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Abstract

Visual questions (VQs) can lead multiple people to respond
with different answers rather than a single, agreed upon re-
sponse. Moreover, the answers from a crowd can include dif-
ferent numbers of unique answers that arise with different
relative frequencies. Such answer diversity arises for a va-
riety of reasons including that VQs are subjective, difficult,
or ambiguous. We propose a new problem of predicting the
answer distribution that would be observed from a crowd for
any given VQ; i.e., the number of unique answers and their
relative frequencies. Our experiments confirm that the an-
swer distribution can be predicted accurately for VQs asked
by both blind and sighted people. We then propose a novel
crowd-powered VQA system that uses the answer distribution
predictions to reason about how many answers are needed to
capture the diversity of possible human responses. Experi-
ments demonstrate this proposed system accelerates captur-
ing the diversity of answers with considerably less human ef-
fort than is required with a state-of-art system.

Introduction

The goal of a visual question answering (VQA) system is
to empower people to learn the answer to any question
about any image (Antol et al. 2015; Bigham et al. 2010;
Malinowski, Rohrbach, and Fritz 2015). For example, a
VQA system could enable blind people to address daily vi-
sual challenges, such as learning whether a pair of socks
match or learning what type of food is in a can. VQA
services could also facilitate the creation of smarter envi-
ronments, such as investigating the reason for an observed
crowd behavior in public places.

A challenge for designing VQA systems in practice is that
different people can arrive at the same answer or diverse an-
swers when answering a visual question (VQ). This is exem-
plified in Figure 1, where we show a variety of answer dis-
tributions that arose in response to six VQs. In some cases,
an anonymous crowd of on-line workers (the typical individ-
uals to provide answers) agreed upon a single answer (e.g.,
Figure 1; column 1), at the other extreme all individuals dis-
agreed with each other (e.g., Figure 1; column 6), and in
between these two extremes were different numbers of peo-
ple clustering around a different number of answers (e.g.,
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Figure 1; columns 2–5); i.e., different numbers of unique
answers arise with differing relative frequencies. Different
answer distributions arise for a numerous reasons includ-
ing because VQs are ambiguous, subjective, or difficult as
well as because answers are synonyms. Currently, a person
cannot know the level of answer diversity that will arise in
response to a VQ without collecting answers from a crowd.
The best one can achieve today is to predict whether a crowd
will disagree when answering a VQ (Gurari and Grauman
2017). Yet, a more flexible understanding of the fine-grained
answer distribution that will arise for a VQ could be valuable
for a variety of purposes.

One motivation for anticipating the answer distribution
is such information could be valuable to efficiently collect
all unique answers from a crowd. The motivating assump-
tion is that capturing all plausible answers from a crowd
is a feature rather than a bug (e.g., spam); i.e., an open
call to crowd workers should be sufficiently large to cap-
ture all plausible perspectives for ambiguous VQs, to cap-
ture all plausible perspectives for subjective VQs, and to
include a person with the rare domain expertise needed to
correctly answer difficult VQs. Existing crowd-powered sys-
tems are inefficient because they choose the number of peo-
ple to provide answers either based on the crowdsourcing
conditions (Bigham et al. 2010) or pre-determined numbers;
e.g., crowd size is one for (Malinowski, Rohrbach, and Fritz
2015), three for (Antol et al. 2015), and one or five for (Gu-
rari and Grauman 2017). Consequently, existing approaches
accrue extra costs and delays by soliciting answers from ex-
tra members of the crowd when all unique answers have al-
ready been collected (e.g., collecting five answers when only
two answers are needed). Existing approaches also sacrifice
on quality by not soliciting answers from enough members
of the crowd to capture all unique answers (e.g., collect-
ing only two answers when four answers are needed). Fine-
grained predictions to reason about how many members of
the crowd is just enough to ask for each VQ would reduce
costs and delays to collect all unique answers for each VQ.

