
Preferred Operators and Deferred Evaluation in Satisficing Planning

Silvia Richter
Griffith University, Queensland, Australia

and
NICTA, Queensland, Australia

silvia.richter@nicta.com.au

Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

Abstract

Heuristic forward search is the dominant approach to satis-
ficing planning to date. Most successful planning systems,
however, go beyond plain heuristic search by employing var-
ious search-enhancement techniques. One example is the use
of helpful actions or preferred operators, providing informa-
tion which may complement heuristic values. A second ex-
ample is deferred heuristic evaluation, a search variant which
can reduce the number of costly node evaluations. Despite
the wide-spread use of these search-enhancement techniques
however, we note that few results have been published ex-
amining their usefulness. In particular, while various ways
of using, and possibly combining, these techniques are con-
ceivable, no work to date has studied the performance of such
variations. In this paper, we address this gap by examining the
use of preferred operators and deferred evaluation in a variety
of settings within best-first search. In particular, our findings
are consistent with and help explain the good performance of
the winners of the satisficing tracks at IPC 2004 and 2008.

Introduction

In the past decade, heuristic forward search in the state
space has been the dominant approach to satisficing plan-
ning. This is made evident by the fact that 4 out of 5
winners of the satisficing track in the biennial international
planning competition (IPC) since 2000 have been heuris-
tic forward-search planners. There has also clearly been a
propagation of ideas in the way that certain aspects of past
successful planning systems have been adopted by more re-
cent systems. One example is the use of helpful actions in
the venerable FF planner by Hoffmann and Nebel (2001),
winner of the satisficing track at IPC-2000. Helpful ac-
tions are actions that contribute to solving a simplified ver-
sion of the task. As they are likely to also contribute to
solving the original task, they can be preferred over actions
that are not considered helpful. This search enhancement,
which has been shown to improve FF’s performance notably
(Hoffmann and Nebel 2001), has been adapted by the Fast
Downward system (Helmert 2006), winner of the satisific-
ing track at IPC-2004, under the name preferred operators.
Fast Downward, in turn, inspired many newer planners like

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LAMA (Richter and Westphal 2008), the satisficing win-
ner at IPC-2008; Temporal Fast Downward (Röger, Eye-
rich, and Mattmüller 2008), and systems used for exper-
iments in various publications (Keyder and Geffner 2009;
Richter, Helmert, and Westphal 2008; Helmert and Geffner
2008). As a result, these systems all use the deferred eval-
uation popularised by Fast Downward. Deferred evaluation
is a variant of best-first where the successors of a node are
not heuristically evaluated when they are generated, but later
when they are expanded. This may save time if many more
nodes are generated than expanded.

The starting point for this paper is to note that even though
many current planning systems use the search enhancements
mentioned above (preferred operators and deferred evalua-
tion), there exists little data on their respective usefulness.
For example, the use of preferred operators (resp. helpful
actions) in Fast Downward is different from their use in FF.
While the authors of both planners report significantly im-
proved performance compared to not using preferred oper-
ators, the question remains which usage is better, or how
some of the many other conceivable approaches for using
preferred operators would perform. Deferred evaluation, on
the other hand, has been suggested to be particularly use-
ful in combination with preferred operators (Helmert 2006).
The question is open whether deferred evaluation is also ad-
vantageous in the absence of preferred operators, or when
using preferred operators in a different fashion than the one
examined by Helmert.

We address these questions by examining the perfor-
mance of various approaches to using preferred operators as
well as their interaction with deferred evaluation. One find-
ing of this work is that deferred evaluation does not offer any
benefit on standard benchmark tasks on average, but leads to
strong improvement in some contexts and to strong deteri-
oration in others. On the other hand, we find that the best
method for using preferred operators strongly depends on
whether deferred evaluation is being employed or not. Us-
ing an artificial search space, we demonstrate how the ben-
efit that can be gleaned from preferred operators varies with
different aspects of the search space.

