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Abstract

Literature reviews allow scientists to stand on the shoulders of
giants, showing promising directions, summarizing progress,
and pointing out existing challenges in research. At the same
time conducting a systematic literature review is a labori-
ous and consequently expensive process. In the last decade,
there have been several studies on crowdsourcing in literature
reviews. This paper explores the feasibility of crowdsourc-
ing for facilitating the literature review process in terms of
results, time and effort, and identifies which crowdsourcing
strategies provide the best results based on the budget avail-
able. In particular we focus on the screening phase of the lit-
erature review process and we contribute and assess strategies
for running crowdsourcing tasks that are efficient in terms of
budget and classification error. Finally, we present our find-
ings based on experiments run on Crowdflower.

Introduction

A literature review is a form of scientific research (and of
publication) that has a high impact on science and society
(Sun et al. 2016). Reviews can take different forms and have
different objectives (Grant and Booth 2009). The main dis-
tinction is between systematic approaches, where a specific
process is defined before the review starts and is followed
throughout the identification and analysis of relevant litera-
ture, and non-systematic ones, where authors do not follow
a predefined method for selecting and analyzing literature.

Literature reviews, especially when systematic, provide
scientific results and are at the heart of evidence-based ap-
proaches, with a potentially profound impact on society
(Haidich 2010). Reviews are also very helpful in introducing
newcomers to challenges and opportunities for research in a
given area. Not surprisingly, they are among the most highly
cited papers (a search we conducted over a few thousands
papers on Scopus shows that the median number of citations
for reviews vastly exceeds the median for papers in all areas
of science).

Because of their importance and impact, the number of
published reviews is rapidly growing (Wallace et al. 2013).
This is particularly true for systematic reviews and meta-
analyses, in the past popular mostly in the medical field but
now widely adopted in all areas of science.
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However, reviews are very time-consuming and effort-
intensive. While there are no published statistics on the en-
tire review process (from idea to publication) we are aware
of, a study we are conducting with researchers from differ-
ent fields points to durations of 6 months to 3 years from
initial search to submission1. Review results should also be
updated periodically, but again the effort for doing so often
represents a barrier (Takwoingi et al. 2013).

In this paper we investigate the possibility of crowdsourc-
ing specific aspects of systematic literature reviews. We fo-
cus specifically on identifying the in-scope papers after ini-
tial literature search, and we investigate if and how this
phase can be sourced from the citizens, what are the best
strategies for doing so, and what is the resulting quality and
cost, both in general and compared with the case where the
same phase is done by the research team (typically, the co-
authors). This is a critical phase of a systematic review: not
only is it time-consuming (several people work on it, and the
combined person-month effort is of over two months), but it
is also where risk of bias lies.

More specifically, we contribute i) a probabilistic model
for reasoning over the problem, for tuning the parameters
of crowdsourcing tasks to minimize errors, and for pro-
viding review authors with information of budget vs error
trade-offs, and ii) a set of crowdsourcing strategies and al-
gorithms that minimize the classification error as we vary
the assumptions on the model and the model parameters.
Both the model and the strategies descend from experiments
run on Crowdflower2 and are mindful of what we can actu-
ally achieve with some of the practical constraints of typical
crowdsourcing platforms. Experiments on Crowdflower are
also used, in addition to theory and simulation, to validate
the results as well as to derive parameters for the typical
population of workers for this kind of tasks.

Last but not least, experiments provided many insights on
task design, such as how the problem should be framed to
increase participation and reduce errors, as well as actual

1Published data in the healthcare domain indicate that the me-
dian time from the final literature search to publication in a system-
atic review is 61 weeks - with the additional problem that over time
the list of candidate papers for inclusion becomes out of date and
needs to be refreshed (Sampson et al. 2008). However the paper
does not report on lag from initial search.

2www.crowdflower.com
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pay scales considered acceptable by the community.