Anticipating the answer distribution from a crowd could
also enable the design of more helpful automated VQA sys-
tems. This is because automated systems currently often re-
turn a single answer per VQ. Such systems could be more
valuable if they informed users about the extent to which
independent members of the crowd might agree on the re-
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Figure 1: Examples of visual questions and corresponding answers from 10 different people. The examples include visual ques-
tions asked by both blind individuals and sighted individuals. As observed, the answer distribution can vary from unanimous
agreement on a single answer (first column) to uniform disagreement on different answers (last column).

turned answer; e.g., 50% versus 100% agreement for “Yes”.
Furthermore, anticipating the answer distribution from a

crowd could provide valuable, real-time feedback so that
those asking questions could quickly modify their VQ to
yield the desired answer diversity. For example, a teacher
may want to gauge how active a debate will be in response
to a question (s)he is considering asking about a picture or
painting; will it shut down conversation versus encourage a
simple controversy (two answers) versus encourage an open-
ended, exploration of many plausible answers? Additionally,
a blind person who is choosing what to eat for lunch may
initially fail to ask a VQ that elicits unanimous agreement
about “What is in this can?”; e.g., see column 2 in Figure 1.

Accordingly, our goal is to design a VQA framework that
can account for the diversity of answers inherent in crowd
intelligence. We propose a new problem of predicting the
answer distribution directly from the VQ. This task is chal-
lenging because it necessitates designing a framework that
can simultaneously model and synthesize different individu-
als’ (potentially conflicting) perceptions of images and lan-
guage for the many possible causes of disagreement (e.g.,
ambiguity, subjectivity). Our findings show multiple predic-
tion systems yield promising predictive power for this task
on VQs asked by both sighted and blind people.

We also propose a novel crowdsourcing system for ef-
ficiently collecting the diversity of plausible answers for a
set of VQs. Our experiments demonstrate the benefit of em-
ploying fine-grained predictions to reason about how many
members of the crowd is just enough to ask for each VQ
in order to reduce human involvement when collecting the
unique answers for a collection of VQs.

Related Works

Automated Answer Prediction An automated VQA sys-
tem typically returns a single answer by identifying the op-
tion that has the highest probability of being correct (An-

dreas et al. 2016; Antol et al. 2015; Malinowski, Rohrbach,
and Fritz 2015; Goyal et al. 2017; Zhang et al. 2016b). This
confidence score provided by an algorithm is determined
by many factors such as the biases of the observed training
data, embedded algorithm assumptions, and process used for
training the algorithm (e.g., overfitting, underfitting). Our
goal is distinct. While different algorithms can lead to differ-
ent confidences in their predictions for the same visual ques-
tion, we instead are seeking a consistent single prediction
that reveals the answer distribution expected from a crowd
for a given visual question; e.g., will members of a crowd
all return the same answer, have a split opinion between two
answers, or all return different answers? Our experiments
confirm that it is possible to predict the answer distribution
one would observe from a crowd.

Predicting Distributions Our work relates to prior work
that predicts the distribution of emotions evoked by an im-
age (Peng et al. 2015; Zhao et al. 2016; Yang, Sun, and
Sun 2017; Ali et al. 2017). For example, (Peng et al. 2015)
predicts the distribution that occurs for six pre-defined cate-
gories of emotions. To our knowledge, our work is the first
to predict the distribution that would be observed from a
crowd for the domain of VQA. Furthermore, our work is
not constrained to a pre-defined set of categories. Rather, we
propose models that predict the answer distribution without
knowing the categories of answers that will be observed.

Measuring Difficulty to Answer a Visual Question Our
work relates to prior works that examine the difficulty to an-
swer a VQ. One set of approaches aim to understand the dif-
ficulty of a VQ for a computer. For example, one approach
measures difficulty based on the availability of a similar
matching VQ in an existing database; i.e., whether a VQ can
be answered using the knowledge in a given database (Yeh,
Lee, and Darrell 2008). Another approach measures diffi-
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culty based on the algorithm’s consistency in returning the
same answer when it’s repeatedly queried to answer the VQ,
with different words occluded in the question at different
iterations (Goyal et al. 2016). A further approach shows
that a VQA algorithm’s chance for success is related with
the level of crowd agreement (i.e., the accuracy is higher
when crowd agreement is higher) (Malinowski, Rohrbach,
and Fritz 2015). Unlike such work, we are interested in the
difficulty of a VQ for a human. Thus, our work more closely
aligns with prior work that tries to identify the difficulty
of a VQ by directly asking the crowd to indicate the min-
imum age required for a human to successfully answer the
VQ (Antol et al. 2015). Unlike this work, we use answer dis-
tribution as a possible indicator of VQ difficulty for a per-
son; i.e., people tend to agree on fewer answers for easier
VQs and disagree more for more complex VQs (e.g., large
counting problems). Moreover, rather than focus solely on
difficulty, we consider difficulty as one possible reason out
of many (e.g., subjectivity, ambiguity, answer granularity)
that can explain answer diversity from a crowd.

