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Abstract

In the context of micro-task crowdsourcing, each task is usu-
ally performed by several workers. This allows researchers to
leverage measures of the agreement among workers on the
same task, to estimate the reliability of collected data and
to better understand answering behaviors of the participants.
While many measures of agreement between annotators have
been proposed, they are known for suffering from many prob-
lems and abnormalities. In this paper, we identify the main
limits of the existing agreement measures in the crowdsourc-
ing context, both by means of toy examples as well as with
real-world crowdsourcing data, and propose a novel agree-
ment measure based on probabilistic parameter estimation
which overcomes such limits. We validate our new agreement
measure and show its flexibility as compared to the existing
agreement measures.

1 Introduction

In many research fields, micro-task crowdsourcing has
proven to be an effective alternative/supplement to experts
and to automated techniques. A practical example is the
crowdsourcing of relevance judgments for Information Re-
trieval (IR) evaluation, where the relevance of a document
to a query is assessed by different crowd workers. This has
shown to be an effective, low-cost alternative methodology
for such a much needed manual activity in IR effectiveness
evaluation. It is common to assign the same task to multiple
workers and then to aggregate their answers by, for example,
majority vote.

Agreement amongst crowd workers is often overlooked,
yet it is an important index to assess the properties of the
gathered labels (Paritosh 2012), and to compute a final rel-
evance value from a group of judgments (Aroyo and Welty
2014). Another example of popular crowdsourcing tasks are
surveys, where asking for ratings over a multiple-level scale
(Likert scale) is common practice.

Measuring agreement among raters is not a new prob-
lem and many measures have been defined for that. How-
ever, all existing agreement measures have been originally
designed for controlled experimental settings where few ex-
pert assessors are asked to double-judge a small set of items
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to measure agreement (e.g., in the context of medical diag-
noses). The problem of defining a sound and robust measure
of agreement is challenging and multi-faceted: many mea-
sures have been proposed to address the problems of miss-
ing values, correction by chance, weighting judgment scale
in ordinal data, etc.

In this work we focus on interval data (like, e.g., rele-
vance scales), and on scenarios where a crowd of undiffer-
entiated and potentially always changing workers (like, e.g.,
on a paid micro-task crowdsourcing platform) judge a group
of items.

The majority of agreement measures is borrowed from
data reliability theory, where the reliability of a set of
grouped measurements is assessed via a comparison be-
tween the inter-group and the intra-group variability, and
where typically the judgments are made by a fixed set of
assessors. In the context of crowdsourcing, these measures
suffer from many problems when used to estimate agree-
ment instead of data reliability:

• The variability of the judgments is typically higher when
the judgments concentrate around the center of the scale.
This problem is intrinsic to finite scale judgments and can
lead to overestimating disagreement over items where the
truth concentrates around the scale boundaries.

• The values around which the judgments concentrate (if
any) can be different item by item. This can lead to over-
estimating expected disagreement and thus increasing the
possibility of considering the data as random.

• For some items a ground truth (e.g., ‘gold questions’ in
crowdsourcing) might be present, that is a value around
which judgments are expected to concentrate. This infor-
mation is typically not used by classic agreement mea-
sures.

• The global variability-based correction by chance leads
to many idiosyncrasies in the existing measures, making
them hard to use in a crowdsourcing setting.

Our goal in this paper is to address the aforementioned is-
sues, and to build a framework more suitable to estimate
worker agreement over a group of tasks in a crowdsourcing
context. The main contributions of this paper are:

• We define Φ, a novel measure of agreement for a group of
rating tasks.
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• We validate Φ against a set of known limitations of exist-
ing agreement measures via synthetic scenarios.

• We validate Φ on a real crowdsourcing dataset.
• We provide a Bayesian inferential framework to perform

statistical tests on the goodness of agreement.
This paper is structured as follows. Section 2 details the

state of the art by recalling existing agreement measures
and Section 3 describes the limitations of such measures.
In Section 4 we explain our proposal, Φ, a novel agreement
measure based on Bayesian parameter estimation. Section 5
shows the validation of our measure both on notable exam-
ples as well as on a real dataset. Finally, Section 6 summa-
rizes the paper, lists some current limitations of our measure,
and sketches future work.

2 Existing Agreement Measures

Many measures for computing agreement among annotators
are available in the literature. A first and straightforward
measure is percent agreement, which represents the portion
of cases in which the annotators agree, compared to the total
number of observations. This measure can be formalized as

ao =
number of cases coders agree (A)

total number of targets analyzed (N)
.

It can be trivially extended to more than two raters consider-
ing the ratio of pairwise comparisons with agreements over
the total number of possible pairwise comparisons, and to
multiple items by considering the mean of the per-item per-
cent agreement. In the rest of the paper, we will refer to the
pairwise percent agreement with ao. The main issue with ao
is that it does not take into account that some agreement can
arise by chance: as a consequence, the number of possible
values in the scale heavily affect this measure. Moreover, ao
only copes with nominal data.