Preferred Operators

One of the core features of the FF planner (Hoffmann and
Nebel 2001) is the use of helpful actions. Helpful actions

273

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

are operators that are deemed promising by the FF heuris-
tic because they form part of or achieve a precondition
of the relaxed plan, a solution for a simplified version of
the task which ignores delete effects. FF uses helpful ac-
tions to prune the search space and only evaluates successor
states reached via helpful actions. This restriction makes the
search incomplete, so that FF restarts without this pruning
technique if it fails.

In the spirit of FF’s helpful actions, Helmert (2006) subse-
quently coined the term preferred operators for all operators
that are deemed promising for some reason. We will in the
following use that general term to subsume helpful actions.
The Fast Downward planner makes use of preferred opera-
tors in a dual-queue approach, where it keeps the states that
are reached via a preferred operator (the preferred succes-
sors) in an additional open list. It selects the next state to be
expanded alternately from its regular open list containing all
successors and from the open list containing just preferred
successors, pruning duplicates upon removal. A preferred
successor is thus expanded sooner, on average, than an ar-
bitrary successor of a state. In particular, at least every sec-
ond state selected for expansion is a preferred successor.1

In contrast to FF which evaluates only preferred successors
(as long as possible), Fast Downward may gain less lever-
age from its preferred operators, but at the advantage that its
search stays complete.

Deferred Heuristic Evaluation

The textbook version of best-first search keeps an open list
of states to be expanded, ordered according to the heuristic
estimates of their goal distance. In each step, a state with
smallest heuristic value is removed from the open list and
expanded by applying all operators applicable in the state.
All successor states generated in this way are then evaluated
and inserted into the open list.

The Fast Downward planner (Helmert 2006) incorporates
a variation of best-first search called deferred heuristic eval-
uation, where the successors of a state are not evaluated
upon generation. Instead, they are inserted into the open list
with the heuristic estimate of their parent. Only upon being
removed from the open list for expansion are they evaluated,
so that their heuristic value can in turn be used for their suc-
cessors. According to Helmert (2006), this technique can
decrease the number of state evaluations substantially, es-
pecially when combined with preferred operators. For in-
stance, consider the way preferred operators are used within
Fast Downward (see above). If s′ is a preferred successor
of a state s, then s′ will be expanded sooner than most of
its siblings (as the fraction of preferred successors is usually
small). If there exists a path with non-increasing heuristic
values from s′ to the goal, then the remaining siblings of
s′ will never be evaluated. By contrast, standard best-first
search would evaluate all successors of s.

While deferred evaluation may reduce the number of state
evaluations compared to standard best-first search, it usually

1Note that if preferred successors were put exclusively into the
second queue and the fraction of preferred successors was more
than 50%, we would expand more non-preferred successors.

increases the number of state expansions. This is due to the
heuristic values being less informative, since they stem from
the parent of a state rather than the state itself. Note however
that successor states need not be generated upon expansion
of their parent. Instead it is sufficient to store pointers in the
open list to the parent state and to the creating operator, thus
reducing memory requirements.

Alternative Uses of Preferred Operators
The FF planner uses preferred operators for pruning the
search space while Fast Downward uses them in a dual-
queue approach. In both planning systems, preferred oper-
ators have been shown to improve performance (Hoffmann
and Nebel 2001; Helmert 2006). However, the question is
open as to which of the two usages leads to better results, as-
suming that all other aspects of a planner stay fixed. Further-
more, other ways of using preferred operators are conceiv-
able which have not been analysed in the literature to date.
An obvious idea is to use preferred operators for tie-breaking
and expand, among states of equal heuristic value, preferred
successors first. The dual has also been proposed (Vidal
2004), namely using the heuristic values for tie-breaking
among equal preferredness: choose preferred successors
whenever they exist, otherwise expand non-preferred suc-
cessors. Within each of the two groups, choose according to
heuristic values. This latter method places more emphasis
on preferred operators than the former, but is not as restric-
tive as expanding only preferred successors like FF does.

