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Abstract

Crowd-powered systems leverage human intelligence to go
beyond the capabilities of automated systems, but also intro-
duce privacy and security concerns because unknown people
must view the data that the system processes. While auto-
mated approaches cannot robustly filter private information
from these datasets, people have the ability to do so if the risk
from them viewing the data can be mitigated. We present a
crowd-powered approach to masking private content in data
by segmenting and distributing smaller segments to crowd
workers so that individual workers can identify potentially
private content without being able to fully view it themselves.
We introduce a novel pyramid workflow for segmentation that
uses segments at multiple levels of granularity to overcome
problems with fixed-sized approaches. We implement our ap-
proach in CrowdMask, a system that allows images with po-
tentially sensitive content to be masked by appearing in pro-
gressively larger, more identifiable segments, and masking
portions of the image as soon as a risk is identified. Our exper-
iments with 4134 Mechanical Turk workers show that Crowd-
Mask can effectively mask private content from images with-
out revealing sensitive content to constituent workers, while
still enabling future systems to use the filtered result.

Introduction

An increasing number of crowd-powered systems require
workers to interact with user-generated data, such as
audio recordings (Lasecki et al. 2012), personal pho-
tographs (Bigham et al. 2010; Merritt et al. 2017),
email (Kokkalis et al. 2013), documents (Bernstein et al.
2010), search queries (Bernstein et al. 2012), program
code (Chen et al. 2017) and handwritten text (Little and Sun
2011; Chen et al. 2012). These systems can accidentally ex-
pose information that users would like to remain private to
the workers powering the system, because similar informa-
tion is required to complete the task. For instance, a blind
user of VizWiz (Bigham et al. 2010) may want the crowd
to identify the name of a prescription medicine from a pho-
tograph of the bottle. Because prescription labels typically
contain the patient’s name, the crowd can only provide an
answer without learning the user’s identity if the patient’s
name is obscured, but the medicine’s is not.

Copyright c© 2017, Association for the Advancement of Artificial
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Figure 1: Our crowed-powered content filtering pipeline.
Before users submit content that may contain sensitive data
to a third-party crowd-powered system, our multi-level fil-
tering approach progressively shows larger segments of it
to successive workers, filtering out potentially sensitive con-
tent at each step. Sensitive data is hidden while minimizing
the risk that any one worker sees too much. The resulting
(masked) version of the content is then forwarded on to the
intended third-party task.

If sensitive content could be easily and robustly filtered
from larger user-generated datasets, such privacy threats
could be mitigated. Unfortunately, even the best automatic
approaches can fail because they require a rich understand-
ing of the content and the ways that it might be used. For
example, an automated system may help a user filter their
account number from a picture of their bank statement by
masking all the numbers in the picture, but this approach
would make it impossible to then extract the customer ser-
vice phone number from the picture.

In this paper, we introduce a pre-processing step in the
crowd pipeline: a crowd-powered system that uses human
intelligence to mask private information in user-generated
data (Figure 1). Using our system, people can provide nat-
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ural language descriptions of what to filter (e.g. “hide any
embarrassing content”), which requires no technical skills or
knowledge of the system’s underlying processes. To avoid
any one worker from gaining access to potentially private
information, we introduce a pyramid workflow for dividing
content for filtering, showing each worker only a small por-
tion of the original content. Our workflow employs multi-
ple segmentations at different levels of granularity to avoid
problems arising from unknown content granularity (e.g. the
system does not know a priori how large a face is in a given
image). The segment granularity is optimized by the system
based on user-specified budget constraints.

We evaluate our system and approach using images, a
common type of user-generated data for crowd-powered sys-
tems (e.g. (Bigham et al. 2010)). Our experiments with 4134
Mechanical Turk workers show that we can mask a variety
of private information from images, while making it possible
for a separate crowd of workers to perform the originally-
requested task. We make the following contributions:
• Identify relevant factors for building a crowd-powered

system that can mask private content in user-generated
data (e.g., images).

• Introduce a pyramid workflow for multi-level content seg-
mentation which ensures that no individual worker can
access all potentially private information.

• Build a crowd-powered system for filtering private con-
tent from images based on natural language queries.

Related Work

We begin by outlining the types of tasks that crowdsourcing
platforms employ that require workers to interact with end-
user information, and discuss the threats crowd workers pose
to such systems.