Solving Problems with a Limited Human Budget Vari-
ous prior works explore efficiently allocating limited human
resources in order to optimize an outcome. For example,
(Jain and Grauman 2013) decide how much human effort
to allocate per image from three choices in order to accu-
rately segment a batch of images. Another work similarly
focuses on segmenting a batch of images, but does so by
distributing the work between more costly crowd workers
and less expensive algorithms (Gurari et al. 2016). Another
work examines how to perform biomedical citation screen-
ing more efficiently by distributing the work between do-
main experts and less costly crowd workers (Nguyen, Wal-
lace, and Lease 2015). Most closely related to our work is
(Gurari and Grauman 2017), which decides whether to em-
ploy one or five crowd workers to answer a VQ in order
to collect all plausibly valid answers. Unlike (Gurari and
Grauman 2017), which offers a binary predictor, we propose
a prediction system that has the fine-grained understanding
to measure to what extent a crowd will disagree and, thus,
how many answers to collect to accelerate the collection of
unique answers when given a limited human budget.

Approach

In this section, we describe our datasets, models for predict-
ing answer diversity, and then our experiments for evaluating
our prediction models.

Datasets

We now describe two VQA datasets that we use for our ex-
periments and how we use these datasets to produce a diver-
sity score for each VQ.

VQA Real Images (VQA) (Antol et al. 2015): We train
with 250,000 and test with 214,354 VQAs from the VQA-
Real Images version 2 dataset. The images of this dataset
come from Microsoft COCO (MSCOCO) (Lin et al. 2014)
and consist of common objects in everyday scenes. Many

Figure 2: Examples of images in the (a–d) VizWiz and (e–f)
VQA datasets. As shown, VizWiz often contains many poor
quality images due to numerous phenomena: (a) not focused,
(b) object partly in frame, (c) no salient object, (d) object
upside down. In contrast, (e)-(h) exemplifies that VQA often
contains higher quality images.

images show non-iconic views, meaning there is not a single
salient object centered in the image (e.g., Figure 2e). The
questions come from online crowd workers who were shown
the images and instructed to provide questions. Each VQ is
paired with 10 crowdsourced answers.

VizWiz (Gurari et al. 2018): We train with 6,408 and test
with 1,601 VQAs. Each VQ was asked by a blind person
who took a picture and recorded a question about it with a
mobile phone application (Bigham et al. 2010). The ques-
tions often address challenges blind users face in their daily
lives, e.g., ”What is this?”, ”What is on the screen?”, ”How
to cook this?”, ”What is the expiration date?”. Because the
images are taken by blind users, the quality is often poor;
e.g., out of frame or not focused. Examples of such im-
ages are shown in Figure 2(a-d). Each VQ is paired with
10 crowdsourced answers.

Diversity Measure (Ground Truth Values)

Our definition of diversity is inspired by information the-
ory, where the goal is to measure the amount of informa-
tion contained in a message. In particular, we are interested
in how much information is observed when aggregating an-
swers collected from multiple, independent people. We com-
pute entropy, using the follow equation:

E =

N∑

i=1

−pilogpi (1)

where M represents the number of people providing an-
swers, N represents the number of unique answers observed
from M people, and pi represents the fraction of M people
who provided the i-th answer from the N possible answers.
When all M people agree on one answer, the diversity score
is 0 (i.e., E = −1log21), which indicates few bits are re-
quired to code the answers. On the other hand, if M = 10
with all people offering different answers, the diversity score
is 3.32 (i.e., E = 10 ∗ −0.1log20.1), which indicates many
bits are required to code the answers.
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For both datasets, each VQ has 10 open-ended answers
that were collected from independent crowd workers on
Amazon Mechanical Turk (AMT). We calculated diversity
scores using these 10 answers with equation 1.