The dual-queue approach can also be modified to give
higher precedence to preferred successors. For example,
the IPC versions of both Fast Downward and its offspring
LAMA used a setting that increases the use of preferred suc-
cessors at certain points in time. The planners keep a prior-
ity counter for each open list, initialised to 0. Whenever a
state is removed from a list, the priority of that list is de-
creased by 1. At each iteration, the next state is removed
from the list that has higher priority. Unless the priorities
are changed outside of this routine, this method will alter-
nate between choosing a state from the list of preferred suc-
cessors and from the list of all successors. The setting used
in Fast Downward and LAMA to increase the use of pre-
ferred operators is as follows: Whenever progress is made,
i. e., whenever a state is discovered with a better heuristic
estimate than the states before, the priority of the open list
with only preferred successors is “boosted” by adding 1000.
Therefore, at least the next 1000 states will now be removed
from the list of preferred successors, and only if none of
them leads to further improvement does the turn go back to
the regular open list. If another improving state is found
within the 1000 states, the boosts accumulate and it takes
respectively longer until states from the regular queue are
expanded again.

In this paper, we address the question which of these dif-
ferent uses for preferred operators leads to best performance.
The answer may vary for different types of search; we ex-
amine greedy best-first search. We look at both the standard
implementation of best-first search (in the following called
Eager), and the deferred-evaluation variant (in the follow-
ing called Lazy). The reason for examining both variants is

274

that they can behave very differently, with Lazy being less
informed than Eager, but paying a smaller price for wrong
expansions. Hence, the best use of preferred operators may
be different for the two. Along the way, we answer the
question whether deferred evaluation is useful in general and
whether synergies exist between preferred operators and de-
ferred evaluation.

Experimental Results
We have conducted a range of experiments to measure the
relative performance of several uses for preferred operators
(POs). The uses we compare are

• No POs, normal search without preferred operators.

• PO pruning, where the search space is restricted to only
preferred successor states and the search restarts without
POs if it exhausts the restricted search space without a
solution. This corresponds to the use made of preferred
operators in the FF planner (though FF uses enforced hill-
climbing rather than best-first search as the underlying
search algorithm).

• Heur > PO, where preferred operators are used only to
break ties among states of equal heuristic values.

• PO > Heur, where preferred operators are used when-
ever possible, breaking ties with heuristic values. This ap-
proach has been used in the YAHSP planner (Vidal 2004).

• Dual Queue, where preferred successors are kept in a
second open list in addition to the regular open list, and
states are expanded by alternating between the two open
lists. This approach has been used in work involving Fast
Downward (Helmert and Geffner 2008).

• Boosted Dual Queue, the dual-queue approach where the
open list with preferred successors is boosted whenever
progress is made during the search, leading to more pre-
ferred successors being expanded. This approach was
used in the IPC versions of Fast Downward and LAMA.

We ran experiments on all planning tasks from past in-
ternational planning competitions between 1998 and 2006,
totalling 1612 tasks. Four different planning heuristics
were used: the FF heuristic (Hoffmann and Nebel 2001),
the context-enhanced additive (cea) heuristic (Helmert and
Geffner 2008), the causal graph (CG) heuristic (Helmert
2006) and the additive heuristic (Bonet and Geffner 2001).
We follow the Fast Downward implementation of the FF
heuristic by defining preferred operators to be those appli-
cable operators which appear in the relaxed plan. By con-
trast, FF’s ”helpful actions” additionally include all applica-
ble operators which add a precondition of an operator in the
relaxed plan that is not true in the current state. For the ad-
ditive heuristic we generate preferred operators in the same
way as for the FF heuristic. (Without referring to relaxed
plans, these preferred operators can alternatively be charac-
terised as those applicable operators which contribute to the
heuristic value, i.e. we select a best supporting action for
the goal, according to the heuristic, and, recursively, a best
supporting action for unsatisfied preconditions of selected
actions.) The preferred operators in the CG and cea heuris-
tics are those applicable operators that change the current

value of a goal variable to a value that is on a lowest-cost
path (as computed by the heuristic) to the goal value in the
domain transition graph of that variable. If no such operator
exists for a goal variable, the process recurses for variables
that are involved in conditions for changing the value of the
goal variable (Helmert 2006).