Crowd-Powered Systems May Expose User Data

Many crowd-powered systems assist users in their daily
lives, often using data from users. For example, Soylent
helps users edit documents (Bernstein et al. 2010), and Plate-
Mate determines how many calories meals contain based on
photographs of them (Noronha et al. 2011). The intended
tasks are generally not expected to contain sensitive infor-
mation, but nevertheless may. For example, PlateMate may
receive an image from a diner at a restaurant that acci-
dentally includes a credit card on a table. Because crowd-
powered systems can easily be confused with automated
systems by end users, exposure can happen unintention-
ally. Interactive crowd-systems that respond to users in real
time (Lasecki et al. 2011) also make it easy to mistakenly
capture sensitive information. Getting responses from the
crowd in a few seconds (Bernstein et al. 2011) means there
is little time for users to review the content they are sending.

Assistive technologies are a natural match with crowd-
sourcing because they provide mediated access to human
assistance. Scribe (Lasecki et al. 2012), for example, pro-
vides deaf and hard of hearing users with real-time captions,
and VizWiz (Bigham et al. 2010) allows blind users to get
answers to visual questions. These systems can have a pro-
found impact. VizWiz has answered over 80,000 questions

for thousands of users. However, users of these systems may
be unable to effectively avoid capturing sensitive informa-
tion. For example, a blind user might not be able to tell that
they have inadvertently captured a billing statement in an
image sent to VizWiz (Ahmed et al. 2016), and a deaf user
might not be able to tell that their account information could
be overheard in speech until after it has been captioned by
Scribe (Lasecki et al. 2012).

Although not entirely anonymous, requesters tend not
to know the identity of crowd workers on platforms like
Amazon Mechanical Turk (Lease et al. 2013). This relative
anonymity, coupled with a range of worker skill levels and
the need for workers to complete large numbers of tasks to
earn a reasonable wage, creates the need for quality con-
trol systems (Bernstein et al. 2010; Ipeirotis, Provost, and
Wang 2010). These approaches increase the overall quality
of the work, but at a cost; they tend to increase the number of
workers who will see each piece of information contained in
a task. Crowd-powered systems that use personal informa-
tion potentially put users at risk of identity theft, blackmail,
and other information-based attacks.

Crowd-Based Privacy and Security Threats

Concerns with issues related to the privacy and security of
sensitive information used in crowd-powered systems have
led to some initial work exploring the types of problems
that may arise. Harris et al. (Harris 2011) bring up the idea
that ordinary workers might be hired for potentially ma-
licious tasks. Lasecki et al. (Lasecki, Teevan, and Kamar
2014) outline a variety of different individual and group
(both coordinated and uncoordinated) attacks that are possi-
ble on current platforms, and demonstrate that workers can
be hired to do seemingly-malicious tasks (such as copy a
credit card number from another task), even if some per-
centage of workers will abstain from such tasks. Teodoro et
al. (Teodoro et al. 2014) also found similar hesitation to po-
tentially illicit tasks, such as mailing lost cell phones to a
service promising to find their owner and return them. Fo-
rums and other worker communities also help discourage
this behavior. Our experiments investigate protecting image
data of the kind dealt with by VizWiz when answering vi-
sual questions for blind users, where information from bank
accounts, to names and addresses, to accidentally revealing
images (e.g. accidentally capturing unintended information)
may arise. Malicious workers may begin targeting such sys-
tems as their popularity grows, the information captured be-
comes more valuable, and these incidents become more fre-
quent (Lasecki, Teevan, and Kamar 2014).

Approaches to Preserving Privacy

To preserve privacy in crowd systems, Wang et al. (Wang
et al. 2013) studied how to detect malicious workers. Most
other approaches have focused on protecting private or sen-
sitive content itself. Varshney (Varshney 2012) proposed us-
ing visual noise and task separation to preserve the privacy
of content in images. This could help protect some types of
information, but in many cases information needed to com-
plete the final task (e.g., read a label for a blind user) is lost.
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Little and Sun (Little and Sun 2011) looked at protecting pri-
vacy in medical records by asking workers to first annotate a
blank record to indicate where field values are entered, then
using this information to divide a real medical record into
pieces that workers could help transcribe without being able
to see too much information. Swaminathan et al. (Swami-
nathan et al. 2017) recently introduced WearMail, a system
that searched for content in a user’s private emails safely
by using crowds to provide examples of a known pattern to
look for within emails, without ever seeing the content of
any emails.