Two very similar chance-corrected measures of agree-
ment were developed by Scott (1955) (Scott’s π) and Cohen
(1960) (Cohen’s κ). These measures consider the case of two
assessors, and assume a nominal scale for rating the items.
The difference between π and κ is that π assumes annotators
to provide answers following the same distribution.

Measures like κ are very popular in crowdsourcing ex-
periments to study agreement among workers completing
the same task (Aroyo and Welty 2014). However, Feinstein
and Cicchetti (1990) and Byrt, Bishop, and Carlin (1993)
criticized κ discovering that its value is affected by popula-
tion variability (i.e, the variability of the data). Furthermore,
Hutchinson (1993) claims that the value of κ is affected by
two different kinds of disagreement related to the workers’
bias (Banerjee et al. 1999).

To consider different “levels” of (dis)agreement (e.g., in a
medical domain, a disagreement between two doctors for a
diagnosis is more serious than a disagreement between one
doctor and a patient), a weighted version of κ has been pro-
posed by Cohen (1968).

A popular alternative to κ is represented by the Intra-class
Correlation Coefficient (ICC) proposed by Bloch and Krae-
mer (1989). This measure considers agreement when work-
ers have the same marginal probability of an answer. To deal

with different marginal distributions a modified version of κ
has been proposed by O’Connell and Dobson (1984). ICC
has proven to be equivalent to (weighted) κ under certain
assumptions (Banerjee et al. 1999; Fleiss and Cohen 1973).
Furthermore, an alternative version of κ was proposed to
deal with the case of multiple assessors (Fleiss 1971), and
for the case of ordinal scale of judgment (Cohen 1968;
Landis and Koch 1977).

More recently, Krippendorff (2007) attempted to gener-
alize all the previous agreement measures, considering the
cases of multiple assessors and of missing data, and dealing
with multiple scales (i.e., binary, nominal, ordinal, etc.); the
measure, called Krippendorff’s α, considers also a measure
of “reliability” of the data. The measure can be formalized
as

α = 1− observed disagreement (Do)

expected disagreement (De)
.

Here the expected disagreement De is used as estimator for
the disagreement by chance. We refer to Appendix A for a
detailed explanation on the computation of Do and De.

We decided to focus on two measures to use as base-
lines to compare our novel proposal: Krippendorff’s α (as
it generalizes and shares the same behavior of previously
proposed agreement measures like Cohen’s and Fleiss’s κ,
Intra-class Correlation agreement, Spearman’s correlation
ρ, and Scott’s π) and pairwise percent agreement ao (be-
cause it is complementary to other measures in terms of the
limitations it has). Our goal is to propose a novel agree-
ment measure that is able to overcome all the limitations
commonly displayed by existing measures when adopted in
crowdsourcing contexts.

Notation Given N items, each of them with M judgments,
Xij is the j-th rating of the i-th item:

X =

⎡
⎢⎢⎣
X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xd1 Xd2 . . . Xdm

⎤
⎥⎥⎦ .

For example, if we have: 4 documents with 5 relevance judg-
ments each, and a scale from 0 to 5, a possible judgment
matrix will be:

X =

⎡
⎢⎣
3 2 4 1 0
0 1 1 5 0
1 1 0 0 5
0 2 1 2 1

⎤
⎥⎦ .

3 Limitations of Existing Agreement

Measures

We focus now on detailing the limitations of the existing
agreement measures. From the exhaustive set of limitations
studied by Zhao, Liu, and Deng (2013), we identify the ones
that we deem more relevant in the context of crowdsourcing
and IR. Since Krippendorff’s α has the same behavior, in
terms of limitations, of the measures it generalizes (Cohen’s
and Fleiss’s κ, intra-class correlation agreement, Spearman’s
correlation ρ and Scott’s π) we will consider α in the rest
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of the paper, together to the somehow complementary (in
terms of limitations) percent agreement measure ao, which
we will use as baseline when α leads to unsatisfactory sce-
narios. It is important to notice that the only limitation ao
suffer from is a very important one (Random guessing can
be reliable/Correction by chance, as shown in the follow-
ing), and thus percent agreement cannot be considered as a
good candidate for a reliable agreement measure in crowd-
sourcing and IR. Using the same nomenclature of Zhao, Liu,
and Deng (2013), we focus on the following limitations:

1. Paradox: Random guessing can be reliable / Correction
by chance. Percent agreement (ao) does not take into ac-
count random chance agreement, which leads to a para-
dox: random answers can lead to obtaining a high agree-
ment score. Let us make an example; imagine a big num-
ber of workers (say 100) tackling a very difficult task,
using a binary relevance scale (i.e., 0 or 1). The task is
so difficult that their answers can be considered random.
The percent agreement will be ao = 50%, which is ex-
actly in the middle between complete agreement and dis-
agreement. On the other hand, if the relevance scale has
ten values, the percent agreement will drop to ao = 1%.
For the measures on this paradox in the following we will
assume to have 1000 tasks and 100 workers.

