
A 10-Month-Long Deployment Study of
On-Demand Recruiting for Low-Latency Crowdsourcing

Ting-Hao (Kenneth) Huang, Jeffrey P. Bigham
Carnegie Mellon University, Pittsburgh, PA, USA.

{tinghaoh,jbigham}@cs.cmu.edu

Abstract

A number of interactive crowd-powered systems have been
developed to solve difficult problems out of reach for auto-
mated solutions. To work interactively, such systems need ac-
cess to on-demand labor. To meet this demand, workers can
be (i) recruited when needed directly from the crowd market-
place, or (ii) recruited in advance and asked to wait in a re-
tainer pool until they are needed. Most of the evaluations of
these systems have been over a short time period, even though
we know that marketplaces change and adapt over time. In
this paper, we present the results of a 10-month deployment
of a crowd-powered system that uses a hybrid approach to
fast recruitment of workers that we call Ignition. We describe
the Ignition approach and the observed times required to re-
cruit workers from the marketplace and retainer over this long
period of time. Our results demonstrate that it is possible to
recruit workers with low latency even over long periods, and
suggest a number of opportunities for future work for recruit-
ment strategies and modeling that may further improve on-
demand recruitment for deployed systems.

Introduction

A number of interactive crowd-powered systems have been
developed to solve difficult problems out of reach for au-
tomated solutions. For instance, Soylent used the crowd to
edit and proofread text (Bernstein et al. 2010); Chorus re-
cruited a group of workers to hold sophisticated conversa-
tions (Lasecki et al. 2013); and Legion allowed a crowd of
workers to interact with an UI-control task (Lasecki et al.
2011). A primary challenge for such interactive systems is
to decrease latency because crowdsourcing can be slow. At
a high level, there are at least three sources of latency for
such systems: (i) time required to get workers to show up to
the task, (ii) time required for the workers to do the work,
and (iii) time for the system to integrate the work that they
did into the output given to users. While (ii) and (iii) are
domain-specific, all crowd-powered systems share the chal-
lenge of recruiting workers quickly.

Two main approaches have been used to recruit work-
ers from crowd marketplaces, such as Amazon Mechani-
cal Turk (MTurk), quickly: (i) on-demand recruiting, in
which workers are recruited when they are needed (task

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Task 1 Task 2

Post
HIT

Fully
Occupied

Task 1
Ends

Post
HIT

Wait in Retainer

Time

Figure 1: Ignition combines on-demand recruiting of work-
ers with a retainer to affordably recruit workers quickly to
power deployed crowd systems.

starts) (Bigham et al. 2010), usually by simply posting HITs
(Human Intelligence Tasks) on MTurk marketplace, and (ii)
retainers, which workers are recruited into a retainer pool
and can be called up on quickly (Bernstein et al. 2011).
However, recruiting by posting HITs is inexpensive but
slower; whereas, a full-time retainer is expensive but faster.
On-demand recruiting is known to be robust, as it has been
used in deployed systems such as VizWiz (Bigham et al.
2010), however, its recruiting time is reportedly longer than
a minute, which may be too long for many interactive appli-
cations. In the VizWiz system (Bigham et al. 2010), Bigham
et al. use pre-recruiting to reduce the experienced response
time of users – workers are recruited when users begin us-
ing the application, which gives the system a lead time of
approximately one minute. However, pre-recruiting is not al-
ways possible. For applications such as crowd-powered con-
versational agents (Huang et al. 2016b), the time between
users opening the application and sending their first mes-
sage is very short, which makes pre-recruting less effective.
On the other hand, the retainer model, which holds workers
in a waiting pool and calls workers back when tasks come
in, has a fast response time (less than 10 seconds). However,
the retainer model can be expensive for real-world deploy-
ments, especially for small or medium size of deployment,
in which most of the money is used for waiting time.

Proceedings of the Fifth Conference on
Human Computation and Crowdsourcing

(HCOMP 2017)

61

To tackle this cost-latency tradeoff, we proposed Ignition,
which makes low-latency crowd-powered systems feasible
over long deployments by balancing two recruiting meth-
ods: (i) simply posting HITs, and (ii) maintaining a worker
waiting pool (i.e., a retainer.) As shown in Figure 1, Ignition
starts recruiting workers when a task begins, and the trick is
that the model recruits slightly more workers than each task
needs. The workers who arrive after a task is fully occupied
are retained in a waiting page, and then be directed to the
next available task.

Ignition is particularly useful for supporting the following
types of tasks:

• Applications with an expected response time between 30
seconds to 2 minutes.

• Tasks with dynamic length.

• Tasks that are better with multiple workers, but can start
when the first worker arrives.

• Systems that are deployed at small or medium scale.

In this paper, we report on our experience developing Ig-
nition and our experience with a 10-month deployment with
648 workers collaboratively completing 745 tasks. We de-
ployed Ignition in support of our on-going deployment of a
crowd-powered conversational assistant, Chorus (Huang et
al. 2016b). Each Chorus task can start with 1 worker, and
could be collectively operated by a maximum of 5 workers.
We report on its response time (both of workers arriving to
Ignition, and to the supported task), its stability over time,
and worker response rates. Our experience may inform fu-
ture efforts to deploy low-latency crowd-powered systems
and develop the underlying infrastructure supporting them.

Related Work

Human computation (von Ahn 2005) has been shown to
be useful in many areas, such as story generation (Huang
et al. 2016a), writing and editing (Bernstein et al. 2010),
image description and interpretation (von Ahn and Dab-
bish 2004), and protein folding (Cooper et al. 2010). Ex-
isting abstractions obtain quality work by introducing re-
dundancy into tasks to verify results (Little et al. 2010;
Kittur, Smus, and Kraut 2011). Early crowdsourcing sys-
tems leveraged human intelligence through batches of tasks
that were completed over hours or days. VizWiz (Bigham
et al. 2010) was one of the first systems to elicit nearly real
time response from the crowd. It introduced a queuing model
to recruit workers on-demand with a latency of around two
minutes. Bernstein et al. (Bernstein et al. 2011) showed that
the latency to direct a worker to a task can be reduced to
below a couple of seconds by combining the concepts of
queuing and waiting to recruit crowds (groups) from exist-
ing sources of crowd workers. Further work has used queu-
ing theory to show that this latency can be reduced to under
a second and has also established reliability bounds on using
the crowd in this manner (Bernstein et al. 2012).

