
Dynamic Filter: Adaptive Query Processing with the Crowd

Doren Lan, Katherine Reed, Austin Shin, Beth Trushkowsky
Department of Computer Science

Harvey Mudd College
Claremont, CA

dlan@hmc.edu, kireed@hmc.edu, ashin@hmc.edu, beth@cs.hmc.edu

Abstract

Hybrid human-machine query processing systems, such as
crowd-powered database systems, aim to broaden the scope
of questions users can ask about their data by incorporating
human computation to support queries that may be subjective
and/or require visual or semantic interpretation. A common
type of query involves filtering data by several criteria, some
of which need human computation to be evaluated. For exam-
ple, filtering a set of hotels for those that both (1) have great
views from the rooms, and (2) have a fitness center. Criteria
can differ in the amount of human effort required to decide if
data satisfy them, due to criterion’s subjectivity and difficulty.
There is potential to reduce crowdsourcing costs by ordering
the evaluation of each of the criteria such that criteria need-
ing more human computation are not processed for data that
have not satisfied the less costly criteria. Unfortunately, for
queries specified on-the-fly, the information about subjectiv-
ity and difficulty is unknown a priori.
To overcome this challenge, we present Dynamic Filter,
an adaptive query processing algorithm that dynamically
changes the order in which criteria are evaluated based on
observations while the query is running. Using crowdsourced
data from a popular crowdsourcing platform, we show that
Dynamic Filter can effectively adapt the processing order and
approach the performance of a “clairvoyant” algorithm.

Introduction

The availability of micro-task crowdsourcing platforms like
Amazon’s Mechanical Turk (AMT) that provide a program-
matic interface to recruit workers for human computation
tasks has led to the development of applications and sys-
tems that directly incorporate human knowledge, experi-
ence, and perception. Recent work investigates using this
“crowdsourcing” within query processing systems such as a
database management system (DBMS) to broaden the scope
of questions users can ask about their data (Franklin et al.
2011; Marcus et al. 2011b; Parameswaran et al. 2012b). This
work on hybrid human-machine query processors aims to
enhance traditional machine algorithms with human com-
putation to support queries that may be subjective and/or
require visual or semantic interpretation. This paper fo-
cuses on an important operation of a crowd-powered query

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

processor: filtering a set of data by several criteria, called
predicates, some of which need human computation to be
evaluated. Notably, different predicates can require different
amounts of human effort, due to factors such as the subjec-
tivity of the predicate and the difficulty in evaluating it.

To illustrate this, consider the following query that is well-
suited for a crowd-powered DBMS. Given a list of hotels,
return those hotels that satisfy all three of these constraints,
or predicates: (1) has a gym that is open 24 hours a day, (2)
has a nice view from the room, and (3) is located within a
mile of a metro station with a direct line to downtown.

This simple query demonstrates several important fea-
tures that can influence the most efficient way to process
a query with the help of human computation. First, it may
take a worker more time and effort to evaluate some pred-
icates for a particular hotel. In this case, it may be easier
to check a hotel’s website for gym hours than it is to map
out transit options. Second, predicates may have differing
levels of subjectivity; determining if a hotel has the desired
atmosphere may require aggregating the opinions of multi-
ple workers, a process that further increases the amount of
work to be done to evaluate that predicate. A key observa-
tion from this example is that a hotel that does not pass the
gym requirement, which is cheap for a worker to evaluate,
does not need to be checked for either of the expensive pred-
icates, demonstrating the importance of the predicates’ order
of execution.

However, for queries specified on-the-fly, predicates’ sub-
jectivity and difficulty, as well as their likelihood of evalu-
ating to true or false, i.e., their selectivity, are statistics that
are unknown a priori. This property of the execution envi-
ronment prevents us from constructing an optimal ordering
of the predicates based on predicate rank (Hellerstein and
Stonebraker 1993). An ordering which first processes pred-
icates that are expensive and likely evaluate to true could
result in wasted work and unnecessary cost to the user.

To evaluate crowd-powered queries with multiple predi-
cates for which the aforementioned statistics are unknown
at query time, we take an adaptive query processing ap-
proach (Deshpande, Ives, and Raman 2007): we dynami-
cally change the order in which predicates are evaluated
while the query is running, based on information gath-
ered during runtime. To this end, we propose the Adaptive
Crowd-Filtering problem that decides on-the-fly the order

Proceedings of the Fifth Conference on
Human Computation and Crowdsourcing

(HCOMP 2017)

118

of processing of predicates for each item in the data; the
decision for the next item is based on observations about
the selectivity and amount of work required for previously
processed items. We then present Dynamic Filter, an adap-
tive algorithm that alters the predicate execution order with-
out needing to explicitly measure statistics like selectivity
and amount of work. Instead of direct measurements, the
algorithm uses proxies for each statistic. A clogged “input
queue” for a predicate indicates it requires a lot of work.
Selective predicates are prioritized in a lottery scheduling
scheme adapted from work on adaptive query processing
(Avnur and Hellerstein 2000); a predicate is given a “ticket”
when an item does not satisfy it, a reward for obviating the
need for further processing on that item by other predicates.

Using crowdsourced data gathered from AMT, we show
that Dynamic Filter can effectively adapt the predicate pro-
cessing order and approach the performance of a “clairvoy-
ant” algorithm that knows the optimal ordering a priori. In
summary, the contributions of this paper are:

• A formal definition of the Adaptive Crowd-Filter prob-
lem, which is the challenge of filtering data based on mul-
tiple predicates without a priori knowledge of statistics
like predicate selectivity or work required.

• The Dynamic Filter algorithm for reordering predicates
that addresses the Adaptive Crowd-Filter problem without
directly measuring runtime statistics.