We attempt to counter these threats by ensuring that no
worker individually is able to see enough information to do
the end user harm. It differs from existing approaches in that:
i) the division algorithm progressively zooms out while ap-
plying partial masks along the way, overcoming many of the
context-based challenges encountered in previous work (e.g.
information referenced in other pieces), ii) it uses a general
model which does not require an initial template that is used
to advise the division of future tasks, and iii) the final task
being completed does not need to be known a priori. While
few systems can prevent coordinated groups from attaining
information from tasks, protecting against individual worker
threats drastically decreases the threat to end users. To our
knowledge, ours is the first work to explore such approaches
to general, task-independent privacy preservation using an
implemented system.

Preliminary Studies

Our approach for filtering private content relies on dividing
the original content into smaller segments, and masking the
potentially private content in these segments. We conduct
three preliminary studies to test: (1) if accidentally sharing
private information is a significant problem, (2) if our pro-
posed approach that relies on dividing and masking content
is feasible, and (3) the ideal approach for instructing workers
to perform the masking task.

Study 1: Significance of the Problem

We used the original VizWiz dataset (filtered version avail-
able at http://vizwiz.org/data/) to get of sense of the pri-
vacy threats present in user-generated data created in crowd-
powered systems. Images from VizWiz were taken by blind
users of the application (Bigham et al. 2010), and often con-
tained personally identifiable information (PII) that the user
chose to include (e.g. a credit card number they wanted to
know) or that was accidentally included because the user
could not see PII included in the background (e.g., a person’s
face behind an object of interest). Out of a total of 47, 005
images in the pre-release VizWiz dataset, 7.37% (or 3, 462)
images contained PII (e.g., face, name, address, ID number).
The images with PII were manually filtered from the dataset
because automatic approaches cannot robustly filter all PII.
We sampled 200 of the images with PII with an automated
face detector. 126 out of 200 sampled images contained a
face, but only 47 (37.30%) of these 200 were flagged by
a state-of-the-art automated face detector1. Private informa-

1https://aws.amazon.com/rekognition/

tion in user-generated data remains a privacy threat as long
as systems use only automated approaches to filter it.

Study 2: Feasibility of the Content Division
Approach

As an initial test of the feasibility of our approach, we ex-
plored the segmentation level at which people can determine
what class of object they are viewing, e.g., an arm, a face, a
keyboard, versus the level at which they can identify a spe-
cific instance of an object, e.g. the identity of a person. We
used images of people and objects that had been cropped to
the size of the entire image (400px by 400px) so that the rel-
ative size of the object in the image would not be a factor.
The following experiments used Mechanical Turk workers,
each of whom were paid $0.14-$0.16 per task.

Class Recognition To evaluate whether the crowd can rec-
ognize objects at increasing levels of granularity, we showed
60 Mechanical Turk workers two images—a face and a
credit card—at three levels of granularity, and asked them
to identify what type of object they saw using a multiple
choice question with five plausible answers. Each level of
granularity received responses from 10 unique workers, and
no worker could answer for more than one level of granular-
ity of a given image.

When shown half of a credit card, 100% of workers were
able to correctly identify it as a credit card. When shown 1

5

and 1
10 of a credit card, 80% and 70% of workers correctly

identified it, respectively. However, when trying to recognize
a face, the worker success rate dropped far more quickly.
When showing 1

2 and 1
5 of a face, 100% of workers correctly

identified that they had seen a face. However, at a granularity
level of 1

10 , that number dropped to 40%.

Identity Recognition We evaluated the effectiveness of
the division approach in hindering workers’ ability to iden-
tify a person given different sized image segments. To do so,
we showed 125 Mechanical Turk workers 25 segments of
a face: 16, 6, and 3 segments at three levels of granularity.
Each segment was viewed by 5 workers, and we asked them
the question “Does this image contain a face?” Then, before
ending the task, we presented workers with a police-lineup
style interface showing six images of faces side-by-side in
random order. One of these images was a different picture
of the same person they saw in the previous screen, but in
a slightly different setting. We avoided using the same im-
age of the person to avoid other pieces of the scene being
used to identify the matching image. The other five images
in the lineup were all people of the same race, gender, and
approximate age, but were identifiable as different people.

We found that, when simply showing workers a full im-
age of the face without any level of granularity, workers
correctly recognized that person around 60% of the time.
When segmenting the face into just three segments, the rate
of recognition dropped to just 13%. When segmenting the
face at a much higher level of granularity (i.e., 16 segments),
the recognition rate dropped even further to 7.9%.

