTS

i

pi,j . (5)

Then, we update our transfer set scoring to take the weighted
average of the two metrics:

ScoreTS = ω ∗HTS + (1− ω) ∗ PerfTS , (6)

where ω is a system parameter that sets the relative impor-
tance of worker satisfaction to system performance. We eval-
uate our techniques for their effect on net preference in Sec-
tion 6.2.

5.4 Searching the transfer set space

Unfortunately, the space of candidate transfer sets is large,
making a brute-force comparison of all possible transfer
sets impractical. To see this, observe that we could trans-
fer any subset of idle workers in the system to any other
app in the system, so if there are A apps in the system and
C =

∑A−1
i=0 ci total workers, there are up to

∑C
j=0

(
C
j

)
Aj =

(A+ 1)C possible transfer sets.
Instead, we apply heuristics to cut down the space we

search over. First, we don’t consider transfer sets that send
workers to applications having Li = 0, since those applica-
tions are unlikely to need additional workers. Note that this
rules out transfer sets that swap workers symmetrically be-
tween pools, since all applications with idle workers have
Li = 0. Additionally, we cap the size of a transfer set at
10. Finally, instead of considering all Ak transfer sets for a
worker subset of size k, we use a greedy heuristic to generate
a single assignment of workers to destinations. The heuristic
works as follows: for each worker pool, we compute E[Wi]
from Equation 3 and HTS from Equation 5. Then we assign
each worker in the subset to the destination pool with the
largest ω ∗ HTS + (1 − ω) ∗ E[Wi], incrementing ci and
recomputing the score after each assignment.

6 Evaluation

In this section, we evaluate Cioppino’s techniques in isola-
tion and together, demonstrating simultaneously a 20% im-
provement in throughput and a 19× decrease in cost. For

46

space reasons, we present only a summary of results here. A
detailed evaluation can be found in Appendix A (submitted
as supplemental material).

6.1 Experimental Setup

We evaluated Cioppino’s techniques on a multi-tenant crowd
pool simulator implemented in python. The experiments
were conducted on an Amazon EC2 c4.4xlarge instance with
16 vCPUs and 30 GB of RAM. Workload and crowd behav-
ioral data were either generated or trace-based.

Generated data. In some experiments, crowd worker be-
havior is simulated. Abandonment rates are modeled by a
parameter α: each worker chooses to abandon the system
with probability α at the end of their task. Recruitment time
is modeled as a Poisson process with rate r. Worker prefer-
ences are generated uniformly at random in [0, 1) for each
task type (client application) in the system, then normalized
to sum to 1. In addition, workload data are simulated, in-
cluding the task completion rate μi, the arrival rate of tasks
λi, and initial pool sizes ci for client applications.

Trace-based data. Some experiments are trace-based
simulations. The trace was extracted from a live deployment
of low-latency retainer pools for simple labeling tasks on
MTurk described in (Haas et al. 2015b).1 It consists of three
streams of data in chronological order: the worker recruit-
ment times for all new workers who joined the pool (n=6126
recruitments, mean time 91.3 seconds, standard deviation
113.9 seconds), the task duration for all tasks processed in
the pool (n=6725 tasks, mean time 1.97 seconds, standard
deviation 0.87 seconds), and the duration that workers re-
mained in the pool before abandoning it (n=2999 abandon-
ments, mean time 316.6 seconds, standard deviation 211.1
seconds).

6.2 Individual Techniques

Pool elasticity. We compare three pool elasticity techniques
against the static baseline (S) that begins with the optimal
pool size for the entire workload and does no autoscaling.
Rule-based autoscaling (RB) uses two rules: “if Li > 10
or c∗i −ci > 5 then action(’recruit’, 1)”, and
“if c∗i − ci < −5 then action(’release’, 1).”
This rule was hand-tuned to perform well against our work-
loads to illustrate the potential of rule-based techniques,
but because rule design requires intimate knowledge of the
workload, other workloads might require different rules to
perform well. Control-theoretic autoscaling uses the PID
controller described in Section 3.2, and is evaluated with
two different process variables: system throughput (CT-t)
and pool size (CT-p).

Qualitatively, the control-theoretic techniques converge
most quickly to the new optimal pool size after a workload
change. Figure 3a shows the cost and throughput achieved
by the techniques after an increase in workload. If cost is a
factor, CT-t is the obvious best choice for pool autoscaling
(5-8× cheaper than the other techniques and 88× cheaper
than the baseline S). However, CT-p consistently achieves

1Trace data and additional description can be found at http://
thisisdhaas.com/clamshell trace.html.

the best throughput (2-12% higher than CT-t, 12% higher
than RB, and 17% higher than S) by keeping the worker
pool at the optimal size prescribed by the Cioppino queu-
ing model.