2. Paradox: Random guessing may be more reliable than
honest coding/Abnormality: undefined reliability. Ac-
cording to α, systematic agreement from honest workers
can be less reliable than random answers. For example, if
we measure a constant (e.g., the gravitational constant, the
speed of light, etc.) with perfect precision, we obtain as re-
sult of our measure the exact same score (i.e., ao = 100%
agreement). According to α’s definition, the measure is
not defined1, because De = 0 and Do = 0.

3. Abnormality: High agreement, low reliability. When us-
ing α, we can have high agreement, but low reliability.
Suppose workers have to judge 100 items, using a binary
scale; suppose the outcome is: agreement on 99 items (99
positive agreement2), and 1 disagreement. ao would re-
turn a 99% of agreement, but α = 0 because Do = De

(the specific value depending on the number of workers);
in fact, α assumes that the data is not reliable at all. This
toy-example points out that α mixes together two distinct
concepts: assessor agreement and data reliability.

4. Abnormality: Zero change in ao causing radical drop in
reliability. Suppose we run an experiment with 100 work-
ers and a binary scale (i.e., 0 and 1); suppose a first out-
come (a) of our experiment is 99% agreement (98 positive
agreement, 1 negative agreement) and 1% disagreement;
in this case we have that ao = .99 and α = .66.
Suppose now a second outcome (b) for our experiment,
with the same level of agreement (99%), but with a differ-
ent distribution: 99 positive agreement, 0 negative agree-

1Krippendorff claims that in this case the data should be con-
sidered completely unreliable (Kripendorff 2004, p. 425)

2If we have a binary scale (i.e., 0 and 1), we refer as positive
agreement/disagreement when there is agreement/disagreement
around the value of 1, negative agreement/disagreement vice-versa.

ment, and 1 disagreement; in this case, as before, we ob-
tain ao = .99, but α drops to zero because Do = De (the
specific value depending on the number of workers).

5. Abnormality: Eliminating disagreements does not im-
prove reliability. We run an experiment with 100 work-
ers and a binary scale (i.e., 0 and 1); suppose a first out-
come (a) of our experiment is 90% agreement (90 positive
agreement) and 10% disagreement; in this case we have
that ao = .90 and α = −.04.
We now move towards perfect agreement (b): suppose
98% agreement (98 positive agreement) and 2% disagree-
ment; in this case we have that ao = .98, but α = −.05.
If we now go from 98% to 99% agreement (c), α becomes
0, but if we reach 100% of agreement (d), α jumps to the
value of 1: this discontinuity is clearly not desirable.

6. Abnormality: Honest work as bad as coin flipping. Sup-
pose two workers have to identify 50 items in a larger
set of 60 items. One worker answers 60 times 1, (i.e., 10
false positives), the other one answers 40 times 1 (i.e.,
10 false negative); the outcome (a) thus is 40 agreement
(40 positive agreement), and 20 disagreement (20 positive
disagreement). In this case ao = .66 and α = −.19.
If workers now answer uniformly at random (b), we get
ao = 0.5, and α ≈ 0 (the value being exactly zero if the
realization of the random variable is perfectly uniform),
that would seem more reliable than the result (α = −.19)
obtained from honest workers.

7. Abnormality: Same quality, same agreement, higher relia-
bility. Suppose we have to judge 100 items, 50 positive, 50
negative; first outcome (a): 80 agreement (40 of the pos-
itive, 40 of the negative) and 20 disagreement (10 of the
positive, 10 of the negative). We get ao = .8 and α = .73.
Suppose the outcome where we switch the 40 positive
agreement to be negative (b): 80 agreement (0 of the posi-
tive, 80 of the negative) and 20 disagreement (10 of the
positive, 10 of the negative). We obtain ao = .8 and
α = .26. We obtained different measure values with the
same disagreement level.
Another example would be to “reverse the question” (e.g,
ask “how relevant is this document?” vs. “how NOT rel-
evant is this document?”); in the first case the judgment
could be:

X =

[
0 0 0 0 1
0 0 0 0 1

]

In this case we have that (c) ao = .33 and α = −.125. In
the second case, when we reverse the outcome, which is
equivalent to reverse the question (assuming identical and
coherent workers), the outcome (d) of the experiment is:

X =

[
0 0 0 0 1
1 1 1 1 0

]

In this case, ao = .33, as before, but α changes to .28.

8. Paradox: Punishing larger sample and replicability. Sup-
pose two coders, binary scale; 40 items to judge; the
outcome (a) is 30 agreement (20 positive agreement, 10
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Limitation ao α Φ

1 � - -
2 - � -
3 - � -
4 - � -
5 - � -
6 - � -
7 - � -
8 - � -

Table 1: The limitations considered in this work for ao and
α and Φ marked with “�” when the limitation is present.

negative agreement) and 10 disagreement. This means
ao = 0.75, α = .47.
If we make the data ten times larger we get 400 items; 300
agreement (200 positive agreement, 100 negative agree-
ment) and 100 disagreements; this means (b) ao = 0.75,
α = .46 (lower than before, but no decrease expected).
If we take 4 items, (2 positive agreements, 1 negative
agreement) and 1 disagreement, the outcome (c) is ao=
75%, α = .53 (higher than the first case).