Background and Related Work

PRISMA and Systematic Reviews

Before presenting our approach we summarize methods and
practices for systematic reviews. A systematic review fol-
lows a defined process and has transparency and clarity as
its focal points throughout the whole procedure (Khan et
al. 2003). This process usually includes (i) the definition of
a research question in a clear, structured and unambiguous
way; (ii) the identification of all relevant papers through a
search strategy that stems from the research question and
specifies inclusion and exclusion criteria; (iii) the critical as-
sessment of the included studies; (iv) the data extraction and
synthesis in a standardized form, possibly with statistical
analysis (meta-analysis); (v) the interpretation of the find-
ings and exploration of any risk for bias (Khan et al. 2003;
Wright et al. 2007; Harris et al. 2014; Henderson et al.
2010).

With the objective of increasing the quality of systematic
reviews and meta-analyses, the PRISMA statement (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses) was devised as a guideline to help authors report
their reviews in a clear and consistent way (Moher et al.
2009). As an evolution from the QUOROM statement (Mo-
her et al. 1999), PRISMA consists of a 27-items checklist
enumerating the details to report and a flow diagram show-
ing the phases of the selection process. Such statements are
often required in any systematic review today and are essen-
tial in the medical field, where poorly reported reviews can
potentially have an effect on people’s health. Indeed, Clini-
cal Practice Guidelines, i.e., “statements that include recom-
mendations intended to optimize patient care”, are “based
on systematic reviews of evidence” and should “be based
on an explicit and transparent process that minimizes dis-
tortions, biases, and conflicts of interest” (Steinberg et al.
2011). Therefore, omitted details and lack of transparency
can make this process difficult and contribute to low-quality,
misleading guidelines.

Crowdsourcing and Science

Crowdsourcing is being increasingly adopted as a tool for
supporting research (Law et al. 2017). There are literally
hundreds of citizen science projects that leverage crowd-
sourcing at one phase or another of the research, in all fields
of science, from biology to astronomy to human sciences
(Garneau et al. 2014; Swanson et al. 2015; Hennon et al.
2015; Lintott et al. 2008). The interest in citizen science
has generated a growing body of research on various as-
pects of the process, from understanding how researchers
perceive it (H. Riesch H 2014; Law et al. 2017), to the moti-
vations behind citizens’ participation (Eveleigh et al. 2014;
Frey and Jegen 2001), as well as process and system design
(Tinati et al. 2015).

While all aspects of citizen science research are some-
what interesting and related to this paper, one item of par-
ticular importance is the understanding of the conditions un-
der which researchers are motivated to (or deterred from)

adopting a crowdsourcing approach. A beautiful analysis of
these aspects is provided in (Law et al. 2017) who under-
score that one of the concerns is related to how reviewers
perceive crowdsourcing in research. In other words, crowd-
sourcing is viable if i) the authors feel that is feasible and
valuable for their specific research problem and ii) the au-
thors perceive that reviewers will find it acceptable. This is
relevant because literature reviews go through peer reviews
and as such the process needs to be accepted by reviewers -
and by the community.

The prior art also includes several “spot” attempts at
adopting some form of crowdsourcing in literature reviews.
These papers provided inspiration for us although in many
cases they are initial, one-off, and relatively small experi-
ments that do not study the variations of the results of crowd-
sourcing tasks in terms of its content and parameters, and
that in general do not have sufficient statistical power to de-
rive conclusions and guidelines.

Sun and colleagues (Sun et al. 2016) study the feasibil-
ity of leveraging crowd workers for extracting information
related to interventions from papers abstracts in biomedi-
cal domains. The authors observe that giving more concrete
examples in the instruction part can help workers be more
aware of the purpose of a task. A platform for crowdsourc-
ing narrative literature reviews is proposed by Weiss (Weiss
2016), along with insight about challenges appearing in sys-
tematic literature reviews in new domains. Nguyen et al.
(Nguyen, Wallace, and Lease 2015) propose an active learn-
ing approach to solving the problem of deciding whether or
not a paper is relevant to a review, with a mixed human+AI
approach. The authors tried to achieve maximum perfor-
mance at minimal cost by intelligently choosing between
crowd users and domain experts to minimize the expected
loss. They performed experiments on Amazon’s Mechanical
Turk to classify papers from four large datasets. For crowd
evaluation, classification is performed through majority vot-
ing.