Why Using Low-Latency Crowdsourcing

It is generally more expensive and more challenging to uti-
lize crowdsourcing than to use automated approaches when

the tolerated response time is extremely short. The com-
mon practice of human-in-the-loop architectures is to use the
crowd for annotating data or providing human feedback to
algorithms, which usually do not require instant turnaround.
While some prior works aimed at improving the general
speed of crowdsourcing, such as optimizing crowd compo-
nent’s response time (Yan, Kumar, and Ganesan 2010), un-
derstanding the sources of the crowdsourcing latency and
tackling them (Haas et al. 2015), or inventing new mecha-
nisms for humans to label data quickly (Krishna et al. 2016),
the uses of low-latency crowdsourcing often serve special-
ized purposes. In this section we described three of these
specialized purposes: synchronizing with user, other work-
ers, or automated systems. It is noteworthy that these usages
are not mutually exclusive. Complex crowd-powered sys-
tems such as Evorus (Huang et al. 2017) could have crowd
workers to interact with all of these at the same time.

Synchronizing with Users The exploration of low-
latency crowdsourcing started with focus of providing fast
responses directly to end-users. VizWiz (Bigham et al. 2010)
utilized crowd workers to answer visual questions quickly
for blind people; Scribe (Lasecki et al. 2012) had non-
experts to caption speech for deaf and hard of hearing users
with a per-word latency of under 3 seconds; and Adrenaline
used the crowd to pick “the best moment” from a short video
in a second after the film was shoot (Bernstein et al. 2011).
A variance of this type of system is the real-time “polling”
system, in which workers or target audiences are asked to
provide their opinions about a given question or item (e.g.,
poster design) instantly. For instance, the APP “1Q”1 uses
smartphones’ push notifications to ask poll questions and
collect responses from target audiences within few minutes.

Enabling instant responses to end-users also opened up
the era of interactive crowd-powered systems, where the
end-users can synchronously receive and give feedback with
crowd workers during multiple turns of interactions. Soylent
had crowd workers edit and proofread text in real-time inside
user’s text editor (Bernstein et al. 2010); Chorus recruited a
group of workers to collectively hold a synchronous con-
versation with the end-user (Lasecki et al. 2013; Huang et
al. 2016b); and IdeaGens enabled expert to provide real-
time guidance to crowd workers (ideators) to generate new
ideas (Chan, Dang, and Dow 2016).

Synchronizing with Other Workers Prior systems have
shown that multiple workers can be recruited for collabo-
ration by having workers wait until a sufficient number of
workers have arrived (Chilton 2009). While this approach do
not provide low-latency responses for any individual labels
nor to the end-user, workers are often expected to respond
quickly to other workers. For example, the ESP Game paired
workers synchronously to allow them to play an interactive
image-label guessing game (von Ahn and Dabbish 2004),
and Revolt coordinated crowd workers to collaboratively
identify ambiguous items in the data (Chang, Amershi, and

11Q: https://1q.com/

62

Kamar 2017). Similar mechanism have also been adopted
by researchers who recruited groups of Amazon Mechani-
cal Turk workers for studying collaborative learning (Wang,
Wen, and Rose 2017) and intelligent agents’ behaviors in-
side human groups (Azaria, Richardson, and Kraus 2015).
Some crowd-powered systems such as Chorus also allows
workers to communicate with each other in real-time, even
though it is not an essential component of their workflows.

Synchronizing with Fast-paced Automated Systems
Lasecki et al. (Lasecki et al. 2011) introduced continuous
real-time crowdsourcing in Legion, a system that allowed a
crowd of workers to interact with an UI-control task, such as
driving a toy robot, with a latency typically under 1 second.
Following this paradigm, real-time crowd has been used to
control various automated systems that requires a short re-
sponse time. CrowdDrone used real-time crowd to orien-
tate an unmanned aerial vehicles in an unknown environ-
ment (Salisbury, Stein, and Ramchurn 2015b), and Crow-
dAR had crowd to identify and track targets in a live video
feed (Salisbury, Stein, and Ramchurn 2015a). One variance
of this type of systems is the crowd-powered “surveillance”
system, in which the system does not need in-the-moment
guidance all the time, but instead requires fast responses
when the target incidents occur. For example, Zensors uti-
lized continuous real-time crowdsourcing to monitor live
surveillance video feed and notified end-users when the tar-
get event (e.g., it starts raining) occurs (Laput et al. 2015).

Recently, more systems also started exploring the fast-
paced collaboration between crowd workers and automated
components. Evorus recruited a group of crowd workers
to collaborate with automated bots to hold a conversa-
tion (Huang et al. 2017); Guardian first had crowd workers
to extract key information from a running dialog (Huang,
Chen, and Bigham 2017), and then used these information
to query Web APIs, and finally had workers to convert the
API responses back into natural languages (Huang, Lasecki,
and Bigham 2015); and CRQA system used a human-in-
the-loop architecture to answer questions within 60 sec-
onds (Savenkov and Agichtein 2016).