Table 1 summarizes the above limitations. The proposed
measure Φ behaves correctly in all cases.

4 Our Proposal: Common Agreement Φ
We propose Φ, a measure for agreement of interval data that
is able to resolve the paradoxes and abnormalities of the
currently used measures, while still being able to perform
a substantial level of correction by chance. This new mea-
sure is therefore a better option for agreement in a crowd-
sourcing setting as compared to existing standard agreement
measures.

4.1 Intuition

For simplicity, let us first consider a single item with mul-
tiple judgments. The intuition behind Φ is connected with
the definition of agreement: we consider as agreement the
amount of concentration around a data value. Conversely, if
the data does not concentrate around a value then we have
disagreement (negative agreement in our measure), that can
be more or less strong depending on how polarized the dif-
ferent opinions are. More in detail, our approach can be
described as fitting a distribution to the histogram of the
judgments and then measuring the dispersion of such dis-
tribution. It is important to notice that the fitting distribution
has to be general enough to capture the main behaviors that
might occur: flat (random judgments), bell-shaped (agree-
ment), J-shaped (agreement around a value on the boundary
of the scale), and U shaped distribution (disagreement), as
shown in Figure 1. At the same time, the desired distribution
has to have a minimal number of parameters, to avoid over-
fitting. For this reason, we follow the approach of (Smithson
and Verkuilen 2006) and use a Beta distribution to perform
the fit: Φ is a transformed parameter of the Beta distribution
over the histogram of the collected answers. Such parameter

is related to the standard deviation of the fitted distribution,
with the difference that here we account for the finiteness
of the rating scale, and thus we adjust for the tendency of
having lower dispersion when the data concentrates around
a value on the boundaries of the rating scale. For example, if
we imagine a scenario where assessors add a random Gaus-
sian noise to the ground truth when making a judgment, we
can immediately see that the dispersion will be minimum
when the ground truth is on the boundary of the scale, be-
cause a Gaussian noise that would result is a judgment out-
side the boundary would be clipped.

Multiple Items The strength of our approach becomes ap-
parent when applied to a group of items to be judged: in the
case of relevance judgment tasks, each item i is allowed to
have a different average relevance value μi, while the agree-
ment among workers is defined as the common Φ that better
explains the judgment data. This allows to solve the prob-
lems that arise, in the other agreement measures, when try-
ing to correct by chance by using the dispersion of the whole
dataset as normalizing factor: this is the key to solve limita-
tions 2-8 of Table 1.

4.2 Beta Distribution

In order to formalize the definition of Φ, let us start by con-
sidering a single item i, judged by M workers. We assume
the judgments to be continuous on a finite scale: for simplic-
ity, we will consider the scale equal to [0, 1], simply achiev-
able by a scaling of the data. Discrete cases are considered as
a discretization of a continuous judgment intent. Given a set
of judgments, we might be tempted to use the standard devi-
ation (std) as measure of disagreement. But due to the nature
of bounded distributions, the dispersion of the data depends
also on the position of the mean of the data: as above men-
tioned, the dispersion will be lower on the boundaries than
on the middle of the scale. Capturing the case of multiple
documents with same data dispersion around different val-
ues would become problematic.

We can model quite a large set of distribution types using
a Beta distribution B(a, b). We can re-parametrize the dis-
tribution in terms of the mean value μ and the precision p as
in (Smithson and Verkuilen 2006), by setting:

μ =
a

a+ b
, p = a+ b.

This parametrization allows us to analyze separately the
mean value and the dispersion: when μ is fixed, the disper-
sion decreases as p increases. This allows to have a measure
of dispersion that is agnostic to the position of the mean,
solving the common problem of different dispersion for val-
ues close to the boundaries of the scale. Finally, we perform
a transformation that allows our measure to be comparable
with the existing measures by having the image in the inter-
val [−1, 1], with 1 corresponding to maximum agreement,
−1 to maximum disagreement, and 0 corresponding to uni-
form at random response:

Φ(p) = 1− 2
−p log 2

2 ,

and therefore we will refer to the Beta distribution B(μ,Φ).
Considering μ fixed, B(μ,Φ) can capture 4 major agreement
behaviors which are shown in Figure 1:
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Figure 1: Example of two Beta distributions with mean μ = 0.5 and 0.2 for four different values of agreement Φ.

High Disagreement. When Φ < 0, there is no central ten-
dency value but rather a tendency to exclude a central area
(polarized behavior).

Random. When Φ = 0, the behavior is equivalent with a
unbounded uniform process censored on the scale.