Ng and colleagues (Ng et al. 2014) ran a randomized pilot
study aimed at exploring the accuracy of medical students in
performing citation screening via four different modalities,
namely a mobile screening application, paper printed with
titles and abstracts, a reference management software and a
web-based systematic review platform. Students were asked
to say whether a list of papers were included or excluded
from the scope of a review, based on a list of inclusion cri-
teria. In case of insufficient information, participants could
set papers as “unsure”. Participants had never conducted a
review, however they had some level of expertise in the field
and had received some training in the development of crit-
ical appraisal skills, which differs widely from asking to a
non-expert crowd to perform such a task.

Modeling and Classification

Extensive research, dating back to the 1700s, has addressed
the problem of eliciting reliable labels from a crowd, coping
with cheating behavior while keeping costs low (Karger, Oh,
and Shah 2011b; Whitehill et al. 2009; Smyth et al. 1995;
Karger, Oh, and Shah 2011a; Hirth, Hoßfeld, and Tran-Gia
2013; Liu, Ihler, and Steyvers 2013; Eickhoff and de Vries
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Sign Specification

CP = {p1, ..., pn} set of candidate papers
lpj vote by worker j on paper p
cr cost ratio
Nt #test questions
Nl #votes per worker (after passing test)
J #votes per paper
S scope of a review
UC cost per vote
PPP price per paper
z proportion of cheaters
as expected accuracy of workers
θi real proportion of papers in scope

Table 1: Notations used in the paper.

2013; Hirth, Hoßfeld, and Tran-Gia 2011).
One of the first scientists to study this was the Marquis

of Condorcet. Condorcet, in his famous Jury Theorem3 of
1785, discusses the probability of a group of persons taking,
collectively, the correct classification decision. He shows
that if the probability of a person taking the correct deci-
sion is greater than 0.5 and votes are independent of each
other, then the probability of taking a correct majority deci-
sion grows with the number of participants and approaches
1 at the limit (this is, in fact, a direct consequence of the law
of large numbers).

From there, a large body of work starting with (Dawid and
Skene 1979) and then on to (Whitehill et al. 2009), estimat-
ing labeling in the presence of items of different difficulties,
and (Liu and Wang 2012) who apply EM to labeling in the
presence of confusion matrix inspire our approach. We also
build on insights from Hirth and colleagues (Hirth, Hoßfeld,
and Tran-Gia 2013), who discuss the problem of cost opti-
mization providing information on which cheating detection
and task validation algorithms to choose based on the cost
structure of the task. Our work differs in that we seek for a
method to provide, for each task, review authors with a de-
scription of price vs error trade-off, an optimal choice of pa-
rameters for a given price, and a set of crowdsourcing strate-
gies that aim at minimizing error estimates. In other words,
we don’t ”simply” aim at classifying papers given the votes
from the crowd, but we identify the strategies to obtain such
votes by considering the price vs error trade-offs.

Model and Assumptions

Task Model

We consider a crowdsourcing task model that includes set of
candidate papers CP = {p1, p2, ..., pn} and a textual def-
inition of the scope of the review S. The task is performed
by workers in a pool of contributors. In practice this pool
is very large and for our purposes we assume it is infinite.
We then ask each worker j to label one or more candidate
papers as in (the paper is in scope or we do not have suf-
ficient evidence to exclude it from the abstract and title) or
out, based on S. In case of exclusion, workers are asked to

3http://www.stat.berkeley.edu/ mossel/teach/ SocialChoiceNet-
works10/ScribeAug31.pdf

Figure 1: Example of scope-based screening task.

provide reason to do so. Figure 1 shows an example task for
a review we recently completed.

The result of a task execution is a set of votes L = {lpj}
representing the binary vote of worker j on paper p. Given
the set of votes, we use a classification function cls(L) that
takes the individual votes and aggregates them to derive the
in/out decision for each paper.

Finally, we define the costs (loss) for each error: a cost for
a false exclusion Costfe (deciding that a paper is out when
it should have been in), and for a false inclusion Costfi. For
simplicity we model them as a cost ratio cr that defines how
more costly a false exclusion is with respect to a false in-
clusion. False exclusions are typically more costly since we
may be missing an important paper, while a false inclusion
“simply” means that experts will need to go over that paper
again. The value of cr depends on the subjective opinion of
review authors.