• An evaluation of Dynamic Filter using crowdsourced data
gathered from AMT, a popular human computation plat-
form for micro-tasks.

The paper is organized as follows: first we provide back-
ground and elaborate on the properties of filtering data with
the crowd that motivate our adaptive approach; we follow
that with a discussion of how our work relates to existing
work. We then provide a formal definition of the Adaptive
Crowd-Filter problem and we describe the Dynamic Fil-
ter algorithm. We discuss experimental results using crowd-
sourced data before we conclude.

Background and Motivation

On human computation platforms like Amazon’s Mechan-
ical Turk (AMT), workers complete small units of work
called micro-tasks, or tasks, posted by requesters in ex-
change for payment. It is common crowdsourcing practice
to have multiple workers complete the same task and aggre-
gate the responses for quality management purposes (Sheng,
Provost, and Ipeirotis 2008; Ipeirotis, Provost, and Wang
2010). Tasks that are more subjective or ambiguous may
require more tasks to reach consensus. Furthermore, some
tasks may take longer due to difficulty or amount of worker
effort needed; workers may also abandon difficult tasks.

For crowd-based filtering, tasks involve evaluating if a
given data item satisfies a given predicate. Thus qualities of
the predicates influence how long a query will take to pro-
cess and how many tasks will be required: subjective pred-
icates may require more tasks and difficult predicates will
influence the time it will take to process. Number of tasks
and processing time are aspects of the query’s cost.

The hotel example described earlier illustrates that it is
possible to avoid processing a costly predicate for a given
item if that item has already been disqualified by another
predicate. The likelihood that a predicate will return true or
false is known as predicate selectivity. However, the cost
information, as well as the selectivity, is unknown when a
query begins execution. This is because the query is ad hoc,
i.e., specified on the fly as the user decides what query they
want to run. It is a goal of crowd-powered query processing
systems to support these ad hoc queries. Work investigating
optimization for crowd-powered DBMSs (Park and Widom
2013; Fan et al. 2015) assumes these statistics are known.

Another challenge is that the environment in which the
crowd-powered filter query would be running may change
over time. Workers on platforms like AMT decide when they
want to complete tasks. Workers typically choose to com-
plete different numbers of tasks as well; a few typically do
a lot of tasks, while many choose to do only a few (Heer
and Bostock 2010). This shifting of the crowd could cause
the cost of predicates to change due to different worker ap-
proaches to tasks.

An adaptive query processing algorithm can tackle both
(1) the lack of prior statistics that inform an optimal pred-
icate ordering and (2) the changing of those statistics over
time by periodically observing runtime performance and ad-
justing its strategy over time.

Related Work
The work in this paper is done in the context of crowd-
powered database management systems (DBMSs), such as
CrowdDb (Franklin et al. 2011), Deco (Parameswaran et al.
2012b), and Qurk (Marcus et al. 2011a). In a traditional
DBMS, finding an efficient execution strategy for a query
(a query plan) is the role of a cost-based query optimizer,
which involves finding an order for operations on the data
(Chaudhuri 1998). There has been recent work in query opti-
mization for crowd-powered DBMSs. The CrowdOp system
(Fan et al. 2015) devises a low-cost query plan that orders
crowd-based operations such as combining data (JOIN), fill-
ing in missing data (FILL), and filtering data (SELECT).
The authors investigate optimizing for monetary cost and
latency given a crowdsourcing budget. Park and Widom
(2013) look at estimating the size of intermediate results
when executing a query, the cost of which is influenced by
how much more crowdsourced data is required in addition to
pre-existing data. The work done by Park and Widom (2013)
and in CrowdOp (Fan et al. 2015) assumes selectivity infor-
mation is known when constructing a query plan and does
not adapt to a changing environment.

Some work in crowd-powered DBMSs has looked into fil-
tering data with the crowd. In CrowdScreen (Parameswaran
et al. 2012a), the authors look at incorporating a filter’s se-
lectivity as well as workers’ false positive and false negative
error rates to determine a strategy that minimizes the num-
ber of questions asked to the crowd while keeping the total
error below a threshold. In follow-up work to CrowdScreen
(Parameswaran et al. 2014), the authors incorporate individ-
ual worker abilities as well as per-item selectivity informa-
tion into their approach. However, selectivity information is

119

assumed to be known. Work on CrowdFind (Das Sarma et
al. 2014) investigates the cost versus latency tradeoff for fil-
tering with the crowd to find k items that satisfy a predicate.
The authors look at asking the crowd about items one-at-a-
time and stopping after k are found, versus parallelizing by
sending items to multiple workers at once. They do not con-
sider the ordering of multiple predicates. Work on counting
with the crowd (Marcus et al. 2012) investigates user inter-
faces for asking the crowd to estimate how many items in a
set satisfy some constraint. In our work, we filter data on-
the-fly without first asking the crowd to estimate selectivity.

Adjusting a query plan while the query is running is the
goal of adaptive query processing (see Deshpande et al.
2007 for a survey). In this work we adapt techniques from
the “Eddies” work (Avnur and Hellerstein 2000), an adaptive
query processing approach that considers the order of oper-
ations for each item that is processed. Similar to Eddies, our
approach does not directly measure selectivity or cost, as op-
posed to other adaptive query processing approaches which
sample selectivity to re-adjust the query plan, such as the
work by (Babu et al. 2004). We elaborate when we discuss
our approach later on.

AskSheet (Quinn and Bederson 2014) is a spreadsheet ap-
plication that can ask crowd workers to fill in cells. The ap-
plication decides which cells to ask about first based on the
estimated probability it will need that information to com-
pute the user’s final result; this saves overall crowdsourcing
cost when some cells do not need to be crowdsourced. How-
ever, AskSheet does not consider if cells have different costs
due to differing levels of ambiguity, nor how cost and se-
lectivity could change over time, and makes some uniform
distribution assumptions.