Conclusion The key finding from these initial studies is
that workers can identify the class of an element in an im-
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age even when it is divided in half (100% of workers got
the answer correct), whereas only 13% were able to deter-
mine the identity of the person in the photo. In naive image
segmentation (where a single division level is used), the seg-
mentation must divide content by luck to a sufficiently small
size such that the identity remains unknown. Decreasing the
size of segments will increase the chances of dividing arbi-
trary content into pieces too small to identify private content,
but it also increases the chance that some element is divided
beyond workers’ ability to accurately identify its class. This
suggests that the use of a progressive, multi-level approach
will allow the system to filter what can be identified with
smaller pieces of information, e.g. a generic class like face
or credit credit, while not revealing too much. Such filtering
can be done by masking the smaller piece of the image iden-
tified as potentially private. Then, when the masked segment
is shown in a larger segment (at a lower level of granularity),
entity or identity recognition is not possible.

Study 3: Framing the Question for Crowdworkers

Another important consideration when relying on crowd-
workers to mask private content is how this filtering task
should be framed. We tested four variants of instructions for
this purpose. Each instruction type was evaluated using the
three images: (1) an assortment of cards lying on a table,
two of which are credit cards; (2) a man holding pieces of
paper, some of which were bills with balances and other in-
formation (no account information visible); and (3) a fully
addressed and stamped letter. We segmented each image into
25 segments total (16, 6, and 3 segments at different levels
of granularity); each segment was seen by three Mechani-
cal Turk workers. We tested two different phrases for private
content: “PII” and “sensitive information” (1821 total work-
ers over four question types, paid $0.14 - $0.16 per task).

• (F1) Filter Question: Workers are shown only the filter
definition. For example, “Does this image contain any po-
tentially sensitive information about the requester?”

• (F2) Filter Question with Example: The initial question,
with examples of the type of information that should be
filtered. For example: “If the image contains a face, name,
address, or other contact information, click ‘yes’.”

• (F3) Filter Question with Example and Non-Example:
The initial question, with non-examples that give workers
an idea of the type of information that should not be fil-
tered: “If it contains a company name or non-identifying
documents, click ‘no’.”

• (F4) Filter Question with Non-Examples and End
Goal: The question, examples, non-examples, and the
task’s goal that tells workers what information we ulti-
mately need from the image after filtering. The hope is
that this information will prevent workers from electing to
mask segments that make the goal (e.g. answering “Which
of these is my library card?”) impossible.

We observed that worker responses varied significantly
by each instruction type. F1 was subject to each worker’s
idea of what the question meant. This led to both false-
positives and false-negatives because of high disagreement

among workers: they often correctly identified an object that
they saw, but disagreed on whether that object needed to be
filtered. F2 gave the workers an idea of what the question
was looking for, but resulted in a larger number of false-
positives. In 5 of the 6 runs, the crowd masked more than
half of the image, a ratio that is significantly higher than
the results from our study 2 and higher than results obtained
with any other instruction type. F3 attempted to rein in the
false-positives, but we found that workers often did not listen
to our non-example. For instance, the crowd masked a face
even when specifically asked not to. Finally, F4 produced
images closest to our baseline, with unwanted information
masked, but enough information left to answer the end-goal.
As a result of this preliminary experiment, our system used
the instructions in F4.

CrowdMask

CrowdMask is a crowd-powered system that can filter
arbitrarily-sized private information from user-generated
data (Figure 1). It protects end users from sharing poten-
tially private content on other crowd-powered systems (such
as VizWiz) by masking such content before the original post
is sent to the crowd. Users define “filters” in natural lan-
guage for data sent to the crowd. Instead of having workers
try to complete the original task from a single smaller seg-
ment of the image, our approach acts as a filtering step pre-
ceding a crowd task. This makes the (often very necessary)
context in the larger scene available to the workers complet-
ing the primary task.

Basic Approach: Dividing Content

Our basic approach is to divide content into pieces that each
contain incomplete information. Based on the results of our
preliminary study, we know that this division approach is
feasible in recognizing potentially private content without
disclosing the identity of an individual to any crowd-worker.
This can greatly reduce the risks faced by end users, but
is sensitive to the type of risk, granularity, and information
available in specific instances. For instance, an image may
contain multiple types of PII: a person’s face, their name on
a nametag, and a partial reflection of them in a mirror. Each
of these sources of information can be a different size, in a
different location, and may be identifiable in different ways.