A run of a crowdsourcing task proceeds as follows4: first
each worker is shown a set Nt of test questions with known
labels. If the worker answers them correctly, they move to
the work phase, where they can provide useful votes (that
is, label unknown candidate papers). Even during the work
phase, test questions may be injected with a defined fre-
quency and the contributor is considered trusted (their re-
sults are not discarded) only if they keep answering the test
questions correctly. The run continues until a given number
of labels per paper J has been reached. We assume test ques-
tions are created by authors based on the problem at hand,
that is, based on a screening they perform over a handful of
papers. Typically, creating ten test items that include inclu-
sion and exclusion examples is sufficient for crowdsourcing
purposes.

In the simplest case a task will have just one run, but we
can envision that a run may leave us with uncertainty over
some papers and we may want to have additional runs fo-
cused on uncertain papers.

Last but not least, each task has a price. The price tag is af-
fected by: i) the unit cost per label (how much we pay work-
ers for labeling a paper or an exclusion criterion), ii) the total

4The choice of the model is also guided by what we can do
today with platforms such as Crowdflower
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number of votes asked, and iii) the number of test questions.
The first two are rather obvious, while the third requires an
explanation: with infinite workers, to get accurate results we
might simply have a very large number of test questions so
that we are sure that only trusted, competent workers remain
in the task. In many systems test questions are not paid, so
this costs zero. In practice this is not possible: the ethics of
this are questionable at best, non-cheaters would do a lot
of unpaid work, and we, as task providers, would get bad
ratings, impacting our future ability to crowdsource. In this
paper we take this into account by increasing the price per
judgment by a factor Nl+Nt

Nl
, where Nt is the number of ini-

tial test questions and Nl is the number of valid judgments
that a worker gives on non-test papers (i.e., the number of
votes from a worker who remains above the threshold tr).
This essentially states that people who pass the test are in
fact paid also for test questions. As Nl grows our factor be-
comes ineffective and others can be chosen, but in our case
Nl is small5. Alternative models can be derived, also includ-
ing a penalty for high test frequencies, but for presenting the
concepts and ideas of this paper this is sufficient. The clas-
sification cost for a paper is therefore expressed as follows,
where US is the cost per vote and Nl+Nt

Nl
is the corrective

factor:

PPP = UC · J · Nl +Nt

Nl
(1)

In the end we want to perform candidate paper selection
with high accuracy (minimizing the loss) and minimal price.
A specific point of interest lies in whether the crowd can
achieve an accuracy similar to (or better than) that of ex-
perts at a comparable cost, while ensuring transparency and
impartiality of the whole process.

Probabilistic Model

To reason about the model and identify strategies and pa-
rameters we define a probabilistic model that describes the
characteristics of i) tasks and ii) workers. Both come into
play to identify the optimal crowdsourcing strategy and to
set the crowdsourcing parameters.

With respect to the task, we model the following:

1. Our belief on the proportion of candidate papers that
should be included. This is important because it affects
the classification function. We do not assume that authors
necessarily have such a prior belief, and we discuss later
how this parameter can be set or estimated.

2. The difficulty level of each paper: we need to account for
the fact that not all candidate papers are equal, meaning
that some papers may be harder than others to classify. In
this paper we model difficulty with a uniform distribution
(which we can parametrize with a variety of priors, such
as the commonly used Beta(α, β) or priors as suggested
in (Whitehill et al. 2009)).

5In practice, depending on the task settings, it may not always
easy to enable a worker to label many papers due to the fact that
many concurrent workers access the task in parallel and the avail-
able work finishes very quickly.