Recent work in micro-task assignment and scheduling in-
volves choosing a worker for a task based on expertise,
required skills, or history of performance in order to sat-
isfy a quality objective, e.g., (Yuen, King, and Leung 2011;
Ho and Vaughan 2012; Nunia et al. 2013; Rajan et al. 2013;
Karger, Oh, and Shah 2014; Basu Roy et al. 2015), and
scheduling tasks across work for multiple requesters (Di-
fallah, Demartini, and Cudré-Mauroux 2016). Our work fo-
cuses on efficiency and does not assume workers have ex-
pertise; we also focus on efficiency for a single query.

Adaptive Crowd-Filter Problem

In this section we propose the Adaptive Crowd-Filter prob-
lem to filter data with multiple constraints called predicates.
Properties of the predicates, namely their cost and selectiv-
ity, contribute to the efficiency of the filtering process. With
these properties unknown at query time, the objective of the
Adaptive Crowd-Filter problem is to adjust how the query
is being processed to increase efficiency and thereby reduce
overall query cost.

We first provide definitions and formalize the objective.
We then discuss the role of predicate ordering in reducing
query cost, and detail a general form for an algorithm ad-
dressing the Adaptive Crowd-Filter problem. Our particular
approach follows in the next section.

Preliminary Definitions

A query is a set of predicates Pred with which to filter a set
of data items D. We assume the set of predicates is known
and each is a question with a yes or no answer, e.g., from
a declarative query specified in SQL; extracting predicates
from natural language is an interesting area of future work.

Predicates are boolean functions that yield true or false for
a given item, indicating whether an item satisfies the pred-
icate. More formally, for a predicate p and a given item i
to process, p(i) ∈ {1, 0}, where 1 and 0 represent true and
false, respectively. Evaluating a query yields Dresult ⊆ D,
the set of items that satisfy all predicates in Pred:

Dresult = {i ∈ D|∀p∈Pred, p(i) = 1}
The selectivity of a predicate p represents the likelihood that
p will yield 1. A predicate with a low selectivity value would
evaluate to false for many items; such a predicate is consid-
ered to be selective. The selectivity of p is estimated as:

selectivityp =

∑
i∈D p(i)

|D| (1)

In the crowd-filter context, a task involves a single worker
evaluating a particular item i with a particular predicate p;
we will call {i, p} an item-predicate pair. Having each task
be for one item-predicate pair instead of, say, evaluating all
predicates for a given item allows the query processor to
avoid evaluating a costly predicate for an item if that item
has already failed a different predicate. As mentioned earlier,
it is common practice to aggregate the responses from differ-
ent workers for the same task to decide on the final outcome.
Multiple approaches exist for aggregating responses; in our
evaluation we use the approach from Sheng et al. (2008).

Let Tasksi,p be the set of tasks needed to reach consensus
about whether item i satisfies predicate p. Each task t ∈
Tasksi,p has an associated cost costt, a value which can
be a metric such as the time in seconds it took a worker to
complete the task, the reward paid to the worker for the task,
or simply 1 to signify that each task has equal weight. We
can define the cost of evaluating an item-predicate pair as
the sum of costs of the tasks to reach consensus:

cost(i, p) =
∑

t∈Tasksi,p

costt (2)

And the overall query cost as the sum of costs for each item:

query cost =
∑

i∈D

∑

p∈Pred

Ii,p ∗ cost(i, p) (3)

where Ii,p ∈ {0, 1} is an indicator variable that signifies
whether item i needed to be processed by predicate p. Note
that this expression for query cost is an observed value, not
an estimated or expected value.

Predicate Order to Minimize Query Cost

The objective of the Adaptive Crowd-Filter problem is to
minimize the cost of the query from Equation 3, given that
selectivity and cost information (Equations 1 and 2, respec-
tively) is unknown at the time the query is executed. The key

120

to minimizing query cost is to schedule items to be evaluated
by each predicate in an order that avoids processing costly
predicates as much as possible.

Let (p1, p2, . . . , p|Pred|) be an ordering of the predicates
in Pred such that an item i is processed by pj+1 if and only
if pj(i) = 1. Intuitively, if each predicate had equal (known)
cost, the optimal processing order would be in ascending or-
der of predicate selectivity. To illustrate this idea, suppose
two predicates p1 and p2 have selectivities 0.1 and 0.75, re-
spectively. When ordered (p1, p2), p1 will process |D| items
and p2 will process 0.1|D| items. If ordered (p2, p1), p2 pro-
cesses |D| items and p1 does 0.75|D|. The latter ordering
results in more item-predicate pairs to be evaluated and thus
higher query cost. A similar analysis could be done for or-
dering predicates with equal selectivity to yield an ordering
that is in ascending order of predicate cost.

For predicates with varying cost and selectivity, an op-
timal predicate ordering is in ascending order of predicate
rank (Hellerstein and Stonebraker 1993), where rank is:

predicate rank =
selectivity − 1

cost per item

The notion of predicate rank illustrates the importance of
both selectivity and cost in reasoning about ordering predi-
cates. The work in this paper addresses a query processing
environment in which both statistics are unknown at query
time, a challenge for predicate ordering.