The challenge with this basic approach is setting an ap-
propriate granularity for the segmentation. A single level of
granularity might allow the pieces of PII to be separated
from one another, but each piece might still be contained
in a segment. Setting the granularity higher might result in
the person’s name tag being filtered out successfully without
anyone seeing their full name or job title, but also might re-
sult in the person’s face being divided into pieces too small
to identify that each one is part of a face — resulting in no
piece of the face being filtered, so the user’s face remains
unmasked in the final image.
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Our Approach: The Pyramid Workflow for
Minimal-Knowledge Filtering

To solve the granularity identification problem, we use a
pyramid workflow that first presents very small segments of
the image, and then progressively zooms out to identify vi-
sual information at different scales. Workers are first shown
the smallest possible segments, which is least likely to reveal
sensitive information. Once all potentially private segments
of a size have been masked, new workers are shown larger
segments with prior masks applied to the images (Figure 1).
This process continues until workers have masked the image
at all granularities.

Consider the previous example of an image that contains
both a face and a nametag. Applying multi-level filtering al-
lows both the nametag and face to successfully be masked
without any worker seeing either. Initially, workers see only
small segments of the image, which allows them to mask
the nametag. It is difficult or impossible to tell that such
small segments contain faces. Filtering faces requires sub-
sequent, larger segments: these larger segments now have
the nametag masked by the filtering that took place at the
smaller size. This allows workers to identify all regions that
should be masked without revealing sensitive information.

Optimizing Segment Sizes

As mentioned before, content can vary greatly in size and
type of information. To use our multi-level approach effec-
tively, there must be a difference between each level so that
workers can gain new context and recognize potential threats
that they could not in the previous level.

To do this, we optimize the separation in segment sizes
between different zoom levels, given a cost bound. We start
with the maximum amount that a user is willing to pay to
filter each query. Given the user’s budget B, and the cost of a
crowd task C, we can compute the total number of questions
N that we can have answered, N = B/C.

Using this bound, we then select a number of levels L to
use. The selection of this value is dependent on the type,
size, and quality of content that will be used. For instance,
high resolution images may require more levels to effec-
tively filter because both small distant objects and large close
objects may contain legible information. Alternatively, given
a [minimum] growth rate Gm, we can optimize the number
of possible levels subject to the budget by adding levels that
contain Gm times as many segments as the previous level
until the total number of segments no longer fits within the
specified budget. We then optimize the number of segments
to maximize separation by either solving for a precise an-
swer or using a numerical approximation if no exact answer
is possible. In preliminary trials we found that 3 levels effec-
tively handled content seen in web/phone images. Assuming
L = 3 for our example, we can set up a linear system to find
the segment sizes for each level that maximizes separation:

N =
∑

i∈0...L Ni = N1 +N2 +N3

Where Ni is the number of segments to be created at level
i. Now, we want to find the growth factor G between levels.
Redefining this linear system as a function of G gives:

Figure 2: The content prediction UI allows workers to label
likely-sensitive adjacent segments without seeing them.

N = N1+G∗N1+G∗(G∗N1)) = N1+G(N1)+G2(N1)

We set a minimum division size for N1 of M (where M =
2 ∗ 2 = 4 is the smallest non-trivial segmentation). This is
used as the division for the smallest size of the image at the
lowest zoom level, while the number of segments along the
other dimension of the image is calculated proportionally to
the aspect ratio of the image (e.g., a 2:1 aspect ratio image
would end up divided into 2× 4 = 8 segments). This gives:

N1 >= M so N1 +G(N1) +G2(N1) = M(1 +G+G2)

Now we can factor this term to find the solutions for G.
Note that while this case can be solved using the quadratic
formula, not all selections of L will lead to such clean forms
— for instance, L = 6 results in a fifth degree polynomial
that cannot be factored. In these cases, there are numerical
methods can find solutions well within a reasonable margin
of error. Finally, we get our growth rate:

G =
√
N/M − 3/4− 1/2

We use this algorithm to generate segments with maximal
separation, which is ideal for our approach. Thus, users need
only define a price they are willing to pay any time before
sending their source image (e.g., via a system setting).

Predicting Sensitive Content

In addition to directly showing workers images, we can also
leverage their understanding of the scene to predict what is
in adjacent segments without showing them. For instance, if
we are filtering for PII and workers observe someone’s body
in one image, then it can be reasonably assumed that their
face may be visible directly above it. The system interface
thus includes a second stage (Figure 2) that asks workers to
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indicate whether the segments surrounding the original seg-
ment are: (i) very likely to contain sensitive information, (ii)
very likely not to contain sensitive information, or (iii) they
are unsure of what would be contained (the default answer).