Weak Agreement. When 0 < Φ ≤ 0.5, the distribution has
no inflection point, but there is a unique central tendency
or a dispersion that is smaller than a uniform process.

High Agreement. When Φ > 0.5, the distribution is bell
shaped with two inflection points, more narrow around
the mean as Φ grows.

To summarize, in this context the Beta distribution is the nat-
ural choice to model interval data in a bounded interval in a
general enough way without the expenses of many parame-
ters, that would lead to overfitting. Moreover, the choice to
reparametrize in terms of μ and Φ allows us to model the
agreement in a way that is agnostic from the position of the
mean data value μ.

4.3 Model Assumptions

We develop now a simple inferential Bayesian3 framework
to compute the agreement Φ for a group of items i =
1, . . . , N and workers j = 1, . . . ,M 4 . We make the fol-
lowing assumptions:

Assumption 1. Worker j judges item i according to a
B(μi,Φ) distribution. This assumption is able to encom-

3We will discuss the corresponding non Bayesian approach in
Section 4.4.

4The number of workers can be different for each item, as ex-
plained later.

pass behaviors that are random, polarized or aggregated
around a mean μi as shown in Figure 1.

Assumption 2. Workers are indistinguishable and their be-
havior is independent from each other and from past judg-
ments.

Assumption 3. Items i = 1, . . . , N share a common sense
of agreement, in the sense that regardless on where the
central tendency (or even the complete polarization) is on
a specific item, the value of Φ will be shared by all work-
ers for all items.

While assumptions 1 and 2 are somehow standard, Assump-
tion 3 is the main fulcrum of the model: it allows a par-
simonious parametrization and aims to capture the com-
mon agreement or disagreement properties (if present) in the
group of items. For a more detailed analysis on this assump-
tion and its consequences see Section 4.6, where we show a
way to verify the goodness of this assumption.

Given these assumptions and a set of observed values
Xi,j , we obtain the following log-likelihood (i.e., the con-
ditional distribution over the observed judgments):

P(X|�μ,Φ) ∝
N∏
i=1

M∏
j=1

B(Xi,j |μi,Φ)
Oij ,

where Oij is equal to one if worker j rated item i, and zero
otherwise. We assign the following prior distributions on the
parameters:

P(�μ|σ2
μ) =

N∏
i=1

N (1/2, σ2
μI)

P(Φ|σ2
Φ) = N (0, σ2

Φ),
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where I is the identity matrix. If we do not have additional
information, we set the hyperparameters σ2

μ = σ2
Φ → ∞, to

express our initial absence of knowledge about the parame-
ters. For numerical reasons, it is suggested to simply set the
hyperparameters to a big number. In Section 4.7 we discuss
how to incorporate additional information about the items
(i.e., possibly available ground truth) in the model.

The predictive posterior distribution over Φ and �μ, given
the observed data X,O is then:

P(�μ,Φ|X) =

N∏
i=1

M∏
j=1

B(Xi,j |μi,Φ)
Oij

N∏
i=1

N (1/2, σ2
μI)N (0, σ2

Φ)C, (1)

where C is a normalization constant that does not depend on
the parameters.

4.4 MAP Estimation of Φ

To quickly obtain a simple estimator of Φ, we can now max-
imize Equation (1) to find the Maximum A posteriori Prob-
ability (MAP) estimate of the parameters. The measure of
agreement for a group of items is then

Φ̂ = argmax
Φ

P(�μ,Φ|X).

This operation is computationally trivial in modern comput-
ers, but does not allow to understand the confidence of the
estimation. This is why we recommend to sample from the
posterior distribution to obtain a robust estimation of Φ and
a confidence interval, as shown in Section 4.5.

Non Bayesian Approach. Taking the limit of the hyper-
parameters to ∞, the MAP estimates becomes equivalent
to a Maximum Likelihood Estimation, but we believe that
the Bayesian machinery of the next section is able to sig-
nificantly improve the usability of our model. Moreover, a
Bayesian approach allows to easily incorporate information
about the ground truth, as explained in Section 4.7

4.5 Sampling from the Posterior Distribution

We can obtain an estimate of the distribution of the param-
eters by sampling from the log-posterior P(�μ,Φ|X), and a
credible interval (akin to a confidence interval) to signal the
confidence of the agreement measure Φ.

In Figure 2 we show a representation of the inference re-
sults for the judgments of 17 documents. We generated a
small synthetic dataset, where the first document has an out-
lier on the right boundary, and the other 16 documents have a
clear central agreement. In the figure it can be see that docu-
ments 2-5 are replicated four times to get 16 documents that
have higher agreement. We can see that the model is forced
to find the best agreement level (dispersion of the Beta distri-
bution) that collectively explain all the data: while document
1 alone would have been fitted with a high disagreement (a
U shaped) Beta, the most probable Beta for the model to ex-
plain the whole dataset is the one where the first document

Figure 2: Inference result for a group of 17 documents (doc-
uments 2-5 are replicated four times). The thick green line
is the estimated Beta for each document, with the 95% HPD
interval curves surrounding the best estimate. The overall
agreement is high (0.77).

has an outlier. This reflects the way we perceive the agree-
ment level as humans, especially with a small set of data
samples, and allows to get a robust estimation of agreement
for group of documents.