Ignition Framework

In this section we describe our implementation of Ignition.
This implementation has been deployed for supporting an
on-demand crowd-powered conversational agent, Chorus,
in-the-wild since June 2016. We iteratively improved the de-
sign of the system through multiple empirical evaluations
and feedback from workers and our collaborators.2

Worker’s Workflow

From the workers’ perspective, Ignition is composed of a se-
quence of web pages. As shown in Figure 2, the workflow of
workers are as follows: First, a worker reaches to the landing
page. The landing page uses five slides to briefly introduce
the task, and also have the worker sign the consent form

2Our implementation of Ignition is available at:
https://github.com/windx0303/ignition-model

Landing
Page

Tutorial
Page(s)

Waiting
Page

Task
Page(s)

SubmitAccept
HIT

Done Tutorial

New
Worker

Finish w/
Enough Points

Task Arrives

Finish w/
Enough Points

Finish w/o
Enough Points

Figure 2: Transition graph for workers in Ignition. A worker
first reaches the landing page for the introduction and tuto-
rial, and then goes to a waiting page (also known as retainer
page) to wait for tasks. When a task arrives for the worker,
the worker is called back to perform the task using a pop-up
alert and a sound notification.

when necessary. Each new worker who has never submit-
ted our HIT before is also required to finish the one-minute
interactive tutorial. Second, the worker then clicks a button
to enter to the waiting page. The interface of the waiting
page is shown in Figure 3. The worker is instructed to keep
the browser tab open to wait for the task. The system grants
the worker with an retainer reward (2 points) per second for
his/her waiting time. Reward points are later converted to
bonus pay for workers. The accumulated reward points are
displayed in the middle of the page, with the remaining wait-
ing time and estimated bonus amount listed below.

When a task arrives, the waiting page uses a pop-up alert
and a bird sound notification to call the worker back, and
the worker is required to respond within 20 seconds. If the
worker responds in time, he/she will be then directed to the
task page to perform the task; If the worker reaches to 4000
points (estimatedly 33 minutes) without any tasks, the wait-
ing page will also call the worker back to confirm that he/she
is still available, and then automatically submits the HIT if
the worker responds within 20 seconds. The workers who
wait in the retainer pool promise to respond within a spe-
cific amount of time. We recognize these promises and the
time spent by the workers as valuable contributions to keep
a deployed crowd-powered system stable. Therefore, we be-
lieve that a requester should pay for workers’ waiting time
regardless of whether they eventually are assigned with a
task or not. On the other hand, if a worker does not respond
in time, the interface will be wiped out and become unable
to submit. An instruction will further be displayed to ask the
worker to return this HIT as a penalty.

Furthermore, as shown in Figure 2, if the task utilizes
a comparable reward point system as that of Ignition, the
worker can be sent back to the waiting page to continue
accumulating points if he/she did not make sufficient con-
tribution to the task (Rtask.) This is particularly useful for
the tasks that have dynamic length such as conversation
tasks (Huang et al. 2016b). If a worker enters a conversation
task right before it ends and thus earns insufficient reward,
Ignition allows the worker to go back to retainer with his/her
accumulated reward points to continue waiting. This design
also allows workers to focus only on the amount of reward
points they have earned, instead of keep track of both wait-
ing time and reward points at the same time.

63

Figure 3: The worker interface. Workers are instructed to
keep the browser tab open to wait for tasks. Their earned re-
ward points are displayed in the middle of the page, with the
remaining time and estimated bonus amount listed below.

Recruiting Strategy & Worker Routing

When a task arrives, Ignition recruits slightly more workers
than needed, and uses a retainer to hold the extra workers for
future tasks. In our deployed system, the task can start with
1 worker, but is better with 4 to 6 workers. Therefore, for
each incoming task, we aim to recruit 8 workers in total. The
recruiting process can be break down into two parts: Ignition
first recalls Cretainer workers from retainer, and then aims
to recruit Cmarket workers from Amazon Mechanical Turk
marketplace. Namely, Cretainer and Cmarket sums up to 8,
as Equation (1) shows.

Cretainer + Cmarket = 8 (1)

The underlying assumption of Ignition is that a larger
Cmarket has a faster recruiting time from the market, and
thus compensates the speed decrease when no (or few)
workers are waiting in the retainer (Cretainer = 0.) The
detailed process is as follows.

1. Upon the arrival of a new task, Ignition checks if any
workers are currently waiting in the retainer If yes, the
system greedily calls at most 6 workers back from retainer
to do the task (0 � Cretainer � 6).

2. Ignition then tries to recruit Cmarket workers from mturk
marketplace by posting 1 HIT with an average of Cmarket

assignments. We introduced randomness into the system
that Ignition has a 30% chance to add one assignment
(Cmarket + 1), 30% chance to subtract one assignment
(Cmarket−1), and 10% to post 10 assignments. Random-
ness was added here to allow us to collect data about dif-
ferent numbers of assignments, in case worker response
rate or time is dependent on the number of workers al-
ready recruited (which may be true if we are pulling from
an especially small pool), and to explore latency effects
potentially introduced by the platform itself (anecdotally,
HITs with different numbers of assignments seem to ap-
pear with different latencies on MTurk).

When a task has 5 or more workers (either from retainer
or marketplace,) the task is labeled as “fully-occupied” and

stops taking more workers, and the workers recruited via the
same HIT who arrives later will start waiting in the retainer.
However, if some workers left before the task ends and thus
the task has less than 5 workers, the task will be open to
workers again.

Instant, Retained, and No Tasks

When a worker reaches to the waiting page and starts wait-
ing, one of the following events will occur.

• [Instant Task] The task has been created and remains
open when the worker arrives to the waiting page. In this
case the worker does not need to wait and will be called
immediately when reaching to the waiting page.

• [Retained Task] When the worker arrives to the wait-
ing page, the original task is fully-occupied or over. The
worker opens the browser tab to wait, and then the next
task arrives.

• [No Task] Similar to the Retained Task, worker arrives
to the waiting page and starts waiting. However, no tasks
appear till the end of his/her waiting time. The workers
can submit the HIT at the end and just get paid with mturk
price and waiting bonus.

It is noteworthy that workers are not allowed to “double
waiting.” If a worker is currently waiting in the retainer and
reaches to the waiting page again via a different HIT, the
system will block him/her on the second browser tab.