Pool stability. We compare three pool stability techniques
against the null technique (N) that never recruits workers
to compensate for worker abandonment. Rule-based sta-
bility (RB) recruits new workers whenever the pool size
dips too low, implementing the rule: “if c∗i − ci >
5, then action(’recruit’, 1)”. Average-rate re-
cruitment (AR) recruits new workers at a constant average
rate. Hybrid recruitment (HR) uses the same rule as RB com-
bined with the rate of AR, as described in Section 4.2.

Qualitatively, RB does not recruit quickly enough, keep-
ing the pool at a constant but slightly too low level, whereas
AR over-recruits slightly. As desired, HR strikes a balance
between the two. Figure 3b illustrates the performance of the
techniques with abandonment rate α = 0.1 and recruitment
rate r = 0.02. AR, the strategy that recruits most aggres-
sively, shows the strongest performance, ranging from 5-
15% higher throughput than HR, 14% - 2× higher through-
put than RB, and up to 14× higher throughput than N. How-
ever, because it over-recruits, it incurs significant cost: 3.3×
HR, and 47× RB.

Pool balance. We compare two pool balance techniques
against the null technique (NT) that never transfers workers
between pools. (PB) is the pool balance algorithm described
in Section 5. Random transferring (RT) sends idle workers
to a random pool.

Qualitatively, though RT successfully rebalances workers
to arrive at the optimal pool size, it does so much more
slowly than PB. As a result, PB consistently achieves a
higher throughput (18% higher than RT and 76% higher
than NT) at less cost (10× less than RT and 27× less than
NT). PB rebalances workers based on their preferences, so
its workers exhibit a 43% higher preference for the applica-
tion they are ultimately transferred to than workers in the RT
and NT conditions. Figure 3c demonstrates these trends.

6.3 End-to-end evaluation

To evaluate the overall efficiency of Cioppino, we com-
pare two scenarios, a state-of-the-art baseline and a com-
bination of the best performing techniques of Cioppino. The
baseline behaves like typical crowd systems today: it does
not autoscale its crowd pool (pool elasticity policy S), it
uses rule-based recruitment to respond to worker abandon-
ment (pool stability policy RB), and it does not do any
inter-pool worker training and transfer (pool balance policy
NT). The Cioppino system uses throughput-based control-
theoretic autoscaling (CT-t), hybrid recruitment for pool sta-
bility (HR), and our novel pool balancing algorithm (PB).

Figure 4 illustrates the systems’ performance on the trace
described in Section 6.1. Qualitatively, the Cioppino system
is much better at keeping the pool size close to the opti-
mal value in spite of changing workloads (though there is
increased noise now that our data is real, not generated).
Quantitatively, Cioppino dominates Baseline on all metrics:
it has a 20% higher throughput, 19.4× lower cost, and 2.3×
higher net worker preference.

47

(a) Pool Elasticity (b) Pool Stability (c) Pool Balance

Figure 3: Summary of results from evaluating individual techniques.

Figure 4: End to end system comparison on the crowd trace.

7 Conclusion & Future Directions

In this work, we have introduced Cioppino, a system for
holistic multi-tenant crowd management that reduces cost
and increases efficiency while accounting for human fac-
tors that affect system performance. Cioppino models crowd
task processing as a queueing system, and introduces novel
algorithms for autoscaling, compensating for worker aban-
donment, and rebalancing workers across application pools.
Multi-tenant crowd systems should incorporate these tech-
niques to make the most of their crowdsourced workforce.

Cioppino represents a single point on the spectrum be-
tween systems that treat humans as programming abstrac-
tions and those that model human behavior exhaustively. In

addition to improving the techniques described in this pa-
per (for example, by exploring machine-learning or time-
series-analysis based autoscaling techniques), future work
in the design of performant crowd systems should investi-
gate the spectrum itself. We would like to investigate when
it is necessary to model individual worker behaviors in order
to guarantee performance, and experiment with dynamically
generating system models appropriate to the needs of the
workload being run and the crowd running it.

We are grateful to the hundreds of crowd workers
who made this work possible. This research is supported
in part by NSF CISE Expeditions Award CCF-1139158,
DOE Award SN10040 DE-SC0012463, and DARPA XData
Award FA8750-12-2-0331, and gifts from Amazon Web Ser-
vices, Google, IBM, SAP, The Thomas and Stacey Siebel
Foundation, Adatao, Adobe, Apple, Inc., Blue Goji, Bosch,
Cisco, Cray, Cloudera, EMC2, Ericsson, Facebook, Fujitsu,
Guavus, HP, Huawei, Informatica, Intel, Microsoft, Ne-
tApp, Pivotal, Samsung, Schlumberger, Splunk, Virdata and
VMware.