With respect to the workers, we assume that in the worst
case workers answer randomly, which means a 0.5 probabil-
ity of a correct label. The proportion of cheaters is modeled
by a Bernoulli random variable Z. For non-cheaters, we ini-
tially assume a uniform accuracy from 0.5 to 1. The accuracy
probability function is therefore a mixture of a point mass at
0.5 and a density in the (0.5, 1) range.

pdf(a) = z · δ(a− 0.5) + 2 · (1− z) (2)

for 0.5 ≤ a < 1. In the function, δ is the impulse function,
while the uniform density is multiplied by 2 (as it is in the
(0.5, 1) interval only) and by (1 − z) as the density applies
only to non-cheaters. In this paper we do not include more
complex cases that include a confusion matrix or priors on
the initial probability, but the concepts can be extended to
that case.

Calculating error cost and price

Now that we have a model we can reason about strategies
for crowdsourcing literature reviews and assess them based
on assumptions we can make related to the model.

The goal is to i) identify which aspects of the model
impact the selection of strategies and results, ii) estimate
the model parameters (or at least refine our prior, when
available) based on actual experimental data, and iii) derive
which strategies can lead to good results in terms of error
cost (loss) and price. Because each problem is different (and
even varies also depending on how we title or present the
task, as discussed later), the statistical parameters will also
vary, so while we can inform our priors via experiments,
each task may have to refine the estimation on the go.

We begin by studying a simple version of the model and
a simple crowdsourcing strategy. In general, a crowdsourc-
ing task for literature review can be comprised of a number
of runs, where in each run k we submit a subset CPk of
the candidate papers CP to the crowd, collecting a given
number Jk of labels per paper. Furthermore, we start each
run with a belief Bk on the proportion of papers to be in-
cluded, if available (and initially assumed to be 0.5 if there
is no estimate). A run Rk is therefore defined by a tuple
(CP k, Nk

t , J
k, Bk).

In the simplest strategy the task consists of one run where
we submit all papers and seek for J votes per paper. A clas-
sification function will then classify the paper based on the
cost ratio cr, trying to minimize the loss while fitting within
an experiment budget.

The objective for the algorithm here, before even proceed-
ing with the classification, is to i) estimate the optimal values
for task parameters that we (as managers of the crowdsourc-
ing process) can play with, such as number of test questions
Nt, the requested judgments per paper J , and the classifi-
cation function, and ii) provide the scientists with a budget
vs expected loss curve, showing the error cost depending on
the budget, assuming that for each budget we choose the best
(lowest loss) configuration identified. The only input explic-
itly required by the authors is the cost ratio, which is subjec-
tive.
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The expected error cost (loss) for each paper is given by
formula 3, where P(FE) and P(FI) denote the probability of
false exclusion and false inclusion.

Loss = cr · P (FE) + P (FI) (3)

Considering that we obtain J judgments (votes) per paper,
if we decide to exclude a paper after we obtain Jt exclusion
votes or more for such a paper, the probability of a false
exclusion is given by equation 4, where θi is the (initially
unknown) probability that the correct decision for a paper is
inclusion, and as represent the expected accuracy of workers
who pass the test phase. The formulas descend from the ob-
servation that P(FE) = P (decision = exclude/correct =
include) · P (correct = include), and vice versa for P(FI).

P (FE) = θi ·
∑

Jt≤k≤J

(
J

k

)
· (1− as)

k · aJ−k
s (4)

P (FI) = (1− θi) ·
∑

J−Jt<k≤J

(
J

k

)
(1− as)

kaJ−k
s (5)

In this formula, θi is an unknown parameter we need to
estimate, as is also an unknown parameter on which, how-
ever, we can have some control by adjusting the test ques-
tions Nt to filter inaccurate workers, while J and Jt can be
set to optimize loss.

The accuracy as of the population that survives Nt tests is
distributed as follows: if we denote with zs the proportion of
cheaters in the population that survives the test, which can
be derived from Bayes (zs = P (test passed/cheater) ∗
P (cheater)/P (test passed)), then

Zs =
z · 0.5Nt

(z · 0.5Nt) + (1− z) 2
Nt+1 · (1− 1

2Nt+1
)

(6)

Consequently, by using again Bayes for deriving how the
accuracy of non cheaters, initially uniform, is reshaped by
the test questions, we obtain:

f t(a) = zs · δ(a− 0.5) + (1− zs)
2(Nt+1) · (Nt + 1)

2Nt+1 − 1
· aNt

(7)
for 0.5 ≤ a < 1

The expected accuracy as of this population is E[x] =∫ 1

0.5
x · f t(x)dx and is therefore shown in Equation 8.

as =
zs
2
+(1−zs)

2(Nt+1) · (Nt + 1)

2Nt+1 − 1
(
1− (0.5)Nt+2

Nt + 2
) (8)

Error minimization and error/price tradeoffs

We begin our discussion on algorithms by assuming a
single-run strategy.