Prediction Models

We propose two learning frameworks. We first describe a
regression framework based on handcrafted features for the
question and image. We then describe a classification frame-
work that uses deep learning to learn directly from the ques-
tion and image.

Handcrafted Features We first propose a regression
model to capture that visual questions elicit different
amounts of information from a crowd, ranging from one
agreed upon answer to N distinct answers from N inde-
pendent viewers. We use concatenated image and question
features with our regression model. Our model is inspired in
part by the findings of prior work which shows handcrafted
features outperform a modern deep learning based system in
predicting whether a crowd will disagree on the answer to
a visual question (Gurari and Grauman 2017). Thus, a key
focus here is in selecting a richer feature set that will cap-
ture the fine-grained nuances that determine the diversity of
responses from a crowd, rather than simply detecting if a
crowd will disagree (Gurari and Grauman 2017).

We represent the question using the following features:
– Question length: we use the number of words in the ques-

tion, inspired by the hypothesis that additional informa-
tion (i.e., words) offers the precision needed for a crowd
to agree on a single answer while less information leaves
greater ambiguity/space for a greater answer distribution.

– First two words of a question: we use two one-hot encod-
ing vectors for the first two words in the question, built
using vocabularies learned during training to define all
possible words at the first and second word location of
the question respectively. Intuitively, the first two words
can be a strong indicator of the level of answer diversity;
e.g., “is the... ?” likely will lead to at most two answers,
”Yes” or ”No”, whereas “why is... ?” may lead to many
different answers.

– Lexical categories: we tally for all words in the question
how many belong to each of 15 parts of speech tags. Part
of the motivation is to count the amount of descriptive
language (e.g., number of nouns, adjectives, and preposi-
tions) based on the intuition that greater descriptive lan-
guage offers more leading clues/landmarks for different
people to arrive at a single answer. Part of the motivation
is to also to detect the tense of a question based on the
hypothesis that asking about future and past events relies
less on grounded visual content in an image and rather
more on a person’s imagination, thereby leaving more op-
portunity for a distribution of answers from a crowd than
when asking questions about the present tense. The lexi-
cal categories we consider are as follows:

• Determiner
• Singular Noun (e.g., desk)
• Plural noun (e.g., desks)

• Preposition/subordinating conjunction
• Existential there (e.g., ”there is”)
• Adjective (e.g., big)
• Comparative adjective (e.g., bigger)
• Superlative adjective (e.g., biggest)
• Modal (e.g., could, will)
• Base form verb, (e.g., take)
• Past tense verb (e.g., took)
• Gerund/present participle verb (e.g., taking)
• Third person singular present verb (e.g., takes)
• Wh-determiner (e.g., which)
• Wh-pronoun (e.g., who, what)

We chose the following image-based features to capture
the perceived diversity of an image:

– GoogleNet Features: We extract inception-v3 (Szegedy et
al. 2015b) features resulting in a 2048-dimension output
features. As one of the recent ImageNet Large Scale Vi-
sual Recognition Competition (ILSVRC) (Russakovsky
et al. 2015) winners, GoogleNet (Szegedy et al. 2015b)
aims to recognize objects from 1000 classes that cover
a wide variety range of objects for image extraction. We
applied principal component analysis afterward to reduce
the dimensionality to 100.

– Convolutional neural network (CNN) based salient ob-
ject subitizing (SOS) model: SOS model (Zhang et al.
2016a) predicts the number of salient objects in the im-
age. This CNN based SOS model is fine-tuned from
GoogleNet (Szegedy et al. 2015a). The output fully con-
nected layer has a 5-dimensional score vector correspond-
ing to the probability of the image belonging to 5 cate-
gories; i.e., 0, 1, 2, 3 and 4+ salient objects in the image.