References

Ali-Eldin, A.; Tordsson, J.; and Elmroth, E. 2012. An adap-
tive hybrid elasticity controller for cloud infrastructures. In
NOMS, 204–212. IEEE.
Amazon. 2016. Amazon auto scaling service. http://aws.
amazon.com/autoscaling/.
Bernstein, M. S.; Little, G.; Miller, R. C.; et al. 2010. Soy-
lent: a word processor with a crowd inside. UIST.
Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: enabling realtime crowd-
powered interfaces. UIST.
Bernstein, M. S.; Karger, D. R.; Miller, R. C.; and Brandt,
J. 2012. Analytic Methods for Optimizing Realtime Crowd-
sourcing. Collective Intelligence.
Bigham, J. P.; Jayant, C.; Ji, H.; et al. 2010. VizWiz: nearly
real-time answers to visual questions. UIST.

48

Callison-Burch, C. 2009. Fast, cheap, and creative: evalu-
ating translation quality using Amazon’s Mechanical Turk.
EMNLP.
Cao, C. C.; Liu, Z.; Chen, L.; and Jagadish, H. V.
2016. Tuning crowdsourced human computation. CoRR
abs/1610.04429.
Chen, K.-T.; Wu, C.-C.; Chang, Y.-C.; and Lei, C.-L. 2009.
A crowdsourceable qoe evaluation framework for multime-
dia content. In Proceedings of the 17th ACM International
Conference on Multimedia, MM ’09, 491–500. ACM.
Cheng, J., and Bernstein, M. S. 2015. Flock: Hybrid crowd-
machine learning classifiers. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’15, 600–611.
Dean, J., and Ghemawat, S. 2008. MapReduce: simplified
data processing on large clusters. Communications of the
ACM.
Delimitrou, C., and Kozyrakis, C. 2014. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings
of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
ASPLOS ’14, 127–144. New York, NY, USA: ACM.
Difallah, D. E.; Catasta, M.; Demartini, G.; Ipeirotis, P. G.;
and Cudré-Mauroux, P. 2015. The dynamics of micro-task
crowdsourcing: The case of amazon mturk. In Proceedings
of the 24th International Conference on World Wide Web,
WWW ’15, 238–247.
Difallah, D. E.; Demartini, G.; and Cudré-Mauroux, P. 2016.
Scheduling human intelligence tasks in multi-tenant crowd-
powered systems. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, 855–865. Inter-
national World Wide Web Conferences Steering Committee.
Gao, Y., and Parameswaran, A. 2014. Finish them!:
Pricing algorithms for human computation. Proc. VLDB
7(14):1965–1976.
Ghodsi, A.; Zaharia, M.; Hindman, B.; Konwinski, A.;
Shenker, S.; and Stoica, I. 2011. Dominant resource fair-
ness: Fair allocation of multiple resource types. In Proceed-
ings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, 323–336. Berkeley,
CA, USA: USENIX Association.
Gnedenko, B. V., and Kovalenko, I. N. 1989. Introduc-
tion to Queueing Theory (2Nd Ed). Cambridge, MA, USA:
Birkhauser Boston Inc.
Gokhale, C.; Das, S.; Doan, A.; et al. 2014. Corleone: hands-
off crowdsourcing for entity matching. SIGMOD.
Google. 2017. Autoscaling groups of instances. https://
cloud.google.com/compute/docs/autoscaler/.
Grimaldi, D.; Persico, V.; Pescape, A.; Salvi, A.; and San-
tini, S. 2015. A feedback-control approach for resource
management in public clouds. In 2015 IEEE Global Com-
munications Conference (GLOBECOM), 1–7.
Haas, D.; Ansel, J.; Gu, L.; and Marcus, A. 2015a. Arg-
onaut: Macrotask crowdsourcing for complex data process-
ing. Proc. VLDB 8(12):1642–1653.