To best use workers’ ability to predict sensitive content
outside their current view, we issue images in each level
of our process in two interleaved “checkerboard” patterns,
where each segment shown in the first pass is bordered di-
rectly above, below, left, and right by content that has not yet
been seen by another worker. After this first pass has been
completed, images from the alternate segments are issued to
arriving workers. Doing this allows us to withhold asking
about segments from the first pass with sufficient agreement
between workers on content being or not being present. In
the best case, over 50% of the segments from a level can be
answered without the need for workers to even view the seg-
ment itself (some content can be filtered from the diagonal
elements in the first level). While we expect such extreme
cases to be rare, there is the possibility for large privacy
gains and cost savings.

System Components

CrowdMask is comprised of three main components: an
end user session creation process, a front-end interface for
crowd-workers to complete their specified task, and server-
side image modification framework.

The end user session creation process allows the user to
specify an image to be filtered, the number of granularity
levels to use, the maximum amount they would like their ses-
sion to cost, and the instructions that are shown to workers.
Their maximum cost determines what size segments each
level of granularity will use.

The worker interface shows an image and a “yes” or “no”
question, such as ”Does this image contain any sensitive
content?” Filtering is done on a per-segment basis to sim-
plify the task and make consensus-finding more tractable.
Finally, workers are asked to predict whether there may
be any sensitive content that surrounds the image, using a
3x3 grid that contains the original segment, surrounded by
empty, clickable boxes that allow workers to mark the pre-
dicted content of each box as either “sensitive,” “not sensi-
tive,” or “don’t know.” The system serves workers segments
starting with the highest zoom level. Importantly, images are
segmented and filtered server-side to prevent workers from
being able to bypass our restrictions.

Semantic Labeling Workers — both those helping to fil-
ter content, as well as those who contribute to the final task
that our masked image is input to — need some context to
correctly complete their task. While our masking process fil-
ters much of the context that may create a privacy threat for
the requester, this context can be partially obtained using the
descriptions of the content being hidden. To provide this, we
collect a 1-2 word label from workers which describes the
original segment they were reviewing. This label can then
be applied to the mask that covers the content in subsequent
levels. While this information is only useful to future work-
ers in the case when the original content is masked, we al-
ways collect a label to prevent this additional effort from

biasing workers towards labeling as not sensitive.

Evaluation of the Approach

We evaluate our approach based on how well the crowd-
workers are able to mask and predict potentially private in-
formation in images. We compare their results to ground
truth data generated by two coders for each image used for
evaluation. Each coder marked the private content for all im-
ages, and ground truth was computed based on an agree-
ment between them. Inter-rater reliability was calculated us-
ing Cohen’s kappa, with a score of 0.72. We measure preci-
sion, recall and F1 scores per segment by comparing work-
ers’ answers to ground truth data to calculate true positives,
false positives, true negatives and false negatives.

Identifying and Masking Private Content

To evaluate how well workers can filter within the multi-
level zooming and masking model, we ran an experiment
that involved filtering for both sensitive information and per-
sonally identifiable information. Four images were tested for
each of these conditions. The first image contained an as-
sortment of cards lying on a table, two of which were credit
cards. The second contained a man holding pieces of paper,
some of which were bills with balances and other informa-
tion on them (no account information was visible to work-
ers). The third contained a fully addressed and stamped let-
ter. The fourth image contained a police protest/arrest scene
in which two faces of protesters were visible. We used three
levels of granularity when filtering the images. The highest
level was comprised of 16 segments, the middle level 6, and
the lowest 3 (total 25 segments).

For each of the four images, we ran three trials with “sen-
sitive information” and three with “personally identifiable
information (PII)” filtering instructions. Each image was di-
vided into 25 segments across three levels of granularity, and
each segment was shown to three workers (total 1702 re-
sponses after filtering). Averaging the scores from total 24
runs (4 images x 6 trials/image), we found that at a thresh-
old of 50% agreement, the end result images had a precision
of 38.2% and recall of 94.8%. When raising the agreement
threshold to 80%, there is an increase in precision to 52.9%
and a decrease in recall to 66.5%. The magnitude of this
change suggests that there is a high level of agreement be-
tween workers. Figure 3 shows the full span of precision
and recall scores for the final, masked image that is gener-
ated. While precision is low (in part because we filter by
segment), our high recall means that sensitive information is
rarely left unfiltered.