Long-term Deployment Study

The current version of Ignition was initially launched in
June, 2016 for supporting the on-demand crowd-powered
conversational agent, Chorus3, that was deployed to pub-
lic (Huang et al. 2016b). To date4, 122 users used the con-
versational agent during 745 conversational sessions. Each
session was one task, which lasted an average of 10.87 min-
utes (SD = 15.26.) The assignment and task distribution is
shown in Figure 5. Totally 6,823 assignments by 648 work-
ers were recorded, in which 45.04% were of Instant tasks,
8.75% were of Retained tasks, and 46.21% were of no tasks.
As for the task distribution, 50.07% of HITs were posted
when no workers were in the retainer, 18.12% of HITs were
posted when 1 worker was in the retainer, and 11.54% of
HITs were posted when 2 workers were in the retainer. This
distribution suggests that in Ignition, the speed of recruiting
from marketplace and of recalling workers from the retainer
is equally important. We will analyze the performance of
these two parts in the follosing subsections.

Recruiting from the Marketplace

In the deployed Ignition, majority of assignments were of
the [Instant Task] case, in which workers do not need to wait
and are directed to tasks immediately after they reach to the
retainer. In the case of [Instant Task], most of the recruiting
time are spent in waiting for workers to find the HIT, accept

3Chorus: http://talkingtothecrowd.org/
4All results presented in this paper are based on data recorded

from July 1st, 2016 to April 27th, 2017.

64

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 30 60 90 120 150 180 210 240 270 300

P
(1

 o
r m

or
e

w
or

ke
rs

 a
rr

iv
ed

w
ith

in
 x

 s
ec

on
ds

)

seconds

Prob. Getting 1+ Workers from MTurk Market

8 7 6 5 4 3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 30 60 90 120 150 180 210 240 270 300

P
(3

 o
r m

or
e

w
or

ke
rs

 a
rr

iv
ed

w
ith

in
 x

 s
ec

on
ds

)

seconds

Prob. Getting 3+ Workers from MTurk Market

8 7 6 5 4 3

Cmarket (Target #Workers from Market)

Cmarket (Target #Workers from Market)

Figure 4: The probability of a posted HIT that have at least 1 (and at least 3) workers in the retainer at x seconds after the HIT
was posted. When Ignition posted a HIT with an average of 5 assignments, 40% of the time the first worker will reach to the
retainer under 2 minutes. (N = 346, 132, 86, 45, 50, 22)

Figure 5: The distribution of assignments and tasks. 50.07%
of HITs were posted when no workers were in the retainer.
Amongst totally 6,823 assignments, 45.04% of assignments
were of Instant tasks, 8.75% were of Retained tasks, and
46.21% were of no tasks.

the HIT, start doing the HIT, and finish the tutorial. To the
best of our knowledge, no prior works reported how fast a
HIT will be taken on Amazon Mechanical Turk marketplace.
Therefore, we calculated the probability of a posted HIT that
have at least 1 (and at least 3) workers in the retainer at x
seconds after the HIT was posted. The results are shown in
Figure 4. The x axis is the cut-off time (x seconds,) and the
y axis is the probability at x seconds.

The results suggest that when a HIT posted to mturk mar-
ketplace with more assignments, it is more likely workers
will arrive to the task earlier. When Ignition posted a HIT
with an average of 5 assignments, 40% of the time the first
worker will reach to the retainer under 2 minutes; when Ig-
nition posted a HIT with an average of 8 assignments, 79%
of the time the first worker will reach to the retainer un-
der 80 seconds. With a larger Cmarket, Ignition’s recruit-
ing strategy can get workers faster. This results confirm the
underlying assumption of Ignition that a larger Cmarket re-
sults in a faster recruiting time from market, which can com-
pensate the speed decrease when no workers waiting in the
retainer. Furthermore, the distribution of the first workers’
arrival times when the system aimed to recruit various num-
ber of workers from mturk marketplace is shown in Figure 6
(workers who arrived after 5 minutes are excluded.) A larger
Cmarket results in not only a smaller mean of arrival time,

Figure 6: The distribution of the first workers’ arrival times
when the system aimed to recruit various number of work-
ers from mturk marketplace. A larger Cmarket results in not
only a smaller mean of arrival time, but also a smaller stan-
dard deviation.

but also a smaller standard deviation.

The positive correlation between Cmarket and recruiting
speed could be caused by several factors: First, a HIT with
more assignments has a longer lifetime on Mturk market-
place before all assignments are taken, and thus has better
visibility. Second, a HIT with more assignments is more ro-
bust to the workers who hold the accepted tasks for a while
instead of doing the task immediately. Finally, given that we
had a relatively small group of active workers who took most
of our HITs, a smaller Cretainer could indicate that more
of these active workers are still on the marketplace, and are
thus easier to be recruited from the market. Workers use web
browser extensions to alert them when new HITs are posted
by favored requesters, and therefore some of the results we
have seen could be influenced by the use of these tools.

65

0

200

400

600

800

1000

1200

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ju
l-1

6

A
ug

-1
6

S
ep

-1
6

O
ct

-1
6

N
ov

-1
6

D
ec

-1
6

Ja
n-

17

Fe
b-

17

M
ar

-1
7

A
pr

-1
7

#A
ss

ig
nm

en
t

R
es

po
ns

e
R

at
e

(a) Retainer Deployed Over Time

 #Assignment Instant
 Retained No Task

0

200

400

600

800

1000

1200

1400

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

#A
ss

ig
nm

en
t

R
es

po
ns

e
R

at
e

(b) Retainer in Day of Week

 #Assignment Instant
 Detained No Task

0
20
40
60
80
100
120
140
160
180
200

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35

#A
ss

ig
nm

en
t

R
es

po
ns

e
R

at
e

Worker’s Waiting Time (Minute)

(c) Retainer Time

 #Assignment

Figure 7: Worker recall rate from the retainer (a) by months, (b) by the day of the week, and (c) by time spent waiting. Overall,
results demonstrate that the recall rate was reasonably stable during our deployment, although this rate did vary.