We use a linear regression model to predict the diversity
score from the image and question features. We chose linear
regression over other models because we observed better re-
sults from this model during initial testing.

Deep Learning System Similar to prior work (Gurari and
Grauman 2017), we also train a deep learning system from
scratch using the architecture described in (Antol et al. 2015;
Lu et al. 2015). The question is encoded with a 1024-
dimensional Long Short Term Memory (LSTM) model that
takes in a one-hot descriptor of each word in the question.
The image is described with the 4096-dimensional output
from the last fully connected layer of the Convolutional Neu-
ral Network, VGG16 (Simonyan and Zisserman 2014).

Experiments

Baselines We compare our system against the following:

• Status Quo: this predictor randomly assigns a diversity
score to illustrate what occurs from random guessing.

• CrowdVerge (Gurari and Grauman 2017): this model
predicts whether a VQ will lead to answer (dis)agreement
from a crowd. We use its confidence in its prediction,
which ranges from 0 to 1, as the diversity score.
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VQA - Real Images VizWiz

RC CC MAE RC CC MAE

Status Quo -0.01 -0.01 0.3 0.03 0.03 0.3
CrowdVerge (Gurari and Grauman 2017) 0.46 0.46 0.38 0.12 0.12 0.23

Ours: Deep Learning 0.53 0.59 0.45 0.36 0.36 0.22
Ours: Linear Regression 0.63 0.63 0.18 0.29 0.29 0.19

Table 1: Comparison of methods for predicting answer diversity in a single dataset setting. Specifically, we compare our lin-
ear regression system and deep learning system with the “Status Quo” that randomly assigns a score and the CrowdVerge
system (Gurari and Grauman 2017) that predicts whether a crowd will agree or disagree on a single answer. Higher rank
coefficient (RC) scores, higher correlation coefficient (CC) scores, and lower mean absolute error (MAE) scores are better.

Figure 3: Examples of resulting answer diversity scores for the ground truth, our predicted entropy score, and CrowdVerge’s
predicted disagreement score. As observed, our approach can predict scores similar to ground truth for a diversity of questions
(e.g., different first words) and images (e.g., focused on objects and scenes).

Train/Test VQA/VQA VQA/VizWiz VizWiz/VizWiz VizWiz/VQA

RC CC MAE RC CC MAE RC CC MAE RC CC MAE

Ours LR: I 0.09 0.09 0.24 0.02 0.02 0.27 0.21 0.21 0.20 0.02 0.02 0.32
Ours LR: Q 0.62 0.62 0.18 0.13 0.13 0.24 0.20 0.20 0.20 0.27 0.27 0.28

Ours LR: Q+I 0.63 0.63 0.18 0.13 0.13 0.24 0.29 0.29 0.19 0.28 0.28 0.27

Table 2: For both single-dataset (column 1 and 3; VQA/VQA; Viz/Viz) and cross-dataset (column 2 and 4; VQA/Viz; Viz/VQA)
settings, we train and test with image-based features alone (row 1;“Ours RL: I”), question-based features alone (row 2; “Ours
LR: Q”), and both features together (row 3; “Ours LR: Q+I”) for our linear regression model (Ours LR).

Evaluation Metrics We evaluate each model using:

• Pearson’s correlation coefficient (CC): CC indicates
how strong the prediction correlates to ground truth for
all VQs. Values range between +1 and -1, with values fur-
ther from 0 indicating stronger predictive power.

• Spearman rank correlation (RC): RC is similar to CC,
except the prediction scores are ranked.

• Mean Absolute Error (MAE): measures the absolute
difference between prediction and ground truth for a VQ,
and then averages all the difference values.
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Train/Test VQA/VQA VQA/VizWiz VizWiz/VizWiz VizWiz/VQA

RC CC MAE RC CC MAE RC CC MAE RC CC MAE

Status Quo -0.01 -0.01 0.3 -0.01 -0.01 0.5 0.03 0.03 0.3 0 0 0.5
CrowdVerge 0.46 0.46 0.38 0.06 0.06 0.39 0.12 0.12 0.23 0.13 0.13 0.46
Ours LR 0.63 0.63 0.18 0.13 0.13 0.24 0.29 0.29 0.19 0.28 0.28 0.27

Table 3: Cross-dataset performance of our model, “Status Quo” baseline, and “CrowdVerge” (Gurari and Grauman 2017).