Figure 2: Expected loss depending on the number of test
questions and of judgments per paper (real θi = 0.5).

Single-run strategy with simple majority voting.

In this approach we simply classify papers using majority
voting, which is the approach most commonly supported by
crowdsourcing platforms. For each combination of Nt, Nl

and J we can compute the total price tag of the experiment
as well as estimate the loss via equation 3, where Jt is set
to J/2 (rounded to the upper integer), as shown in Figure 2.
As we have no knowledge of θi, we assume a value (such as
0.5, though different values can be set if the task requester
has a prior belief). In practice, values of Nt and J over 10
result in near-zero error cost, so computing loss for higher
values can be easily done but is rarely needed.

The result can be plotted as done in Figure 3. The de-
cision of the optimal price/loss point is left to the user as
it depends on subjective considerations as well as available
budget. Each budget corresponds to an optimal choice of Nt,
Nl and J that fits in the budget with minimal loss, so that
once we have the requestor’s decision we can configure the
crowdsourcing task. Notice that for now we are assuming
that our initial guess of θi is correct.

We can then classify the paper using majority voting. Fig-
ure 4 shows the performance of this algorithm (denoted by
MV in the legend) in terms of expected loss, assuming an
initial run with five tests. Figures 4(b), top and bottom, dif-
fer from Figures 4(a) as we assume a more difficult set of
papers, in this case simulated by scaling down the accuracy
of non-cheaters to the 0.5-0.7 range. Furthermore, the top
charts have a lower values for J and cr. The increase with θi
here is due to the fact that this method does not consider the
cost ratio which typically penalizes false exclusions. There-
fore, error cost grows with the proportion of included papers.

Single-run strategy considering cost ratio.

The obvious improvement to the baseline is to consider the
cost ratio. This time, for each value of Nt and J we can
minimize the loss (according to equation 3) by selecting the
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Figure 3: Expected loss that can be achieved depending on
the budget (real θi = 0.3).

optimal value for Jt. Again, here we only “guess” a θi or
set it based on the requester belief (in the following chart
we assume an initial belief of 0.5). The minimization can be
done using classical minimization algorithms (Arora 2015)
but also by computing the values given that we have a small
number of discrete variables. For each combination we have
again a price point and we can plot again loss vs price chart,
ask the user to point to an acceptable compromise, determine
the parameters and run the task as for the previous case.

As we can see from the results in Figure 4(a) (the label
for this algorithm is SCR), this algorithm performs better
for high values of θi. For θi = 0.5 all algorithms behave
similarly as the initial assumption of θi = 0.5 holds, while
for low value of θi the loss is higher. This is because we tend
to err on the side of inclusion, so for low values of θi we get
higher errors. However for difficult papers where the accu-
racy is very low, the error actually grows with θi, because
the probability of false exclusion goes up and if workers are
not precise and we do many errors, we pay a price which is
not compensated by erring on the side of inclusion.

Single-run strategy with basic parameters
estimation.

The value of the parameters θi and zs plays a role in the
loss function, and the cost ratio is also important for deter-
mining the optimal classification function given the outcome
of a run (in our case, for determining Jt which is the only
parameter left to play with once we have concluded a run).
Therefore, we assume we can improve on the above method
by estimating θi. There are many ways in which this can be
done. One option is to again use majority voting but only for
performing an initial classification. Based on this, we com-

pute the proportion of included papers and take this as an
estimate for θi, more informed than an initial guess of 0.5.
We then compute the accuracy of each worker (as percentage
of “correct” answer based on majority voting classification),
and with estimates of θi and as, we then compute the opti-
mal value for Jt based on equation 3, and correspondingly
we know the minimal loss we can achieve for each price.