Recruiting from the Retainer

The retainer model has shown to be able to recall 75%
of workers within a couple of seconds (Bernstein et al.
2011). Our deployment study echoes this findings, and fur-
ther demonstrates the long-term dynamics of a deployed re-
tainer. We calculated the response rate (i.e., the probabil-
ity that a worker responded to the task within 20 seconds)
of [Instant Task], [Retained Task], and [No Task]5 during
each month of our deployment. As Figure 7(a) shows, the re-
sponse rate of [Instant Task] cases were nearly perfect. We
believe that it is because workers do not need to wait. Ex-
cept for the first two months, the response rates of [Retained
Task] and [No Task] were all higher than 80% during the
entire deployment. Interestingly, we found that the response
rate of [Retained Task] cases slightly dropped on Sunday
(Figure 7(b).) Within the [Retained Task] cases, we also cal-
culated the response rate with respect to each worker’s wait-
ing time in the retainer (Figure 7(c).) We found that workers
have the lowest response rate when waited in the retainer be-
tween 15 to 25 minutes. It is possible that workers learned to
pay more attention at the end of their waiting time (i.e., 33
minutes), perhaps because they were aware of their chances
of getting paid without actually doing the task.

It is noteworthy that our implementation has a more re-
laxed response time constraint (20 seconds) for workers than
that of Bernstein et. al’s work (� 5 seconds.) Therefore the
response rate reported in this section is higher. During our
deployment, the average response time from the retainer is
7.703 seconds (SD = 4.679, all cases included.)

In sum, during our deployment, the retainer was shown
to be able to stably recall 80% to 90% workers when tasks
comes in, which suggests its mechanism is reliable to real-
world use (although potentially expensive).

Recruiting by Ignition (Retainer & Marketplace)

Finally, for understanding the end-to-end performance of
Ignition, we analyzed the probability of a started task that

5For [No Task], workers also need to respond at the end of their
waiting time to confirm that they are still available.

have at least 1 (and at least 3) workers reaching to the task
(not retainer), regardless of the sources of workers (either
from marketplace or from retainer.) The result is shown in
Figure 8. The x-axis is the cut-off time (x seconds) after
the HIT was posted, and the y-axis is the probability at x
seconds. Figure 4 and Figure 8 demonstrates how our hy-
brid approach works inside a real-world deployed system.
It is noteworthy that the lines of “Cmarket = 8” in Fig-
ure 4 (navy blue color) and the lines of “Cretainer = 0”
in Figure 8 (navy blue color) are nearly the same (because
Cmarket + Cretainer = 8.) When no workers are waiting in
the retainer pool, Ignition posts more assignments to mturk
marketplace to recruit workers to have a better recruiting
speed (Figure 6); when some workers are waiting in the re-
tainer pool, Ignition recalls workers back from retainer and
thus results in a much shorter response time (Figure 8.)

As shown in Figure 5, half of tasks occurred when no
workers were waiting in the retainer pool. Ignition dynam-
ically decides the number of assignments to post based on
the number of workers in retainer, and thus helps to balance
monetary cost and response speed.

Worker Survey

We believe that understanding workers’ opinion and behav-
iors could help us further improve the design of future low-
latency crowd-powered systems. While low-latency crowd-
sourcing has been proposed and developed for many years,
literatures had little to say about workers’ perspective of
these technologies, nor how they work with these tasks.
Therefore, we designed a questionnaire to collect opinions
and self-reported behavior for 156 workers who have com-
pleted at least 10 HITs in the Ignition system. We posted
the survey as a $2.0 HIT on Amazon Mechnical Turk for
two weeks, and contacted these workers to participate in the
survey. A total of 101 workers finished the survey, i.e., the
response rates is 64.74%. Each worker on average took 10
minutes 20 seconds to finish to the questionnaire.

66

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 30 60 90 120 150 180 210 240 270 300

P
(1

 o
r m

or
e

w
or

ke
rs

 a
rr

iv
ed

w
ith

in
 x

 s
ec

on
ds

)

seconds

Prob. Getting 1+ Workers from Market + Retainer

0 1 2 3 4 5
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 30 60 90 120 150 180 210 240 270 300

P
(3

 o
r m

or
e

w
or

ke
rs

 a
rr

iv
ed

w
ith

in
 x

 s
ec

on
ds

)

seconds

Prob. Getting 3+ Workers from Market + Retainer

0 1 2 3 4 5

Cretainer (Target #Workers from Retainer) Cretainer (Target #Workers from Retainer)

Figure 8: The probability that a task will have at least 1 (or 3) new worker(s) reach to the task over time, regardless of the
sources of workers, given the number of workers that need to be recruited.

Workers’ Opinion about Retainer HITs

In the survey, we asked workers to rate if they like (i) “doing
HITs on MTurk in general” and (ii) “doing retainer HITs,”6

which we referred to as likability score. Responses were col-
lected on a five-point Likert scale (strongly disagree = 1, and
strongly agree = 5). As a result, the average likability rating
of general HITs is significantly higher than that of the re-
tainer HITs (p = 0.0058). Workers reported an average of
4.47 points (SD = 0.81) for general HITs, and 4.12 points
(SD = 1.00) for retainer HITs. The distributions of rating
points are shown in Figure 9.