Comparison to Single-Level Segmentation Figure 4
shows precision and recall scores when just considering the
first (highest) level of granularity. At a threshold of 50%
agreement, the single-phase filter had a precision of 46.2%
and recall of 62.0%; at a 90%, precision is 54.6% and re-
call is 36.5%. Compared to the multi-level run, this resulted
in a significantly lower recall but slightly higher precision.
We also compared the F1 score (which aggregates precision
and recall) for all four images of single-level to multi-level
segmentation and found that there was a significant 29.8%
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Figure 3: Average precision and recall for 6 runs on 4 im-
ages. We found that at 50% agreement, the resulting preci-
sion is 38.2% and recall is 94.8%. When the agreement is
80%, there is an increase in precision to 52.9% and a de-
crease in recall to 66.5%.

improvement between single and multi-level, where F1 in-
creased from .438 to .591 (p < .01).

Predicting Private Content

Along with identifying and masking private content, we also
wanted to know if workers could effectively predict what is
in segments adjacent to the image segment they were shown,
without needing to actually show workers the content of
those segments (similar to the handwriting completion by
prediction in (Zhang, Lai, and Bcher 2012)). To evaluate
this, we chose a test set of image segments that fit under five
categories: (i) information partially in scene, (ii) information
out-of-scene with clear indicator, (iii) information out-of-
scene with expected content, (iv) information out-of-scene
with expected non-content, and (v) information out-of-scene
with unexpected content / no-content baseline. We selected
two images in each category (total: 10 images), and got 157
worker responses, with each image shown to 15 workers.

This prediction process can be used to show fewer seg-
ments to workers for masking: we calculate the total number
of predicted ”Yes”s, ”No”s and ”Maybe”s per segment, and
select the top-voted element (or multiple elements, given a
tie) for masking, as long as the number of ”Yes”s was above
a threshold of 50%. Doing this gave an average precision
across all images of 94.8%, with an average recall of 92.5%.

Detecting Embarrassing Content

To evaluate the effectiveness of our approach at understand-
ing highly subjective scenarios, we used three potentially
embarrassing images, which contained scenes, such as a per-
son picking their nose. We used three levels of granularity,
and asked, “Does this image contain anything embarrass-
ing?” Two images contained one segment with embarrass-
ing content, while the third image did not. We received re-
sponses from 239 workers with each segment viewed by 3
workers, and observed that the crowd was able to identify
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Figure 4: Average precision and recall scores from just the
highest level of granularity in the main experiment. Aver-
ages are across all tests from all four instruction types.

both of the potentially embarrassing situations with a per-
fect score for both precision and recall, masking only the
segments that contained the embarrassing scene.

Evaluation of the System

Our system is a pre-processor for images sent to crowd-
powered systems: ideally, it should mask the private content
in images, but still enable crowd-workers to complete the
original task posted by the user. We evaluate our system on
whether the end goal is answerable using the masked image.

End-Goal Answerability

Key to the success of our system is the ability for workers
to still answer a desired question by looking at an image
that has been masked. To evaluate this, we used three im-
ages that were filtered from the mutli-level masking experi-
ment. We then presented these masked images to 30 work-
ers, along with the image’s associated question: “How many
pieces of paper is this person holding?”, “Which of these is
my loan package checklist?”, and, “What is in this picture?”
We asked workers whether they believed they would be able
to answer the question with the masked image they had
been shown, and then to simply answer the question. Each
question was shown to 10 unique workers. 90% of work-
ers replied that they thought they could answer the ques-
tion, and 90% of workers answered the question correctly
(though the two sets are not a necessarily a union). This
demonstrates that content filtering, even using the somewhat
course-grained (medium-low budget) divisions we did in our
trials, can be done in a way that still allows for the end goal
question to be answered.

Reducing the Cost of Masking

The cost of running our system is largely dependent on the
levels of granularity that the user wishes to filter at, the size
of the image, and the level of worker redundancy desired.
We priced our tasks at an average of $0.15, and used around
25 segments per image in total, across all levels. While this



Figure 5: Plot of how many tasks would be skipped based
on worker prediction in our example scenario as agreement
rate threshold is increased.

means each image would cost $3.25 to filter, we specifically
did not optimize for price, but instead focused on showing
that it is possible to protect user information using a natu-
ral language-defined filter. For comparison, reducing the pay
rate of these tasks to the U.S. minimum wage ($7.25), would
result in images costing $1 each to filter.