Task Assignment in Adaptive Crowd-Filter

This work targets a crowdsourcing environment like Ama-
zon’s Mechanical Turk (AMT) in which workers arrive and
choose to complete tasks. Given this environment, the Adap-
tive Crowd-Filter problem can be thought of as iterative task
assignment: for the next requested task for a filter query,
which item-predicate pair should the task contain? Algo-
rithm 1 shows the iterative process of choosing the next
task. The first two lines of Algorithm 1 initialize the state
by setting up all possible item-predicate pairs in the map

Algorithm 1: Iterative task assignment
Input: Set of items D and set of predicates Pred

1 Map ipPairs ; /* map pred. → items */
2 foreach predicate p ∈ Pred do ipPairs(p) ← D;

3 repeat
4 w ← workerArrival();
5 item,pred ← chooseNextTask(w,ipPairs);
6 w.doTask(item,pred);
7 ipPairStatus ← aggregateVotes(item,pred);

8 if ipPairStatus is a consensus for false then
9 foreach predicate p ∈ Pred do

10 ipPairs(p) ← ipPairs(p) - item
11 end

12 else if ipPairStatus is a consensus for true then
13 ipPairs(pred) ← ipPairs(pred) - item;
14 end

15 until no item-predicate pairs remain in ipPairs;

ipPairs, which maps each predicate to the set of items it
has left to process. The loop (lines 3-15) iteratively chooses
the next task for a worker until there are no item-predicate
pairs remaining in ipPairs. The choice of the next item-
predicate pair is made on-demand when a worker requests
a task (lines 4-5); workers should be prevented from eval-
uating the same item-predicate pair multiple times. We do
not assume worker expertise. After the worker evaluates
whether the selected item satisfies the selected predicate,
his/her vote is aggregated with all other votes for that item-
predicate pair to determine if the pair has enough votes to
reach a consensus (lines 6-7). If consensus is reached, the
item is either (1) removed from all predicates’ set of items
left to be processed, if the consensus was false, or (2) re-
moved from just the selected predicate’s set of items (lines
8-13). Otherwise the item-predicate pair needs to be pro-
cessed by another worker.

The former case regarding consensus is the scenario in
which query cost savings are realized: when an item does
not satisfy one of the predicates, it no longer needs to be
processed by any remaining predicates. The challenge for
implementing chooseNextTask() is to route items first
towards less costly, more selective predicates. With cost and
selectivity statistics unknown a priori, this effort includes
learning these statistics and adapting the routing choices as
the query is running.

Dynamic Filter Algorithm

We now present Dynamic Filter, an adaptive algorithm for
crowd-based filtering with multiple predicates. As described
in the previous section, ordering of predicates based on se-
lectivity and cost may decrease the number of required tasks
and thus the algorithm should route items first to predicates
that are selective and have lower cost. To this end, Dynamic
Filter learns and adapts to knowledge about predicates’ cost
and selectivity. In choosing the next item-predicate pair
in chooseNextTask(), Dynamic Filter explores predi-
cates’ behavior to refine its model of costs and selectivities
while exploiting its current notion of the best predicate or-
dering based on that model; this exploration and exploitation
process is similar to a multi-armed bandit problem (Berry
and Fristedt 1985).

We begin with an overview of Dynamic Filter’s workflow
and then describe in more detail the aspects of the algorithm
for choosing the next item-predicate pair for a worker to
evaluate.

Workflow Overview

Rather than explicitly updating estimates of cost and se-
lectivity for each predicate, computing predicate rank, and
then deciding how to balance exploration versus exploita-
tion, we adapt techniques from work on Eddies in adaptive
query processing (Avnur and Hellerstein 2000) to use other
state as proxies for these statistics. Dynamic Filter uses these
proxies to choose the next item-predicate pair, incorporating
exploration while moving the algorithm towards a low-cost
and selective predicate ordering; this process is done without
needing to maintain cost or selectivity information.

121

Figure 1: Routing items. Dotted arrows represent when the
item satisfies the predicate, and dashed lines indicate where
the item is routed when it fails a predicate.

The diagram in Figure 1 depicts how Dynamic Filter de-
cides which predicate an item should be sent to for process-
ing. We first describe the flow before elaborating on the role
of the lottery and queue below. To determine which pred-
icate a given item should be sent to, a “lottery drawing”
is held; this is a lottery scheduling approach (Waldspurger
and Weihl 1994). Initially each predicate has a single lottery
ticket and thus is equally likely to win. The item is placed
on the queue for the winning predicate and that predicate
is given another ticket. Once the item has enough votes to
reach consensus about whether it satisfies the predicate, the
item is routed as follows: if the item fails the predicate, it
needs no further processing; otherwise, the predicate must
return its ticket and the item returns to the lottery to be sent
to another predicate.

Lottery scheduling: accounting for selectivity The lot-
tery system serves as a proxy for selectivity (Avnur and
Hellerstein 2000). A predicate is given a ticket every time
an item is sent to it by the lottery. Once the item is evaluated
in the predicate, the item is either true or false for that pred-
icate. If the item returns true, the number of tickets for that
predicate is decremented and the item is sent back into the
lottery. However, if the item returns false, it no longer needs
evaluation by any remaining predicates. To reward the predi-
cate for removing an item from further processing, the pred-
icate retains the ticket it received for the item. As a result,
the more a predicate returns false, i.e., the more selective it
is, the more tickets it receives over time and consequently,
more items are routed to this predicate.

Predicate queues: accounting for cost While a predicate
may be selective, it may also be expensive. Predicates with
high cost are best avoided because the number of tasks re-
quired to complete each item sent to this predicate may also
be high. To avoid constantly routing items to a high cost
predicate, each predicate contains a queue that holds items
that are waiting to be evaluated by the predicate. While the
queue is full, additional items are no longer routed to that
predicate. The more expensive a predicate is, the more tasks

it takes to evaluate the item passed to it. Thus its queue will
remain full longer, reducing the number of items that end
up being routed to that predicate and thereby increasing the
number of items sent to less expensive predicates instead.