What Workers Disliked Based on our experience of de-
ploying Ignition, we expected that workers would prefer reg-
ular HITs over retainer HITs. In the survey, we further asked
workers to rate the extent to which they disliked the four
main aspects that workers have complained about: (i) need-
ing to wait until work is available, (ii) committing their next
30 minutes, (iii) responding to the recall alert with 20 sec-
onds, and (iv) believing the payment for waiting time is too
low. Workers reported feeling most disliking the payment
rate for their waiting time, for which the average dislika-
bility rating is 3.64 (SD = 1.22). The next factor was the
requirement to respond quickly, in which the average rat-
ing was 3.09 (SD = 1.41). The third is the requirement that
workers need to commit 30 minutes, for which the average
rating was 2.76 (SD = 1.31). The least dislikable factor was
needing to wait, in which the average rating was 2.52 (SD
= 1.24). The rating distributions are shown in Figure 10. We
also asked workers to rate on a five-point Likert scale how
easy it is for them to commit 30 minutes and to respond
within 20 seconds. Workers on average find it slightly easier
to commit their time (3.75, SD = 1.13) than to respond to the
recall alert quickly (3.70, SD = 1.24).

Furthermore, we asked workers to provide some other dis-
likable factors which were not covered in these four items. 5
workers mentioned that the retainer HITs are likely “bug-
gier” than regular HITs. One worker said that while our

6In the questionnaire we defined a “retainer HIT” as follows:
Unlike a typical HIT that rewards a worker for completing a task,
a HIT served by a retainer system pays a worker for “waiting for a
task to appear” in addition to completing the actual task.

0
10
20
30
40
50
60
70

General HITs Retainer HITs

W

or
ke

r

Worker’s Likability Rating

1 2 3 4 5

Figure 9: Answers to Likert scale questions on our survey in-
dicating that workers like doing (i) HITs on MTurk in gen-
eral and (ii) retainer HITs. The average likability rating of
general HITs is significantly higher (p = 0.0058).

HITs were fine, “I’ve seen the issue with other retainer hits.”
Another worker also said “Maybe it didn’t always operate
smoothly.” Meanwhile, most workers echoed their thoughts
on these four aspects, especially about the lower wage for
their waiting time, instead of mentioning new dislikable fac-
tors. Workers suggested the ideal wage they expected for
waiting. One worker said, “it’s hardly $0.20 + 0.05 to wait. It
should be at least $0.40 +0.10”; a worker mentioned another
requester provided $0.50 for 10-minute waiting time.

What Workers Liked We asked workers to answer in free
text what they like about the retainer HITs. The following
three themes emerged in the collected responses: (i) getting
paid for simply waiting, (ii) the waiting page have a large
clear timer to show the amount of accumulated bonus and
remaining time, and (iii) being able to work on other HITs
or do other things in parallel.

34.7% of workers mentioned they like to get paid for just
waiting. As one worker said, “...(Your HITs) give a sense
of ’not waiting in the dark’ since they pay you to wait (not
even having focus to your tab). This is a form of respect to
the turkers and predisposes me to do my best to complete
your projects.” Workers also pointed out that some other re-
questers did not pay for their waiting time if they did not
encounter any tasks. For example, one worker said, “I liked
that even if there was no work i was still getting paid some-
thing just to wait, most other requesters don’t give that cour-
tesy.” 29.7% of workers mentioned that they like the design

67

0
10
20
30
40
50

Waiting Time
Commitment

Fast Response Payment for
Waiting Time

W

or
ke

r

Workers’ Dislikeability Rating on
Aspects of Retainer HITs

1 2 3 4 5

Figure 10: Answers to Likert scale questions on our survey
indicating that workers dislike (i) waiting, (ii) committing
time, (iii) responding to the recall alert fast, and (iv) getting
paid lower for their waiting time of retianer HITs. As a re-
sult, workers feel most unsatisfied about the lower payment
for their waiting time, and least concern about the fact that
they need to wait.

of our waiting page, especially it has a big timer showing the
bonus and remaining time. As one worker put it, “...the way
the system shows points increasing with the time and the
minimum amount of time one needs to wait to submit the
hit is useful information and helps keep ones attention to the
task.” Another workers said, “I like that the countdown and
the bonus totals change in real time and I can see how much
time is left.” One other worker also said “I think it is really
great that you have a waiting page, I wish more requesters
did.” 25.7% of workers mentioned that they like the fact that
they are free to work on other HITs or do other things dur-
ing waiting. For instance, one worker commented, “We can
work or do other things as well if there is no task assigned,
so we can utilize our time effectively because of the recall
alert and waiting page feature.”

How Do Workers Work with Retainer HITs

We asked workers the browsers7 and tools (e.g., browser
extensions) they used to keep track of our HITs. 33.7% of
worker said they used browser extensions to subscribe to
our HITs on Amazon Mechanical Turk. We then asked these
workers which tools or extensions they have been using. The
following are all the browser extensions mentioned, along
with the number of workers mentioned it: HIT Scraper (12),
Turkmaster (6), JR Mturk Panda Crazy (5), Mturk Suite (3),
Hit Finder (2), HIT Notifier (2), Openturk (1), Overwatch for
worker.mturk (1), HIT Monitor (1), “Greasemonkey scripts”
(1), and “a auto reload tool” (1).

We also asked workers “Is there any forum or commu-
nity you use to keep track of our HITs?” 28.7% of work-
ers said yes and reported the forum they use. The follow-
ings are the on-line communities worker reported using,
along with the number of workers who mentioned using it:
MturkCrowd.com (10), “worker forums” (4), TurkerNation
(4), “Hits Worth Turking For” Reddit group (3), TurkerHub
(3), TurkOpticon (3), mturkgrin (1), Turkalert (1), and “a
whatsapp group” (1).

787.2% of workers used Google Chrome, and 18.8% of workers
used Mozilla Firefox.

Furthermore, we asked workers “What do you usually
do when waiting on the countdown timer page?”. 79.2% of
workers usually do other HITs in parallel; 15.8% of work-
ers usually do something else on their computers in parallel
instead of doing other HITs; and 2% of workers do not use
computer in parallel, but do something else (e.g., watching
TV) instead. While the majority of workers take other HITs
when they are waiting, around 20% of workers do something
else instead, even not in front of their computers. Allowing
them to choose a louder or more aggressive notification is
likely helpful to recall them back.