Reducing Task Size By using the crowd’s predictive ca-
pabilities, we can reliably reduce the number of segments
that need to be individually marked by workers by 17%
while retaining 90% accuracy (Figure 5). This reduces the
number of tasks that workers need complete. The number
of granularity levels and max-cost can also be optimized for
images of certain sizes, quality levels, and content-types. In-
creasing the number of images shown to workers per task
would allow the filter cost per segment to be decreased be-
cause workers can more easily complete sets of tasks. To
ensure that this does not undermine our core approach, the
image segments should be drawn from disjoint pieces of the
image, and comprise only a relatively small percentage of
the image per worker.

Automated systems can also be used as a ‘first pass’, fil-
tering content of a type that might present a risk. Computer
vision approaches cannot accurately distinguish the context
in which certain types of information are sensitive, but they
can guide the human-filtering process by having workers
look only at segments that contain potentially harmful types
of information. This can even guide the use of CrowdMask
at a higher level. For instance, an image not containing num-
bers is unlikely to contain harmful account information, so
no filtering must be done by human workers.

Limitations

Our results demonstrate that we can accurately and reliably
filter sensitive content from images based on natural lan-
guage definition – even with subjective queries – without re-
vealing the information to workers along the way. We show
that this content masking is done in such a way that the ini-
tial question behind the image can still be answered.

To fully understand how CrowdMask would be used in
practice requires recruiting people to create filters for their

own potential tasks. However, many tasks that would bene-
fit most from our approach are not currently being run due
to the risk of exposing private information. Running end-
to-end experiments on an untested system poses substantial
risk for the end user. For this reason we focus on understand-
ing our system and its capabilities. By learning how workers
completed their task and establishing the capabilities of the
system, we hope to enable crowdsourcing researchers and
system builders to mitigate privacy threats in their systems.

While the our system is designed to thwart individual at-
tacks, the information filtered remains at risk from coordi-
nated group attacks (Lasecki, Teevan, and Kamar 2014). If
a sufficient number of workers colluded and shared images,
they would likely be able to recreate the original content in
the images. Although communication channels are available
to workers (e.g., forums) (Irani and Silberman 2013), they
tend to ally with requesters against coordinated attacks.

Generalizing to Other Content Types

While future work is needed for further development and ex-
perimentation, our pyramid workflow can be applied to other
forms of media. Below, we discuss how this could be accom-
plished in future systems and extensions of CrowdMask:

• Text: The workflow remains the same, but works on the
simpler 1-dimensional case of linear text where segment
size is measured in number of words. When workers see
words or phrases that might constitute sensitive informa-
tion, they should be able to click them and filter them out.
We are currently building a module that extends Crowd-
Mask for this purpose.

• Audio: Segmenting audio can be done in a similar man-
ner to text, but because the word boundaries are not
clearly discernible, words may be truncated by segmen-
tation, even with automated segmentation assistance. To
solve this, a system can stagger responses to ensure com-
plete coverage. Selecting the length of audio clips has the
same trade-offs as image segmentation, larger clips pro-
vide more content, leading to more context and more risk.

• Video: Like image, video requires a 2D filter, as well
as temporal division to avoid over-filtering. If audio is
present, that can be handled together, or as a separate task
(giving less context, but potentially more secure).

• Other Media: Other forms of media, including hyper-
media and structured content (e.g., databases or knowl-
edge graphs) can also be handled if the appropriate seg-
mentation methods are added. Structured forms of data
may have an advantage in terms of privacy protection and
cost because there is more a priori knowledge about con-
straints and templates for information.

Conclusion

In this paper, we have introduced a generalizable, task-
independent approach for filtering potentially sensitive in-
formation using the crowd. While automated approaches can
only remove content in a very coarse-grain fashion (i.e.,
based on type), we have shown that it is possible to use
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human intelligence to filter content based on simple natu-
ral language queries, without exposing information to the
workers themselves. Our novel pyramid workflow progres-
sively “zooms out” from a fine-grained content segmentation
(many small pieces) to a more coarse-grained segmentation
(fewer large pieces), masking content as soon as it can be
identified as something the user did not want included in
their task request. We showed that this approach can effec-
tively filter image content, while hiding sensitive informa-
tion from constituent workers.
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