Once the log-posterior distribution has been estimated, we
will be provided with an estimate of �μ and Φ and their 95%
Highest Posterior Density (HPD) intervals (the shaded re-
gions around the mean for μ and the thin lines around the fit
for Φ in Figure 2).

4.6 HPD Interval and Significance Testing

Similarly to a frequentist statistical test, once we have an es-
timate of the 95% HPD interval of Φ, we can claim to have
agreement (resp. disagreement) if the HPD interval is posi-
tive (resp. negative) and does not contain 0. See Section 5.2
for an analysis on the bias of the statistical test.
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If the HPD interval is very large, for example including
positive and negative values, it would mean that a measure of
agreement for the dataset cannot be reached, either because
a larger sample size is needed, or because the documents in
the dataset are very different in term of agreement: a dataset
clustering might be needed.

4.7 Incorporating Ground Truth

It is also possible to incorporate knowledge of the ground
truth gi for item i by simply setting up the prior:

P(μi|σ2
μ) =

N∏
i=1

N (gi, σ
2
μ),

with σ2
μ equal to a relatively small number (proportional to

the degree of certainty on the fact that the workers will ag-
gregate around that value). This will allow to better discrim-
inate outliers for that specific item.

A practical example is represented by the task of crowd-
sourcing relevance judgments of documents; we can use as
a ground truth the actual label (i.e., relevance value) of the
document. In this case the prior tells to the model the value
around which we expect the data should aggregate.

5 Validation

While our measure Φ has its ideal application in interval data
and crowdsourced data, we first validate it on the situations
(typically described in an IR context) where other agreement
measures are unsatisfactory.

5.1 Validation on Notable Examples

In this section we validate Φ against α and ao on the notable
examples where currently used measure prove to be unsat-
isfactory, as explained in detail in Section 3. Table 2 shows
the results. In the left column we refer to the examples where
the paradoxes and abnormalities described in Table 1 apply.
We compare the ability of the three measures to cope with
the paradoxes.

Results show that Φ is not affected by any of the para-
doxes considered, maintaining the same good behavior of
ao, without the problems of Paradox 1 and the lack of cor-
rection by chance (see Table 1).

5.2 Bias Analysis

Our model does not make the assumption that every item in
a group has the same μ. In this way the model manages to
capture agreement in cases where other measures fail to dis-
tinguish the data from the uniform distribution. This capabil-
ity comes at a cost: the increased statical power introduces
biases which we discuss next.

Number of Workers. When a small number of workers
is present, the inherent nature of subsampling from a uni-
form distribution will lead to overestimate the agreement for
a uniform at random behavior. That means that if a small
set of workers answer uniformly at random in the scale, we
will not be able to detect that by our method (type I error).
In Figure 3 an analysis of the bias of the estimator shows

Limitation ao α Φ 95% HPD

1 (*) 0.005 0.05 [.045,.053]

2 1 NaN 1 [1, 1]

3 0.99 0 1 [1, 1]

4a 0.99 0.66 1 [1, 1]
4b 0.98 0 1 [1, 1]

5a 0.90 −0.04 0.99 [.99, .99]
5b 0.98 −0.05 1 [1, 1]
5c 0.99 0 1 [1, 1]
5d 1 1 1 [1, 1]

6a 0.66 −0.19 0.89 [.69, .97]
6b 0.50 0 0.73 [.52, .88]

7a 0.8 0.73 0.7 [.6, .8]
7b 0.8 0.26 0.7 [.6, .8]
7c 0.33 −0.125 0.15 [-.4, .5]
7d 0.33 0.28 0.15 [-.32, .5]

8a 0.75 0.47 0.95 [.84, .99]
8b 0.75 0.46 0.97 [.94, .98]
8c 0.75 0.53 0.96 [.14, .99]

Table 2: Validation of Φ, with HPD intervals, using the ex-
amples shown in Section 3. Regarding limitation 1 (*), ao
can assume any value from 50% downwards, depending on
the number of discrete values in the scale.

that if, e.g., only 5 workers are used, there is a bias of about
0.5. This means that it is preferable to only consider strong
agreement (Φ > 0.5) as indication of agreement.

More work on the analysis of bias and correction of it is
left for future work, but it is important to notice that no sta-
tistical test with meaningful power (low type II error) would
be able to discern a uniform distribution hypothesis without
bias for a small number of workers. In other words, statisti-
cal tests that tend to correctly reject a uniform null hypothe-
sis will have low statistical power.