Haas, D.; Wang, J.; Wu, E.; and Franklin, M. J. 2015b.
Clamshell: Speeding up crowds for low-latency data label-
ing. Proc. VLDB 9(4):372–383.
Hackman, J., and Oldham, G. R. 1976. Motivation through
the design of work: test of a theory. Organizational Behavior
and Human Performance 16(2):250 – 279.
Ipeirotis, P. G.; Provost, F.; and Wang, J. 2010. Quality
management on Amazon Mechanical Turk. SIGKDD.
Ipeirotis, P. G. 2010. Analyzing the Amazon Mechanical
Turk marketplace. ACM Crossroads.
Iqbal, W.; Dailey, M. N.; and Carrera, D. 2016. Unsu-
pervised learning of dynamic resource provisioning policies
for cloud-hosted multitier web applications. IEEE Systems
Journal 10(4):1435–1446.
Jain, A.; Sarma, A. D.; Parameswaran, A.; and Widom,
J. 2017. Understanding workers, developing effective
tasks, and enhancing marketplace dynamics: A study of
a large crowdsourcing marketplace. Proc. VLDB Endow.
10(7):829–840.
Jiang, J.; Lu, J.; Zhang, G.; and Long, G. 2013. Opti-
mal cloud resource auto-scaling for web applications. In
2013 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing.
Karger, D. R.; Oh, S.; and Shah, D. 2011. Iterative Learning
for Reliable Crowdsourcing Systems. Advances in neural
information processing systems (NIPS).
Kittur, A.; Smus, B.; Khamkar, S.; and Kraut, R. E. 2011.
Crowdforge: Crowdsourcing complex work. In Proceedings
of UIST ’11, 43–52.
Krishna, R. A.; Hata, K.; Chen, S.; Kravitz, J.; Shamma,
D. A.; Fei-Fei, L.; and Bernstein, M. S. 2016. Embrac-
ing error to enable rapid crowdsourcing. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, 3167–3179.
Kulkarni, A.; Narula, P.; Rolnitzky, D.; and Kontny, N.
2014. Wish: Amplifying creative ability with expert crowds.
HCOMP.
Little, G. 2009. Turkit: Tools for iterative tasks on mechani-
cal turk. In 2009 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 252–253.
Lorido-Botran, T.; Miguel-Alonso, J.; and Lozano, J. A.
2014. A review of auto-scaling techniques for elastic appli-
cations in cloud environments. J. Grid Comput. 12(4):559–
592.
Lugo, M. 2011. The expectation of the maximum of ex-
ponentials. http://www.stat.berkeley.edu/∼mlugo/stat134-
f11/exponential-maximum.pdf.
Marcus, A., and Parameswaran, A. 2015. Crowd-
sourced data management industry and academic perspec-
tives. Foundations and Trends in Databases.
Marcus, A.; Karger, D.; Madden, S.; Miller, R.; and Oh, S.
2012. Counting with the crowd. VLDB.
Mozafari, B.; Sarkar, P.; Franklin, M.; et al. 2014. Scaling
up crowd-sourcing to very large datasets: a case for active
learning. VLDB.

49

Netto, M. A.; Cardonha, C.; Cunha, R. L.; and Assunçao,
M. D. 2014. Evaluating auto-scaling strategies for cloud
computing environments. In Modelling, Analysis & Simu-
lation of Computer and Telecommunication Systems (MAS-
COTS), 2014 IEEE 22nd International Symposium on, 187–
196. IEEE.
Ousterhout, K.; Wendell, P.; Zaharia, M.; and Stoica, I.
2013. Sparrow: Distributed, low latency scheduling. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, SOSP ’13, 69–84. New York, NY,
USA: ACM.
Qu, C.; Calheiros, R. N.; and Buyya, R. 2016. Auto-scaling
web applications in clouds: A taxonomy and survey. CoRR
abs/1609.09224.
Ramesh, A.; Parameswaran, A.; Garcia-Molina, H.; and
Polyzotis, N. 2012. Identifying Reliable Workers Swiftly.
Technical report, Stanford University.
Retelny, D.; Robaszkiewicz, S.; To, A.; et al. 2014. Expert
crowdsourcing with flash teams. In Proceedings of UIST
’14, 75–85.
Rogstadius, J.; Kostakos, V.; Kittur, A.; Smus, B.; Laredo,
J.; and Vukovic, M. 2011. An assessment of intrinsic and
extrinsic motivation on task performance in crowdsourcing
markets. In ICWSM.
Rzeszotarski, J. M.; Chi, E.; Paritosh, P.; and Dai, P. 2013.
Inserting micro-breaks into crowdsourcing workflows. In
First AAAI Conference on Human Computation and Crowd-
sourcing.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of SIGKDD ’08,
614–622.
Venkataraman, S.; Panda, A.; Ananthanarayanan, G.;
Franklin, M. J.; and Stoica, I. 2014. The power of choice in
data-aware cluster scheduling. In Proceedings of OSDI ’14,
301–316.
Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J. 2012.
CrowdER: Crowdsourcing Entity Resolution. VLDB.

50