With its queuing and lottery systems, Dynamic Filter will
begin to favor cheaper and more selective predicates over
time: cheap predicates will receive more items into their
queues, which means they have a higher chance of acquir-
ing more tickets, and more selective predicates will have a
higher chance of retaining tickets.

Choosing the Next Task

Algorithm 2 shows how Dynamic Filter implements the pro-
cedure chooseNextTask() from Algorithm 1. To con-
struct a task for a worker, first a predicate is chosen based on
a lottery drawing (line 2). An item is then chosen from that
predicate’s queue (line 6), which is replenished if the queue
has availability (lines 3-5).

Algorithm 2: Choosing next task in Dynamic Filter
Input : A worker w for whom to create a task,

ipPairs as in Algorithm 1,
Map predQueue of pred → items queued

Output: An item and predicate for w

1 procedure chooseNextTask
2 pred ← runLottery();
3 if predQueue(pred) has a slot available then
4 add to it an item from ipPairs(pred);
5 end

6 item ← an item from predQueue(pred);
7 return item, pred;
8 end

Note that the lottery drawing occurs per task. Thus, unlike
in the Eddies work (Avnur and Hellerstein 2000), the lottery
scheduling is actually acting as a scheduler for the predi-
cates: predicates are allocated tasks proportional to their rel-
ative ticket count. With workers completing tasks in parallel,
more worker effort is sent to predicates with more tickets.

Sliding Window: Adapting to Fluctuations

When dynamically filtering items, the algorithm should be
able to adapt to fluctuations in selectivity or cost over time.
If the algorithm only used the ticketing and queue systems
discussed so far, a specific predicate may become heavily
weighted over time due to possessing many more tickets. As
a result, the algorithm will have difficulty adapting quickly
to changes in the predicates’ relative selectivity or cost. To
add more adaptivity, we adopt the technique from Eddies
(Avnur and Hellerstein 2000) and give each ticket a lifetime.
Every time a predicate is chosen by the lottery, that predi-
cate’s tickets become “older”. If a ticket reaches its lifetime
threshold, it is removed from its predicate. This ensures that
predicates must continually remain selective and complete
items sooner than the lifetime of their tickets in order to
maintain their number of tickets. In essence, this new ticket-
ing system acts as a sliding window that focuses on the most

122

recent behavior of the predicates and ignores how well each
predicate behaved in the far past.

Experimental Evaluation

In this section we demonstrate the efficacy of Dynamic Filter
in comparison to several baseline algorithms. We use simu-
lation experiments using crowdsourced data gathered from
Amazon’s Mechanical Turk (AMT), a popular crowdsourc-
ing platform.

Experiment Setup

We collected two batches of crowdsourced data to use in
simulations of Dynamic Filter and comparison algorithms.
One batch was five questions (predicates) about ninety ho-
tels in a city in Missouri, and the other was a batch with
ten questions about twenty restaurants in a city in Cali-
fornia. The set of hotels and restaurants were chosen by
the authors based on knowledge of the cities; the authors
chose questions they predicted would show variety in se-
lectivity and subjectivity. Each task, which paid $0.10, pre-
sented a worker with one question and one item, and asked
the worker to respond yes or no. The average task comple-
tion time was 1.5 minutes for the hotels and 54 seconds for
the restaurants. Each item-predicate pair was evaluated by
twenty-one workers. We used majority vote from the twenty-
one responses as ground truth for hotels; the authors pro-
vided ground truth for restaurants.

The Dynamic Filter simulation implements Algorithms 1
and 2 and uses the crowdsourced data described above. After
selecting an item and predicate for the next task, the simu-
lation samples without replacement from the set of worker
responses for that item-predicate pair; this sampling imple-
ments doTask(item,predicate) in the pseudocode.
When aggregating worker responses (votes), we use the
technique from Sheng et al. (2008) that estimates an uncer-
tainty value signifying the likelihood that the majority vote
from a set of {yes, no} votes is the true value. In our exper-
iments, we require at least five votes for an item-predicate
pair before aggregating; twenty-one is the maximum pos-
sible. We used an uncertainty threshold of 0.2. This means
that the level of uncertainty must be below 0.2 in order for
the votes to be considered a consensus. We use a queue size
of 1 to easily keep track of which items are in the queues.
Simulation results are aggregated from 50−200 runs of each
algorithm. We first present experiments without windowing
enabled, and contrast with windowing afterwards.

Experiments and Results

For the experiments we detail next, we first use different
combinations of two predicates to demonstrate a range of
how Dynamic Filter responds to different predicate selectiv-
ities and costs. We chose the particular two-predicate combi-
nations to specifically illustrate cases when the selectivities
are similar but the costs are different versus when the costs
are the same but the selectivities differ. We calculated ob-
served selectivity using the majority vote and observed cost
as the average number of votes to reach consensus for each
predicate. The experiments using two predicates also allow

us to show the comparison against all possible static predi-
cate orderings on one graph. Towards the end of this section
we report on experiments with more than two predicates to
demonstrate generality of our approach.

We implemented a few baseline algorithms against which
to compare. The first is an algorithm that chooses a predi-
cate uniformly at random when an item should be routed to
a predicate. We chose to implement this algorithm to observe
the benefit of Dynamic Filter’s approach to choosing a pred-
icate versus just randomly picking a predicate. In addition,
because each experiment has two predicates, we also imple-
mented the two possible static ordered filtering algorithms:
one that always chooses to send items to the “optimal” pred-
icate first, and one that sends items to the “worst” predicate
first. We determine the optimal and worst orders using the
observed selectivity and average cost, as described above.

In these experiments, we focused specifically on compar-
ing our algorithm to the optimal algorithm and the random
algorithm. The metric we will observe is the number of tasks
to finish processing the query.