Single Dataset Prediction Performance We first train
and test using the same dataset, i.e., train with VQA training
data and test on a disjoint VQA testing dataset as well as
train with VizWiz training data and test on a disjoint VizWiz
testing dataset. We evaluate both our linear regression sys-
tem and deep learning system.

Table 1 shows the results. Overall, our models outper-
form all baselines for both datasets across all evaluation met-
rics. For example, for the VQA dataset, our top-performing
model improves the CC compared to the best-performing
baseline by 0.17 (Table 1; Ours: Linear Regression ver-
sus CrowdVerge). For the VizWiz dataset, we see our top-
performing model improves the CC by 0.24 (Table 1; Ours:
Deep Learning versus CrowdVerge). For VQA, linear re-
gression model even beats the deep learning system (Table
1; VQA-Real Images; Ours: Linear Regression versus Ours:
Deep Learning).

We show examples of prediction results for both datasets
in Figure 3. As observed, our models can predict well in the
presence of different language properties such as different
first words in the questions; e.g., “What ...”, “Is ...”, “Who’s
...”, “Had ...”. As shown, our models also can predict well for
a variety of images such as high quality images of scenes and
objects as well as lower quality images.

Interestingly, the overall performance for VizWiz is worse
than VQA (Table 1; column 1-3 versus column 4-6). We hy-
pothesize one reason for this is because of the small size of
the training data. VizWiz only has 6,408 training examples,
which is nearly two orders of magnitude smaller than the
number of training examples in VQA.

Next, we examine the predictive power of the image and
question information alone. To do so, we train the top-
performing linear regression model using the question in-
formation and image information independently.

Table 2 shows the results. We observe question features
are the most predictive. We also observe image information
alone has predictive power for both datasets (Table 2; row 1;
Ours LR: I; CC; VQA/VQA and VizWiz/VizWiz). The pre-
dictive capability of our image-based model is considerably
stronger when learned on VizWiz compared to VQA; i.e.,
CC improves from 0.09 to 0.21 (Table 2; Ours LR: I; CC;
VQA/VQA versus VizWiz/VizWiz). We suspect this is be-
cause the images in VizWiz are more consistent; e.g., many
are blurry and so will lead to unanimous agreement the VQ
is unanswerable. Overall, we also observe the models predict
better for both datasets when using both image and question
information (Table 2; rows 1 and 2 versus row 3).

Cross Dataset Prediction Performance In order to exam-
ine how well our models generalize, we next do cross dataset
testing. We again examine our best performing linear regres-
sion model for this experiment.

We first train using the VizWiz training dataset and then
test with the VQA test dataset. We find the VizWiz model
has little change to performance across all evaluation met-
rics when being applied to the VizWiz test dataset rather than
the VQA test dataset (i.e, (Table 3; row 3, columns 7-12; RC,
CC, MAE; VizWiz/VizWiz versus VizWiz/VQA). However,
when the model is trained only on the image information, it
drops in performance when applied on the VQA test dataset
rather than the VizWiz test dataset (Table 3; row 1, column
7-12; RC, CC, MAE; VizWiz/VizWiz versus VizWiz/VQA).
This suggests there is a domain mismatch between the im-
ages in the VizWiz dataset and VQA dataset.

We next examine the performance of training with the
VQA training dataset and testing on the VizWiz test dataset.
We observe a large performance drop when applying the
VQA model on the VizWiz test dataset rather than the
VQA test dataset (Table 3; row 3, columns 1-6; RC, CC,
MAE; VQA/VQA versus VQA/VizWiz). The results sug-
gest again that there is a domain mismatch between the VQA
and VizWiz datasets. We hypothesize the domain mismatch
arises in part because images are significantly different in
the two datasets (Figure 2). Specificially, VQA images are
taken by sighted people and often are of good quality while
VizWiz images are taken by blind people and often are of
poor quality. We suspect these image-based issues bring out
challenges for model generalization.