The experiments were conducted on a heterogeneous
cluster of Intel Xeon and AMD Opteron CPUs, ranging from
2.2 GHz to 2.83 GHz. (The magnitude of the experiments
precluded experiments on homogeneous machines.) To al-
low fair comparisons, for each given planning task all plan-
ner configurations using the same heuristic were run on the
same CPU. The timeout was 30 minutes and the memory
limit 1.75 GB in all cases.

For each planner configuration, we report results regard-
ing coverage (the number of problems solved), the number
of heuristic state evaluations, the runtime and the quality of
the plans found. We report evaluations rather than expan-
sions to be able to compare the two search types Eager and
Lazy in a meaningful way. While the cost for an evaluation
is the same for both search variants, the cost of an expansion
differs greatly for the two. To expand a state, Lazy only puts
two pointers into the open list, while Eager generates and
evaluates all successor states. For Lazy, evaluations and ex-
pansions are the same; for both search types the number of
evaluations is the number of states actually generated. Most
importantly, roughly 80% of the total runtime of the planner
is spent calculating heuristic values, making evaluations a
platform-independent indicator of the search effort.

All reported results are measured via scores from the
range 0–100, where best possible performance in a task is
counted as 100, while failure to solve a task and worst per-
formance are counted as 0. For coverage, a solved task
counts 100. Evaluations and runtime are measured on a log
scale due to the exponential nature of the problem. Perfor-
mance better than a lower limit (100 states for evaluations
and 1 second for runtime) counts as 100, performance worse
than an upper limit (1,000,000 states for evaluations and the
timeout of 30 minutes for runtime) counts as 0. In between,
we interpolate with a logarithmic function. Plan quality is
measured using the criterion of IPC 2008 (scaled by a fac-
tor): a solved task counts as 100 · l∗/l, where l is the length
of the generated plan and l∗ is the shortest plan length found
by any of the configurations. The scores reported for do-
mains are averaged over the tasks in the domain; when sum-
marising results from multiple domains we show normalised
averages such that each domain is weighed equally.

Table 1 shows the results for all configurations and heuris-
tics. We begin by discussing the coverage (number of prob-
lems solved). The first thing we note is that the use of pre-
ferred operators almost always improves performance, and
that the impact of preferred operators is significantly larger
even than the choice of heuristic. With suitable use of pre-
ferred operators, the weakest heuristics (CG and additive)
perform better than the strongest heuristics without preferred
operators (FF and cea). Which use of preferred operators
gives best results is dependent on the type of search: for
eager search the simple dual-queue approach works best,
for deferred evaluation the boosted dual-queue is best. The