As we can see from the results in Fig 4(a) (the label for
this algorithm is BPE), this algorithm performs significantly
better than the previous ones for all values of θi except 0.5
(where the guess of the simpler algorithms is correct).

Single-run strategy with EM-based parameters
estimation.

We can improve on the above algorithm by iterating over
estimates of the parameters until convergence. A common
method for doing so is to leverage Expectation Maximiza-
tion (Dempster, Laird, and Rubin 1977; Dawid and Skene
1979). In our model, the data is presented as a Bayesian
network, where there are two types of variables: 1) the ob-
servable votes provided by workers, and 2) hidden variables,
such as θi, the workers’ accuracy, and the classification for
each paper. Via the EM algorithm we computes the correct-
ness of values given the accuracies of the workers that sup-
port it. See (Jeff Pasternack 2011) for the details and exam-
ples of EM-based for data aggregation. The results shown in
Figure 4 indicates that EM is equal to basic estimation and
slightly better when accuracy is low.

Multi-run Strategies.

The big limitation in all of the previous algorithms is that
we run the crowdsourcing task “in the dark”. We “guess” the
value of the parameters and, based on this, set the number of
tests and of judgments, leaving the optimization to the post-
task analysis phase, when the money has been already spent.
We can improve on this by running a small test-run whose
purpose is to obtain initial estimates for θi and zs. Once we
get initial estimates, we can compute and plot again the bud-
get vs loss chart, and based on the estimates and within the
confines of the budget, minimize the loss, but this time with
the ability to modify Nt and J based on the estimates. We
call this a horizontal multi-run strategy as we cut the list of
papers horizontally. The approach assumes that the initial
sample of papers is representative of the whole set, and in
absence of specific knowledge this means that we randomly
reshuffle the papers before selecting the initial P papers for
the estimation run.

The results are shown in Figure 5, depicting the price per
paper we can obtain with a multirun strategy that has the
same loss of a single run strategy, run with a budget of 7.5,
and optimized with EM-based algorithm. We can see that
for values of θi close to 0 or 1 a multirun strategy obtains
savings of approximately 20%.

Multi-run strategies are particularly important when the
difficulty of the task is unclear: the difficulty affects the ac-
curacy as pointed out in (Whitehill et al. 2009), so that pa-
pers in certain areas may get lower accuracy than others.
Similarly, we can apply a vertical multi-run strategy where
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Figure 4: Expected loss for each algorithm. With no difficulty bias (a) and with difficulty bias reducing worker accuracy to a
0.5-0.7 range (b). MV is majority voting, SCR is Simple strategy with cost ratio, BPE is basic parameter estimation, and EME
is expectation maximization. The simulation is based on 1000 papers, Nt = 5, Nl = 10, z = 0.3.

Figure 5: Price per paper with a multirun strategy that has the
same loss of a single run strategy at a price of 7.5, optimized
with EM-based algorithm. Shown for different values of θi.
Estimation based on Nt = 5, cr = 10, z = 0.3, run of 1000
papers.

we collect one vote on all papers, and use this to estimate
the parameters, and proceed with collecting a second vote,
and so on. We do not dicuss this further in this paper, but the
idea and methods are similar to the horizontal case.

Analysis via Crowdsourcing Experiments

In the winter and spring of 2017 we run a series of experi-
ments on Crowdflower to assess our results and estimate pa-
rameters based on actual crowdsourcing scenarios, as well as
to understand how such a task can be framed and how sensi-

tive it is to how we word the question or to the difficulty of
the papers.

We ran a total of 16 experiments with different settings,
asking workers to label a total of 50 papers taken from two
systematic reviews, one done by us in an area across com-
puter science and social sciences reviewing technology for
fighting loneliness, using fairly common terminology, and
the other in medicine (Veronese et al. 2017) having more
complex exclusion criteria, with 26 and 24 papers respec-
tively 6. We collected votes by 2896 respondents (807 of
which passed the test phases). The price of each label per
paper was also experimented, ranging from 0.22$ to 0.35$,
which corresponded to approximately 10 to 15 $/hour. The
purpose of the run was not so much to use Crowdflower to
get the results, but to understand the workers response in
terms of accuracy and speed on real tasks.