Discrete Values. When the data are discretized or col-
lected over a small number of discrete values, the inherent
nature of subsampling from a uniform distribution will lead
to overestimate the disagreement for a uniform at random

10 20 30 40 50
no. workers

0.2

0.4

0.6

0.8

1.0

T
yp
e
I
er
ro
r
fo
r
un

if
or
m

nu
ll
hy
p
ot
he
si
s

Figure 3: Φ estimator bias against uniform hypothesis.
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Figure 4: Agreement score vs ratio of the data-frame used
for the random sampling; the three curves represent the
progress of Φ, together with its HPD2.5 and HPD97.5.

behavior. That means that if a small group of workers an-
swers uniformly at random in the scale, our method will be
biased toward disagreement. From an analysis of the bias
analogous to the one carried out in the previous section, we
can conclude that this method is very robust when a scale of
at least 5 points is provided.

5.3 Performance Estimation

Using the python PyMC3 library (Salvatier, Wiecki, and
Fonnesbeck 2016), the estimation of Φ and its 95% HPD can
be computer in under a minute on 5 Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz cores for a group of 7000 items and
5 workers. To obtain a similar result (with a confidence in-
terval) for Krippendorff’s alpha it would be necessary to run
a bootstrapping on the whole dataset, that would require a
time of 3 orders of magnitude longer.

5.4 Validation on Real Data

To validate our measure experimentally we use the publicly
available dataset produced in (Gadiraju, Yang, and Bozzon
2017), comparing the agreement measures ao, α, and Φ.

The data consists of the evaluation of the clarity of the
instructions of a set of 7100 crowdsourcing tasks (belonging
to 6 distinct task types, as categorized in (Gadiraju, Kawase,
and Dietze 2014)), where each task has been judged by 5
undifferentiated workers. There is no expectation for tasks
of different types to have the same average clarity score, so
our Φ measure seems appropriate to estimate the agreement
of the whole set.

We check whether the measure is stable w.r.t to addition of
data, and how the HPD evolve. Figure 4 shows the evolution
of Φ varying the fraction of the dataset considered (100 ran-
dom subsample per point). The plot shows the estimated Φ,
HPD2.5 and HPD97.5. We can see that as the amount of data
available increases, the HPD interval shrinks. Following the
recommendations of Section 5.2, we are able to claim that
with 95% confidence there is significant positive agreement
in the data. Figure 5 shows ao, α and Φ (HPC interval omit-
ted) varying the fraction of the dataset considered in Fig-
ure 4. We can see that the three measures are very different;
ao is constant, no matter which sample ratio we consider; α’s
value drops as the sample ratio grows; this means the more

Figure 5: Agreement score vs ratio of the data-frame used
for the random sampling; the three curves represent the trend
of ao, α, and Φ.

items we consider, the more α consider the agreement to be
random; Φ, contrary to α, increases its value the more sam-
ple ration we consider; this means that for Φ, in this dataset,
some agreement arises if we increase the percentage of items
we consider.

6 Discussion and Future Work

6.1 Summary

In this paper, we discussed the limitations of the existing
agreement measures, which cannot deal with certain scenar-
ios frequently occurring in crowdsourcing settings. Thus, a
new agreement measure is needed. We then introduced Φ,
an agreement measure that is able to resolve the paradoxes
and abnormalities of the currently used measures, while still
being able to perform a substantial level of correction by
chance.

Φ is rather general in term of the data it can handle, but is
particularly adequate (if not ideal) for subjective tasks, i.e.,
tasks where the workers can legitimately express rather dif-
ferent judgments and the experimenter cannot expect the dif-
ferent documents’ judgments to aggregate around the same
mean.

Our experimental validation results show that for our
measures to achieve high confidence results, there should
be at least 5 workers per task, and the scale used should be
continuous or discrete with at least 5 points.

The software implementation of our proposed mea-
sure is available open-source at https://github.com/
AlessandroChecco/agreement-phi.

6.2 Limitations of Our Measure

Continuous Data Assumption. Our model assumes that
workers provide judgments in a continuous scale. If only
discrete values are available, the model considers the mea-
surement as a noisy discretization of a real judgment. This
can be a problem for very narrow discrete scales (e.g.,
{0, 1}). In such cases (i.e., agreement for binary classi-
fication tasks) a simpler agreement measure like percent
agreement or Cohen’s κ may be more appropriate.

Nominal Data. Our model heavily relies on a notion of dis-
tance amongst ratings. A relaxation to nominal data would
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probably be a stretch, but we leave this analysis for future
work.

Polarized Judgment. Our model considers a set of ratings
in disagreement when a central tendency cannot be found,
and the level of variability is bigger than uniform random
judgment. This is modeled with a beta distribution, so the
cases in which more than two peaks are present in the
judgment distribution might be considered more similar
to random selection than disagreement.