Collecting Answers With Budget Constraint

In this section, we examine how many people to recruit from
a crowd to provide an answer in order to efficiently capture
all unique answers for a set of VQs. We propose to use our
diversity prediction model to address this problem. Specifi-
cally, we predict the number of answers that need to be col-
lected for each VQ to maximize the number of unique an-
swers that are captured for a set of visual questions under a
given budget constraint.

Budgeted Answer Collection System

Objective and Optimization Suppose we have n VQs
and a budget B which is the total number of answers
we can afford to collect. We can collect up to q answers
for each VQ; For an individual VQ, VQ k, let x =
[x1

k, x
2
k, x

3
k, ...., x

q
k] ∈ Rq be the selection vector indicating

the number of answers that we collect; e.g., x1
k = 1 means
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to collect one answer. Let c = [1, 2, 3, ...,q] ∈ Rq be the
cost vector, cTx is the corresponding cost upon the selec-
tion such as the cost when collecting one answer. In order to
know how many unique answers we can expect when col-
lecting 1 answer, 2 answers, ..., q answers, we let answer
expectation (AE) vector, E = [E1

k, E
2
k, E

3
k, ...., E

q
k] be the

expectation of a unique answer when collecting 1 answer, 2
answers, ..., q answers.

We define our annotation budget constraint as follows:

x =argmax
x

n∑

k=1

E1
kx

1
k + E2

kx
2
k + E3

kx
3
k, ....+ Eq

kx
q
k,

s.t. cTx ≤ B,

x1
k + x2

k + x3
k + ....+ xq

k = 1, ∀k = 1, 2, ..., n,

x1
k, x

2
k, x

3
k, ...., x

q
k ∈ {0, 1}, ∀k = 1, 2, ..., n.

(2)

Equation 2 aims to find the selection vector x for each VQ
that yields the maximum total number of unique answers
collected for all VQs. The first constraint ensures the num-
ber of collected answers is within a certain budget, the sec-
ond constraint ensures one selection of how many answers
to collect per VQ, and the third constraint ensures the se-
lection vector entries are binary. We solve this optimization
equation using a mixed-integer linear programming based
branch and bound method.

Mapping Answer Distribution to Expectation To calcu-
late the answer expectation vector (AE vector) for each VQ
in equation 2, we generate a mapping from each possible
diversity score to an AE vector.

At training time, we begin by generating a unique diver-
sity score list that indicates all possible diversity scores that
can arise from having M answers (i.e., 57 possible scores
for 10 answers). Recall these diversity scores capture that a
crowd can arrive at the same number of unique answers with
different underlying answer distributions one would observe
from a crowd. Specifically, there are different probabilities
of capturing all unique answers when collecting some num-
ber of answers based on the underlying answer distribution;
e.g., the answer distribution of [“yes”, “yes”, “yes”, “no”,
“no”, “no”, “no”, “no”, “no”, “no”] contains two unique
answers with a 70%/30% split and the probability to cap-
ture both unique answers when collecting two answers is
P 2u
k =

C3
1C

7
1

C10
2

.
Next, we calculate the AE vector for each possible diver-

sity score. When collecting M answers from M people, we
generate a probability vector that contains probabilities of
capturing 1 unique answer, 2 unique answers,..., q unique
answers, denoted as PM

k = [P 1u
k , P 2u

k , P 3u
k , ..., P qu

k ]. q is
the maximum number of answers that we can collect, and
we let q = 10 since there are 10 answers for each VQ in both
datasets we use (i.e., VizWiz and VQA). The expectation is
the value times its probability, so the AE when collecting M
answers is:

EM
k =

q∑

j=1

jP ju
k (3)

We calculate the AE for all possible values of M (e.g., when
collecting 1 answer, 2 answers, up to 10 answers) using the
following equation:

E1
k = 1P 1u

k + 2P 2u
k + 3P 3u

k +, ...,+10P 10u
k (4)

Consequently, for VQ k, we have an expectation vector
[E1

k, E
2
k, E

3
k, ..., E

10
k ] that indicates the AE when collecting

1 answer, 2 answers, and so on. We calculate this AE vector
for each possible answer distribution. Thus, in our system,
each answer distribution maps each of the 57 possible diver-
sity scores that can arise from 10 answers to an AE.