Varying selectivity Table 1 shows the first configuration:
predicates with the same cost but very different selectivities.
This configuration shows how the ticketing system affects
the number of tasks used by Dynamic Filter. Both predicates
had low cost to ensure that selectivity would be the main
contributor to variation in the number of tasks.

Figure 2 shows the distribution of the number of tasks
after running 50 simulations for the Dynamic Filter algo-
rithm and the other baseline algorithms. We can see that Dy-
namic Filter outperforms the worst-case static algorithm and

Predicate Selectivity Cost
Does this hotel have a gym? 84% 5.0 votes
Does this hotel cost under
$80 a night?

12% 5.0 votes

Table 1: Varied selectivity, 5.5% of items satisfy both.

Figure 2: Distributions of number of tasks in the varied se-
lectivity configuration. Distributions shown as continuous
density plots; area under curves normalized to sum to 1.

123

the random algorithm, and remains close to the optimal in
which the more selective predicate is always chosen first.
When comparing Dynamic Filter to the random algorithm,
we found that the mean number of tasks to process the query
were 603.84 and 685.52 respectively; the difference between
the two algorithms is statistically significant (the standard
deviations of Dynamic Filter and random were 31.37 and
29.06, respectively; the t-value was 13.50 and the p-value
was < 0.0001). As shown by the simulation runs, choosing
the “Gym?” question first more often results in fewer over-
all tasks assigned. Dynamic Filter averaged around 55 more
tasks than the optimal. This difference represents how many
tasks it took to learn which predicate was better to first send
items. Dynamic Filter and random had accuracies of 0.986
and 0.987, a difference that was not significant. Accuracy is
calculated as (TP + TN)/(TP + TN + FP + FN). The
precision and recall were also not significantly different.

Varying cost We also investigated the performance of Dy-
namic Filter with predicates with different costs that are se-
lective. This configuration (shown in Table 2) shows how
the queue system of Dynamic Filter, in combination with
the ticketing system, responds to the different cost between
predicates and if it is able to effectively decrease the num-
ber of tasks required. We chose more selective predicates
for this combination to show the benefit of avoiding costly
predicates, as not satisfying a cheaper predicate obviates the
need to be processed by the costly predicate. If both predi-
cates were not selective, many items would be processed by
both predicates, regardless of which was chosen first.

Predicate Selectivity Cost
Does this hotel cost under $80
a night?

12% 5.0

Are there great views from the
rooms of this hotel?

38% 9.7

Table 2: Varied cost, no items satisfy both.

Figure 3 shows the distribution of required tasks for this
combination. We can see again that Dynamic Filter takes
fewer tasks on average to filter than the random and worst
case algorithms. In comparison with optimal, the algorithm
only takes 12% more tasks. The ticketing and queue sys-
tems worked in tandem to prevent the more expensive pred-
icate from processing many items. As the “Great Views?”
question required more votes on average to reach consen-
sus on an item, the queue prevents other items from enter-
ing this predicate’s queue until the predicate was finished.
The decrease in items routed to the expensive predicate led
to the other predicate receiving more new items, which in-
cremented its amount of tickets. Thus, the ticketing and
queue systems worked together to sense which predicate had
greater cost.

The average number of tasks was 626.90 for Dynamic Fil-
ter and 674.08 for the random algorithm; the difference was
significant (the standard deviations of Dynamic Filter and
random were 31.67 and 26.87, respectively; the t-value was
8.03 and the p-value was < 0.0001). However, the differ-

Figure 3: Distributions of the number of tasks for the various
algorithms for varied costs.

ence between these two algorithms is less in this configu-
ration than in the previous configuration because our algo-
rithm is more aggressive when it comes to differentiating
between selectivity. In addition, the difference in the costs
between the two predicates in this configuration does not
range as greatly as the two predicates’ selectivity in the pre-
vious configuration. Also, while these two predicates lean
towards more selective, their selectivities are not the same,
which may also affect the differences between Dynamic Fil-
ter and the random algorithm. All these factors taken into
consideration, Dynamic Filter still significantly outperforms
randomly choosing either predicate. Accuracies were 0.997
and 0.995 for Dynamic Filter and random and not signifi-
cantly different.

Table 3 summarizes the comparison between the algo-
rithms for the first two configurations (the configurations
from Tables 1 and 2). The table shows how many more tasks
than optimal were required for each algorithm, calculated as
the average number of tasks for each algorithm divided by
the average number of tasks for the optimal algorithm.

Hotel Predicates: Varying Selectivity, Low Cost
(Gym?, Under $80?)

Dynamic Filter x1.10
Random x1.25

Worst Case x1.63

Hotel Predicates: More Selective, Varying Cost
(Under $80?, Great views?)

Dynamic Filter x1.12
Random x1.21

Worst Case x1.67

Table 3: A table of the multiplier of each algorithm in com-
parison to the optimal case.

124

Low selectivity We also investigated situations where the
order of the predicates has minimal effect on the number
of tasks per simulation. This would occur if items typically
satisfy both predicates, and thus the potential for savings is
reduced. An example of this is the following configuration;
the two predicates (shown in Table 4) have varying costs and
low selectivity (i.e., many items satisfy the predicates).

Predicate Selectivity Cost
Does this restaurant serve
drinks for those under 21?

100% 8.6 votes

Does this restaurant have
more than 20 menu items?

80% 5.5 votes

Table 4: Low selectivity configuration.