We also asked workers “If something unexpected happen
during your waiting time and you have to leave, what do you
usually do?”. 46.5% of workers said they usually leave the
browser open, just in case he/she could be back soon; 44.6%
of workers usually return the HIT and leave; and 5.9% of
workers just close the browser directly. Since many work-
ers are willing to come back to continue waiting after they
were interrupted, enabling them to pause and resume on the
waiting page could be helpful. However, since the task dis-
tribution over retainer time is not uniformly distributed (Fig-
ure 7(c)), a more sophisticated mechanism might be needed
for preventing workers from abusing a pausing feature (e.g.,
disallowing workers to pause during the first 5 minutes, or
setting a maximum pause time.)

Discussion

Delay-Cost Trade-offs As expected, there are trade-offs
between response speed and cost when recruiting workers
on MTurk. Maintaining a retainer pool can result in a very
short response time, however, is also expensive. Given our
current rate, which is $0.25 per 33 minutes, a base rate of
running a full-time retainer can be calculated as follows. If
we maintain a 5-worker retainer for 24 hours, it would cost
$65.45 per day (including MTurk’s 20% fee), $458.18 per
week, or approximately $2,000 per month. This price does
not consider the possible refillings of retainer when the sys-
tem requires more than 5 workers at the same time. Ignition’
cost is basically a function of task numbers, getting rid of
the basic rate that needed to maintain a retainer pool.

It may be possible to learn optimal policies for recruiting
based on a budget. Our results suggest that variables such as
the number of workers waiting, the number of workers al-
ready recruited, the time workers have already spent in the
retainer, each worker’s prior response rate/time, etc. could
be inputs to such a model. Furthermore, given workers gen-
erally expect a higher wage for their waiting time, the hourly
wage of the retainer and task also likely play roles. For sys-
tems that will be deployed over long periods, it may be use-
ful to model the observed latency recruiting workers from
the marketplace – some applications may not even need to
use a retainer, relying instead on the natural latency afforded
by the marketplace itself.

Task-Dependent Factors It is noteworthy that in this pa-
per we only measure workers’ arrivals to the waiting page
and tasks, but not their completions nor performances on
tasks. In other words, even if Ignition is able to recruit work-

68

ers quickly with reasonable financial cost, workers can still
return the HIT or not complete the HIT until it expires, even
when they reach the HIT quickly. In the early stage of de-
ploying Chorus (Huang et al. 2016b), many workers return
our HITs not because of the Ignition recruiting system, but
the unfamiliarity of Chorus tasks.

Conclusion & Future Work

We have introduced Ignition, an approach that combines
both on-demand recruiting and the retainer model to bring
workers to tasks from Amazon Mechanical Turk. We have
explored deployment of Ignition over 10 months to support
a medium-sized crowd-powered system deployment, find-
ing that it reasonably balanced the cost and latency of re-
cruiting workers. The paper discusses the observed stability,
timing, and retention of workers using the model, demon-
strating the feasability of on-demand recruitment over time.
In the future, it would be interesting to explore how our
findings are affected by increased load on the crowd mar-
ketplace, and how these results might change if we instead
consider a large, active deployment in which many more
workers are involved. Furthermore, prior workers have ex-
plored using old tasks (Bigham et al. 2010) or micro di-
version breaks (Dai et al. 2015) to engage workers longer,
which could be incorporated in future Ignition frameworks.

Future research may also consider the effect of continu-
ity on worker response time and recruitment, as prior work
has found that this can affect quality (Lasecki et al. 2015).
For instance, it may be that workers are more easily brought
back to work on another task after they have finished a prior
one. It is also likely that the variables we measure change
over time, as workers learn of the task and adapt to it, or as
the underlying market changes. It would thus be interesting
to compare the evolution of more than one system, on more
than one platform, over a long period of time.

Acknowledgements

This research was supported by the Yahoo! InMind
Project (Azaria and Hong 2016). We thank Joseph Chee
Chang, who came up with the name “Ignition,” Kotaro Hara,
Saiph Savage, and Daniel S. Weld for their feedback and
assistance. We also thank the workers on Mechanical Turk
who participated in our studies and survey.

References

Azaria, A., and Hong, J. 2016. Recommender system with
personality. In Proceedings of the 10th ACM conference on
Recommender systems. ACM.
Azaria, A.; Richardson, A.; and Kraus, S. 2015. An agent
for deception detection in discussion based environments. In
Proceedings of the 18th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing, 218–227.
ACM.
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.;
Ackerman, M. S.; Karger, D. R.; Crowell, D.; and Panovich,
K. 2010. Soylent: a word processor with a crowd inside. In
Proceedings of the 23nd annual ACM symposium on User