Single Item. While our model is well defined even for only
one item (especially considering the HPD interval on the
estimated agreement), it has high chance of over-fitting
the data in this case. This problem is shared with all other
measures. The same problem arises when too few items
(or workers) are present, but we argue that our model can
mitigate this limitation by providing a (potentially rather
large) HPD interval when the sample size is too small thus
alerting of the low confidence of the agreement measure.
In crowdsourcing experiments this is often not an issue as
many items and workers are typically considered.

Closed Form. Obtaining a closed form of the MAP and es-
pecially of the HPD interval is very difficult: it is usu-
ally necessary to numerically compute those with an op-
timization routine. With modern techniques of sampling,
this operation is feasible and not time-consuming.

Bias. While our technique decreases type II errors, it can
increase type I errors, especially for a small number of
workers and for a small number of possible values when
the scale is discretized. This can be expected, because no
test with high enough statistical power would be able to
discern a uniform distribution hypothesis without bias for
a small number of workers/scale values. Conversely, sta-
tistical tests that tend to always correctly reject a uniform
null hypothesis will have very low statistical power. From
a quick study of the bias (Section 5.2), we conclude that
having at least 5 workers and 5 values in the scale makes
the bias small enough for practical purposes.

6.3 Future Work

The proposed measure Φ solves many of the common is-
sues that arise when assessing agreement in crowdsourcing
settings, but is far from perfect. Possible directions of im-
provement for such techniques include:
• A more detailed analysis of the bias.
• The derivation of a closed form for the MAP.
• A more efficient implementation of the HPD estimator.
• A more extensive testing on real datasets.
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A Appendix - Computing Krippendorff’s α
We will follow the notation in (Honour 2016) to summarize
how to compute Krippendorff’s α.

Let R the set of potential responses that a judgment may
yield: R has to be a finite set. Note that in general this in-
formation might not be inferred from the data only, because
some values might never appear.

The judgments to a given item form a multiset (a set that
can have repeated instances) u. Let δ(c, k) be the (pseudo)
distance between judgments c and k, such that δ(c, c) = 0,
δ(c, k) ≤ 0, and δ(c, k) = δ(k, c). This function δ can be
defined in different ways, to account for nominal, interval, or
ordinal data (Krippendorff 2007). The average disagreement
within a multiset u is defined as:

D(u) =
∑
c∈R

∑
k∈R

δ(c, k)
W (u, c, k)

P (|u|, 2) ,

where |u| is the cardinality (number of judgments5) of mul-
tiset u, P (·) is the function that computes the number of per-
mutations of the judgments, and W (u, c, k) is the number of
ways to make a pair containing c and k from multiset u.

The average disagreement is then computed for each item
individually and averaged across all items (weighted by the
number of judgments per item) to compute the so-called ob-
served disagreement:

Do =
∑
u∈U

|u|
|V | D(u),

where V is a combined multiset (using the multiset sum �)
containing the judgments of all items:

V =
⊎
u∈U

u.

The expected disagreement is the average disagreement of
all possible judgment pairs: De = D(V ). Finally, Krippen-
dorff’s α can be computed as:

α = 1− Do

De
.

For example, let us consider the following data, where 4 over
5 assessors agree:

X =

[
0 0 0 0 1
1 1 1 1 0

]
.

The set of responses R here is {0, 1}. We can choose a func-
tion for δ as follow:

δ(c, k) =

{
c = k 0

c �= k 1.

We then collect the results of the observations as a multiset
of item multisets:

{{0, 0, 0, 0, 1}, {1, 1, 1, 1, 0}},
5The number of judgments for an item has to be larger than one,

otherwise the agreement for that item is undefined.
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from which we can determine:

V = {0, 0, 0, 0, 1, 1, 1, 1, 1, 0}.
Now it is possible to compute the expected disagreement:

De = D({0, 0, 0, 0, 1, 1, 1, 1, 1, 0}),
the summations is computed over all possible pairs of values
of R, which in this case are (1, 1), (1, 0), (0, 1) and (0, 0).

Consider the term for the pair (1, 1):

δ(1, 1)
W(V, 1, 1)

P(|V|, 2) ) = 0,

since δ(1, 1) = 0. With the same reasoning we can conclude
the contribution from (0, 0) is also 0.

Consider the term corresponding to the pair (1, 0):

δ(1, 0)
W(V, 1, 0)

P(|V|, 2) ) = 1
5× 5

90
=

5

18
,

that is invariant to the order of the pair and thus the contri-
bution due to (0, 1) is also 5

18 .
Now we can compute:

De = 0 +
5

18
+

5

18
+ 0 =

5

9
,

and the observed disagreement is:

Do =

(
5

10
D({0, 0, 0, 0, 1}) + 5

10
D({1, 1, 1, 1, 0})

)

=

(
5

10

(
2
1× 4

20

)
+

5

10

(
2
4× 1

20

))
=

2

5
.

Using these results we can calculate:

α = 1− 2

5
· 9
5
=

7

25
= 0.28.

According to (Kripendorff 2004), the data are not reliable,
because α < 0.667, even if four over five assessors agree
for both items.
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