As expected, when running the simulation, the number of
tasks for each algorithm are close; the mean number of tasks
for all four algorithms were not statistically significant (the t-
values for Dynamic Filter vs. the optimal case, random algo-
rithm, and worst case were: 0.8504, 1.5140, and 1.6902; p-
values were 0.3956, 0.1308, and 0.0918). The multiplier dif-
ferences from the optimal case between the three algorithms
were both small and within 0.01 of each other: x1.01, x1.02,
and x1.03 for Dynamic Filter, random, and worst case, re-
spectively. Accuracies were 0.852 and 0.862 for Dynamic
Filter and random and not significantly different.

While the multiplier differences still follow the same
trend of Dynamic Filter outperforming both the random and
worst case algorithms, the difference between these algo-
rithms is not enough to make a significant claim. Because
both predicates have low selectivities, they often return true
for items passed to them by the filter. Thus, no matter which
predicate the item is routed to first, the item will often need
to be routed to the other predicate as well. As a result, the
number of tasks that can be avoided through the ordering of
the predicates is minimal.

Results using three predicates Queries with more than
two predicates further illustrate the observations made pre-
viously. Table 5 shows the average number of tasks required
for two hotel queries involving three predicates, labeled Q1
and Q2. Q1 uses the three distinct predicates from Tables 1
and 2. Q2 has one different predicate asking about safety;
the safety predicate has low selectivity and medium cost.
The advantage of Dynamic Filter increases with more pred-
icates as a low-cost predicate ordering will avoid even more
work than an algorithm that does not prioritize cheap and
selective predicates. For both queries the differences are sig-
nificant (Q1’s t-value was 19.9 and p-value was < 0.0004;
Q2’s t-value was 13.7 and p-value was < 0.0002).

Query with 3 Predicates Dynamic Filter Random
(Q1) Gym?; Under $80?;
Views?

680.36 841.44

(Q2) Gym?; Safe?; Views? 1290 1479.2

Table 5: Average number of tasks for two queries. No items
satisfy all for Q1; 34.4% items satisfy all for Q2.

Evaluating the sliding window We now discuss how the
“sliding window” adapts to changes in predicate properties.

Setup To test Dynamic Filter with windowing enabled,
we generated synthetic data based on the crowdsourced data.
Each vote was cast as a random sample based on the selec-
tivity of the predicate, with noise added to influence cost.
This noise factor was simply the probability of choosing the
value that the predicate leans towards. For example, a noise
level of 0.5 would yield a very expensive predicate while a
predicate of 1.0 would be the cheapest possible predicate.

In the synthetic data, there are two predicates and 100
items. Predicates P0 and P1 both have selectivity of 0.1
and a noise level of 0.9 and 0.6, respectively. The predi-
cates switch noise level when the simulation has completed
200 tasks. Ideally, an adaptive algorithm would first favor
P0 first, and adapt to choose P1 first after the switch. We
tested five algorithms: Dynamic Filter with sliding window,
Dynamic Filter without the windowing, random, and a best
and worst case scenario. In this configuration, we chose to
make the switch based on cost, not selectivity, to simulate
cost changes in an environment where workers come and
go. The ticket lifetime was ten tasks.

Results In addition to Dynamic Filter with and with-
out windowing, a few baseline algorithms were imple-
mented. The “optimal switch” algorithm chooses P0 first and
switches to P1 first after 200 tasks. This way, the optimal al-
ways chooses the cheaper predicate to first send items. The
“worst switch” algorithm is the opposite: it always chooses
the more expensive predicate first. The random algorithm
was also implemented to test if our algorithms were better
than simply randomly choosing either predicate first.

Table 6 shows the multiplier of each algorithm’s average
number of tasks to complete the query in comparison to the
optimal switch algorithm. We can see that Dynamic Filter
with sliding window outperforms Dynamic Filter without,
and is close in performance to the optimal switch algorithm.

Synthetic Cost Switch at 200 tasks
Dynamic Filter w/ Window x1.02

Dynamic Filter w/o Window x1.11
Random x1.16

Worst Case x1.69

Table 6: Algorithm multipliers compared to optimal.

We also evaluate how Dynamic Filter without the sliding
window reacts to the fluctuation to ensure that Dynamic Fil-
ter alone still results in fewer tasks than randomly choosing
either predicate. The average number of tasks for Dynamic
Filter and the random algorithms were 846.84 and 883.46
respectively. We found that the mean number of tasks were
significantly different (the standard deviations of Dynamic
Filter without windowing and the random algorithm were
54.55 and 45.97 respectively; the t-value was 3.63 and the
p-value was < 0.0005). Thus, Dynamic Filter without win-
dowing can still recover from the cost switch at 200 tasks to
outperform the random algorithm, but not as efficiently as
Dynamic Filter with windowing enabled.

125

Conclusion and Future Work

In this paper we propose an adaptive approach to process-
ing a crowd-based filter query that involves multiple pred-
icates for which predicate selectivity and cost information
is unknown at query time. By choosing an order of evaluat-
ing predicates that delays expensive predicates, we can yield
substantial savings in the total query cost. These savings are
highlighted when comparing the results for Dynamic Filter
versus the worst case static ordering; without knowledge of
an efficient ordering, a chosen fixed ordering can be quite
expensive. The savings can be even more dramatic as the
number of predicates increase. Using an adaptive approach
in Dynamic Filter, we are able to learn a low-cost ordering
for evaluating the predicates, even as the runtime environ-
ment is changing.

Future work includes dynamically ordering other query
operations in addition to filters, such as the JOIN opera-
tion that combines items from multiple sources. We also
want to investigate user interfaces for specifying crowd-
based queries and extracting predicates queries expressed in
natural language.

By requiring less a priori information, we believe adap-
tive query processing, and specifically the Dynamic Filter
algorithm, will increase the utility of crowd-powered query
processing systems for ad hoc queries.