interface software and technology, UIST ’10, 313–322. New
York, NY, USA: ACM.
Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’11, 33–42. New York, NY, USA: ACM.
Bernstein, M. S.; Karger, D. R.; Miller, R. C.; and Brandt,
J. R. 2012. Analytic methods for optimizing realtime crowd-
sourcing. In Proceedings of Collective Intelligence, CI 2012,
to appear.
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; Miller, A.; Miller,
R. C.; Miller, R.; Tatarowicz, A.; White, B.; White, S.; and
Yeh, T. 2010. Vizwiz: nearly real-time answers to visual
questions. In Proceedings of the 23nd annual ACM sympo-
sium on User interface software and technology, UIST ’10,
333–342. New York, NY, USA: ACM.
Chan, J.; Dang, S.; and Dow, S. P. 2016. Improving crowd
innovation with expert facilitation. In Proceedings of the
19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing, 1223–1235. ACM.
Chang, J. C.; Amershi, S.; and Kamar, E. 2017. Revolt:
Collaborative crowdsourcing for labeling machine learning
datasets. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, 2334–2346. ACM.
Chilton, L. 2009. Seaweed: A web application for designing
economic games. Master’s thesis, MIT.
Cooper, S.; Khatib, F.; Treuille, A.; Barbero, J.; Lee, J.; Bee-
nen, M.; Leaver-Fay, A.; Baker, D.; Popovic, Z.; and Play-
ers, F. 2010. Predicting protein structures with a multiplayer
online game. Nature 466(7307):756–760.
Dai, P.; Rzeszotarski, J. M.; Paritosh, P.; and Chi, E. H.
2015. And now for something completely different: Im-
proving crowdsourcing workflows with micro-diversions. In
Proceedings of the 18th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing, 628–638.
ACM.
Haas, D.; Wang, J.; Wu, E.; and Franklin, M. J. 2015.
Clamshell: Speeding up crowds for low-latency data label-
ing. Proc. VLDB Endow. 9(4):372–383.
Huang, T.-H. K.; Ferraro, F.; Mostafazadeh, N.; Misra, I.;
Agrawal, A.; Devlin, J.; Girshick, R.; He, X.; Kohli, P.; Ba-
tra, D.; et al. 2016a. Visual storytelling. In Proc. the 15th
Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL 2016).
NAACL.
Huang, T.-H. K.; Lasecki, W. S.; Azaria, A.; and Bigham,
J. P. 2016b. “is there anything else i can help you with?”:
Challenges in deploying an on-demand crowd-powered con-
versational agent. In Proceedings of AAAI Conference on
Human Computation and Crowdsourcing 2016 (HCOMP
2016). AAAI.
Huang, T.-H. K.; Chang, J. C.; Swaminathan, S.; and
Bigham, J. 2017. Evorus: A crowd-powered conversational
assistant that automates itself over time. In Poster track of

69

the 20th ACM Symposium on User Interface Software and
Technology (UIST Poster 2017).
Huang, T.-H. K.; Chen, Y.-N.; and Bigham, J. P. 2017. Real-
time on-demand crowd-powered entity extraction. In Pro-
ceedings of the 5th Edition Of The Collective Intelligence
Conference (CI 2017). Oral presentation.
Huang, T. K.; Lasecki, W. S.; and Bigham, J. P. 2015.
Guardian: A crowd-powered spoken dialog system for web
apis. In Gerber, E., and Ipeirotis, P., eds., Proceedings of the
Third AAAI Conference on Human Computation and Crowd-
sourcing, HCOMP 2015, November 8-11, 2015, San Diego,
California., 62–71. AAAI Press.
Kittur, A.; Smus, B.; and Kraut, R. 2011. Crowd-
forge: Crowdsourcing complex work. Technical Report
CMUHCII-11-100, Carnegie Mellon University.
Krishna, R. A.; Hata, K.; Chen, S.; Kravitz, J.; Shamma,
D. A.; Fei-Fei, L.; and Bernstein, M. S. 2016. Embrac-
ing error to enable rapid crowdsourcing. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, 3167–3179. New York, NY, USA: ACM.
Laput, G.; Lasecki, W. S.; Wiese, J.; Xiao, R.; Bigham, J. P.;
and Harrison, C. 2015. Zensors: Adaptive, rapidly deploy-
able, human-intelligent sensor feeds. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’15. New York, NY, USA: ACM.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing in-
terfaces. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, 23–32. ACM.
Lasecki, W. S.; Miller, C. D.; Sadilek, A.; Abumoussa, A.;
Borrello, D.; Kushalnagar, R.; and Bigham, J. P. 2012. Real-
time captioning by groups of non-experts. In In Proceedings
of the Symposium on User Interface Software and Technol-
ogy (UIST 2012), 23–34.
Lasecki, W. S.; Wesley, R.; Nichols, J.; Kulkarni, A.; Allen,
J. F.; and Bigham, J. P. 2013. Chorus: A crowd-powered
conversational assistant. In Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’13, 151–162. New York, NY, USA: ACM.
Lasecki, W. S.; Rzeszotarski, J. M.; Marcus, A.; and
Bigham, J. P. 2015. The effects of sequence and delay on
crowd work. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems, CHI ’15,
1375–1378. New York, NY, USA: ACM.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010. Turkit: human computation algorithms on mechanical
turk. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology, UIST ’10, 57–
66. New York, NY, USA: ACM.
Salisbury, E.; Stein, S.; and Ramchurn, S. 2015a. Crowdar:
augmenting live video with a real-time crowd. In Third AAAI
Conference on Human Computation and Crowdsourcing.
Salisbury, E.; Stein, S.; and Ramchurn, S. 2015b. Real-
time opinion aggregation methods for crowd robotics. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 841–849. Inter-

national Foundation for Autonomous Agents and Multiagent
Systems.
Savenkov, D., and Agichtein, E. 2016. Crqa: Crowd-
powered real-time automatic question answering system. In
Proc. the Fourth AAAI Conference on Human Computation
and Crowdsourcing (HCOMP 2016).
von Ahn, L., and Dabbish, L. 2004. Labeling images with a
computer game. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, 319–
326. New York, NY, USA: ACM.
von Ahn, L. 2005. Human Computation. Ph.D. Dissertation,
Carnegie Mellon University, Pittsburgh, PA.
Wang, X.; Wen, M.; and Rose, C. 2017. Contrasting ex-
plicit and implicit support for transactive exchange in team
oriented project based learning. In Proc. 12th International
Conference on Computer Supported Collaborative Learning
(CSCL) 2017. Philadelphia, PA: International Society of the
Learning Sciences.
Yan, T.; Kumar, V.; and Ganesan, D. 2010. Crowdsearch:
Exploiting crowds for accurate real-time image search on
mobile phones. In Proceedings of the 8th International Con-
ference on Mobile Systems, Applications, and Services, Mo-
biSys ’10, 77–90. New York, NY, USA: ACM.

70