At test time, we use the predicted diversity score to iden-
tify the AE vector to use when solving our optimization
equation 2. That tells us, for each VQ, what is the exact num-
ber of answers we need to collect in order to maximize the
unique answers that will actually be captured over all visual
questions in a given collection.

Experiments

Evaluation We select based on the selection results from
equation 2 the available number of answers from the ground
truth answer distribution and then count the number of
unique answers that are actually captured from all ground
truth answers. We do this all for all VQs in the test dataset.

Baselines We compare our system against the following:
• Status Quo: this system randomly collects one answer

or 10 answers for each VQ to reflect the status quo
for crowd-powered systems is selecting a pre-determined
number of answers ranging from a minimum of one an-
swer per VQ (Malinowski, Rohrbach, and Fritz 2015) to
a maximum of 10 answers per VQ (Antol et al. 2015).

• CrowdVerge (Gurari and Grauman 2017): CrowdVerge
is a related state-of-art system which predicts how to best
allocate a given budget of human-generated answers for
a collection of VQs. This system first arranges its VQs
based on its predicted score that answer disagreement will
occur. It then collects one answer for all VQs and col-
lects extra answers with the available extra budget only
for visual questions most likely to lead to disagreement.
In other words, it is a binary system – collect one answer
or collect 10 answers per VQ.

Datasets We tested on all visual questions in the VizWiz
test dataset and a subset of VQs in the VQA test dataset.
For the latter dataset, we used a subset of 2,000 VQs which
we curated to have an even distribution of diversity scores
spanning from no diversity to complete answer diversity.

Results Results are shown in Figures 4a and 4b for both
VizWiz and VQA test datasets. Shown are the number of
unique answers that actually are captured across different
budget constraints.

As observed in Figure 4, our budget allocation ap-
proach typically performs better than both baselines for both
datasets. The advantage of our approach over the baselines is
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(b)

Figure 4: Total number of unique answers captured for a
batch of visual questions for different human budget val-
ues for the (a) VizWiz dataset and (b) VQA dataset. As ob-
served, our optimization approach consistently accelerates
the collection of unique answers over baselines for most
budget constraints.

greatest in the lower budget zone and tapers off in the higher
budget zone. While our approach typically captures more
unique answers than the top-performing CrowdVerge base-
line, an exception happens in the VQA dataset in the high
budget zone where our approach performs comparable and
slightly poorer (i.e., Figure 4b; range from 6,000 to 8,000
VQs). In this zone, most of the unique answers for each VQ
already are captured. We hypothesize that the imperfect fine-
grained predictions result in the system misallocating where
to collect more answers when only a few unique answers
remain to be collected.

We attribute the overall advantage of our approach over
the baselines (i.e., CrowdVerge and Status Quo) to the base-

lines not being able to capture less than a pre-defined maxi-
mum number of answers (i.e., 10 answers) in order to collect
all unique answers for a VQ. Specifically, existing crowd-
powered systems greedily assign a fixed number of answers
per VQ; e.g., CrowdVerge collects one answer when agree-
ment is expected and the maximum possible number of an-
swers when disagreement is expected. In contrast, our ap-
proach can allocate human effort in a fine-grained manner
that permits best use of the budgeted answers to collect all
unique answers for the entire budget by permitting a differ-
ent number of answers to be collected for each VQ when
trying to collect more than one unique answer for a VQ.

Conclusion

Existing VQA systems do not account for the fact that dif-
ferent VQs lead to different degrees of answer diversity. We
propose a novel problem of predicting the answer entropy
directly from a VQ and offer new methods which predict
well for this task. We also demonstrate the benefit of such
predictions in crowdsourcing answers with a limited man-
ual annotation budget. Our proposed system outperforms to-
day’s state-of-art crowdsourcing system to efficiently collect
the diversity of unique answers for a collection of VQs.
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