Acknowledgments

We thank the reviewers and our colleagues at Harvey Mudd
College for their helpful feedback. We also thank the crowd
workers for their participation in the project. This work was
supported in part by the National Science Foundation under
Grant No. 1359170 and Grant No. 1657259, as well as a gift
from Citadel LLC.

References

Avnur, R., and Hellerstein, J. M. 2000. Eddies: Contin-
uously adaptive query processing. In Proceedings of the
ACM SIGMOD International Conference on Management
of Data, 261–272.
Babu, S.; Motwani, R.; Munagala, K.; Nishizawa, I.; and
Widom, J. 2004. Adaptive ordering of pipelined stream
filters. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 407–418.
Basu Roy, S.; Lykourentzou, I.; Thirumuruganathan, S.;
Amer-Yahia, S.; and Das, G. 2015. Task assignment opti-
mization in knowledge-intensive crowdsourcing. The VLDB
Journal 24(4):467–491.
Berry, D. A., and Fristedt, B. 1985. Bandit problems: se-
quential allocation of experiments (Monographs on statis-
tics and applied probability). Springer.
Chaudhuri, S. 1998. An overview of query optimization
in relational systems. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems.
Das Sarma, A.; Parameswaran, A.; Garcia-Molina, H.; and
Halevey, A. 2014. Crowd-powered find algorithms. In Pro-

ceedings of the 30th International Conference on Data En-
gineering (ICDE).
Deshpande, A.; Ives, Z.; and Raman, V. 2007. Adaptive
query processing. Foundations and Trends in Databases
1(1):1–140.
Difallah, D. E.; Demartini, G.; and Cudré-Mauroux, P. 2016.
Scheduling human intelligence tasks in multi-tenant crowd-
powered systems. In Proceedings of the International Con-
ference on World Wide Web (WWW), 855–865.
Fan, J.; Zhang, M.; Kok, S.; Lu, M.; and Ooi, B. C. 2015.
Crowdop: Query optimization for declarative crowdsourc-
ing systems. IEEE Transactions on Knowledge and Data
Engineering 27(8):2078–2092.
Franklin, M. J.; Kossmann, D.; Kraska, T.; Ramesh, S.; and
Xin, R. 2011. CrowdDB: Answering Queries with Crowd-
sourcing. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data.
Heer, J., and Bostock, M. 2010. Crowdsourcing graphical
perception: using mechanical turk to assess visualization de-
sign. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems.
Hellerstein, J. M., and Stonebraker, M. 1993. Predicate mi-
gration: optimizing queries with expensive predicates. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data.
Ho, C.-J., and Vaughan, J. W. 2012. Online task assign-
ment in crowdsourcing markets. In Proceedings of the AAAI
Conference on Artificial Intelligence, 45–51.
Ipeirotis, P. G.; Provost, F.; and Wang, J. 2010. Quality
management on Amazon Mechanical Turk. In Proceedings
of the ACM SIGKDD Workshop on Human Computation.
Karger, D. R.; Oh, S.; and Shah, D. 2014. Budget-optimal
task allocation for reliable crowdsourcing systems. Opera-
tions Research 62(1):1–24.
Marcus, A.; Wu, E.; Karger, D.; Madden, S.; and Miller, R.
2011a. Human-powered sorts and joins. Proceedings of the
VLDB Endowment 5(1):13–24.
Marcus, A.; Wu, E.; Madden, S.; and Miller, R. 2011b.
Crowdsourced Databases: Query Processing with People. In
Proceedings of the Conference on Innovative Data Systems
Research.
Marcus, A.; Karger, D.; Madden, S.; Miller, R.; and Oh, S.
2012. Counting with the crowd. Proceedings of the VLDB
Endowment 6(2):109–120.
Nunia, V.; Kakadiya, B.; Hota, C.; and Rajarajan, M. 2013.
Adaptive task scheduling in service oriented crowd using
slurm. In International Conference on Distributed Comput-
ing and Internet Technology, 373–385. Springer.
Parameswaran, A. G.; Garcia-Molina, H.; Park, H.; Polyzo-
tis, N.; Ramesh, A.; and Widom, J. 2012a. Crowdscreen:
Algorithms for filtering data with humans. In Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data, 361–372.
Parameswaran, A. G.; Park, H.; Garcia-Molina, H.; Polyzo-
tis, N.; and Widom, J. 2012b. Deco: declarative crowdsourc-

126

ing. In Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management.
Parameswaran, A.; Boyd, S.; Garcia-Molina, H.; Gupta, A.;
Polyzotis, N.; and Widom, J. 2014. Optimal crowd-powered
rating and filtering algorithms. Proceedings of the VLDB
Endowment 7(9):685–696.
Park, H., and Widom, J. 2013. Query optimization over
crowdsourced data. Proceedings of the VLDB Endowment
6(10):781–792.
Quinn, A. J., and Bederson, B. B. 2014. Asksheet: Efficient
human computation for decision making with spreadsheets.
In Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing, 1456–
1466.
Rajan, V.; Bhattacharya, S.; Celis, L. E.; Chander, D.; Das-
gupta, K.; and Karanam, S. 2013. Crowdcontrol: An online
learning approach for optimal task scheduling in a dynamic
crowd platform. In Proceedings of ICML Workshop: Ma-
chine Learning Meets Crowdsourcing.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 614–622.
Waldspurger, C. A., and Weihl, W. E. 1994. Lottery schedul-
ing: Flexible proportional-share resource management. In
Proceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation.
Yuen, M.-C.; King, I.; and Leung, K.-S. 2011. Task match-
ing in crowdsourcing. In Internet of Things, 4th Interna-
tional Conference on Cyber, Physical and Social Comput-
ing, 409–412. IEEE.

127