The first observation is that the price point is considered
acceptable by workers. Overall, the job was rated from 3.3
to 4 in a 5-point scale, and we understand from Crowdflower

6The detailed description of all experiments is available at
https://tinyurl.com/csexphc
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that this is above average. Interestingly, there is a high vari-
ance so that sometimes a lower pay resulted in higher rat-
ing for two different tasks with the same settings. Classifica-
tions based on exclusion criteria generally get higher ratings
for the same pay. On average the tasks attracted one worker
every 20 seconds. Because of the large pool of workers that
end up working concurrently, each worker cannot rate a high
number of papers simply because we quickly reach the de-
sired number of votes per paper.

Another observation is that the worker accuracy changes
a lot depending on the subject area. The paper in the medical
area, which included complex criteria for determining scope
or exclusion obtained an average accuracy of 59%, versus
83% for the technology paper. Interestingly, the accuracy
depends on the title we give to the task (”classify a text”
vs ”screen scientific papers”), probably as titles that convey
that the task is complex tend to discourage the casual worker,
and we know that workers correctly perceive task complex-
ity (Yang et al. 2016). If we word tasks properly and the
problem is sufficiently simple, then as shown by Equation 6
the average accuracy after just a few test questions is very
high, and classification errors, even using simple majority
voting, are low. In this case the classification can be very
precise and indeed, in our experiments, in half of the cases
(4) where we recorded an “error” from the crowd, the error
was on our side meaning that our “gold” data turned out to
be not so gold.

We can use the accuracy distributions as derived from
Crowdflower and feed them to the algorithms described ear-
lier to compute task settings for relatively easy and rela-
tively hard paper classification problems, and estimate loss
for, e.g., a maximum budget of 1$ per paper and a salary of
20cent per answer. For the medical domain case, the optimal
algorithm produces Nt=10 and J=2, giving a cost per paper
of 80 cents and an expected error loss for cr = 10 of 0.15 if
θi = 0.5. For reviews where the real θi = 0.1 the loss is 0.08
for a cost of 1$ per paper (optimal parameters are Nt = 7
and J = 3). For the (”easier”) technology review we can
instead reach a loss of 0.11 when the real θi = 0.5 (cost of
80cents per paper, Nt = 10, J = 2) and for real θi = 0.1
the loss is 0.08 for a cost of Nt = 6, J = 3, budget of 96
cents per paper.

Notice that 80 cents per paper is a reasonable figure (also
obtained with generous assumptions on the time actually
spent working on each paper - in practice it is probably pos-
sible to achieve lower costs): in our preliminary survey of
over 20 authors of recent literature reviews, respondents re-
ported an average of 1.5 person-months of effort spent in this
phase. For a typical screening of approximately 1000 papers
the price tag is therefore relatively low.

Summary and Limitations
The analysis indicates that crowdsourcing literature reviews
can be done with high precision and costs figures that are
reasonable with respect to what authors spend today in terms
of effort. Different algorithms can be used to identify the pa-
rameters of the crowdsourcing task and the best algorithm
we identified based on a multi-run strategy significantly out-
performs basic EM (with even larger margins when com-

pared with other simpler algorithms). The work has several
limitations: in this presentation we could only include a few
comparisons and discussions. As the model (and real life
scenarios) have many parameters, a more in depth discussion
and analysis is needed. Furthermore, a deeper understanding
of the accuracy as derived from Crowdflower is needed as it
is affected by many “little things” (as we experienced almost
by chance) such as the wording of the task title and content,
the type of papers, the availability of a rich set of exam-
ples for the worker, and so on. Algorithms still have room
for improvement, for example in terms of finding the opti-
mal number of papers to consider for the initial run of the
multi-run strategy. Furthermore, we have not discussed and
analyzed the impact of clarity and of ongoing tests submitted
to workers who pass the test phases. A detailed comparison
with actual errors performed when experts decide inclusion
and exclusion is also needed for a comprehensive evaluation
of the approach.
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