275

Search PO Use Coverage Eval. Quality Time

Score Score Score Score

FF Heuristic

Lazy

No POs 74.03 54.34 68.19 67.63

Heur > PO 79.11 62.92 72.65 72.29

PO > Heur 83.71 70.75 75.40 79.08

PO Pruning 84.02 70.52 76.01 79.49

Dual Queue 83.43 65.11 77.00 76.14

B. Dual Queue 86.74 72.58 78.83 81.95

Eager

No POs 75.07 52.42 72.08 68.08

Heur > PO 75.80 54.28 72.24 69.31

PO > Heur 81.42 58.20 76.86 74.66

PO Pruning 84.64 68.12 79.33 79.74

Dual Queue 86.89 60.91 83.22 79.17

B. Dual Queue 83.65 58.60 79.22 75.96

Cea Heuristic

Lazy

No POs 74.06 54.97 67.85 66.08

Heur > PO 75.35 60.63 69.25 68.44

PO > Heur 83.57 68.39 74.71 76.50

PO Pruning 83.19 68.04 75.16 76.37

Dual Queue 80.14 63.68 73.45 72.68

B. Dual Queue 86.24 70.23 77.48 78.81

Eager

No POs 74.02 51.99 70.91 65.03

Heur > PO 74.00 52.44 70.77 65.26

PO > Heur 81.90 56.48 76.49 71.75

PO Pruning 83.48 66.17 77.98 76.44

Dual Queue 85.23 59.05 81.40 74.86

B. Dual Queue 84.10 56.89 78.39 72.58

CG Heuristic

Lazy

No POs 71.15 50.01 64.97 64.50

Heur > PO 72.96 54.29 65.46 66.53

PO > Heur 73.38 54.69 66.81 66.62

PO Pruning 72.38 52.36 66.05 65.37

Dual Queue 75.10 56.53 67.94 68.68

B. Dual Queue 76.38 56.47 69.57 69.42

Eager

No POs 71.82 47.90 68.51 64.20

Heur > PO 71.97 48.17 68.41 64.46

PO > Heur 71.22 47.34 67.78 64.30

PO Pruning 72.39 50.20 67.70 64.70

Dual Queue 75.74 49.67 72.61 67.52

B. Dual Queue 71.80 47.37 68.34 64.50

Additive Heuristic

Lazy

No POs 70.84 50.64 63.72 63.93

Heur > PO 73.80 57.27 66.46 67.09

PO > Heur 83.56 66.96 75.08 77.58

PO Pruning 84.07 66.88 75.66 78.17

Dual Queue 78.18 59.75 70.57 70.75

B. Dual Queue 85.55 68.95 77.32 79.93

Eager

No POs 71.59 49.02 67.83 64.24

Heur > PO 72.26 49.94 67.94 64.97

PO > Heur 83.35 55.88 78.01 74.05

PO Pruning 84.88 65.24 79.47 78.60

Dual Queue 84.24 57.06 79.91 75.47

B. Dual Queue 84.71 56.33 79.45 75.08

Table 1: Summary of results. Scores are in the inter-
val 0–100; higher scores are better. The best PO use for
each search type and heuristic is indicated in bold. Results
are reported as normalised averages that weigh all domains
equally (e.g., a coverage score of 74.03 means that the con-
figuration solves on average 74.03% of the tasks in a ran-
domly picked domain). Details on the scoring mechanisms
for the various criteria can be found in the text.

results are remarkably consistent across the four heuristics.
We now discuss the various options in turn.

Using preferredness as a tie-breaker among states of equal
h-value (“Heur > PO”) is a relatively subtle way of using
preferred operators. Compared to not using preferred op-
erators, this option usually improves performance slightly
for Eager and notably for Lazy. However, for both search
types the results are far from those obtainable via other op-
tions. Using preferred operators whenever possible (“PO >
Heur”) leads with one exception to more improvement than
“Heur > PO” for both search types. For Lazy, this option
works very well, giving consistently second- or third-best
results among the 6 possible PO options. For Eager, this
configuration does not work quite as well and usually ranks
fourth. PO pruning is similarly good as “PO > Heur” for
Lazy, and better than that option for Eager, ranking second-
best on average. In particular, when using PO pruning the
performance of the two search types is comparable. The
simple dual-queue approach is the best option for Eager, but
gives mixed results for Lazy, ranging from second-best (CG
heuristic) to fourth-best (cea and additive heuristic). The
boosted dual-queue approach is the best option for Lazy, but
for Eager the performance is notably worse than that of the
simple dual queue.

Summarising the results, it seems that for Eager a cer-
tain amount of preferred operators is useful (e. g., “Heur >
PO” or dual-queue), but strong uses of preferred operators
can be counter-productive (e. g., “PO > Heur” and boosted
dual-queue are worse than simple dual queue). When us-
ing deferred evaluation, however, stronger use of preferred
operators always seems to improve results. The use of PO
pruning works well for both search types, probably due to
the significantly reduced branching factor as only preferred
successors are evaluated (unless the restricted search fails,
which we found to be rare). Note that for Lazy, PO pruning
and “PO > H” give similar results as they lead to identical
behaviour in those cases where a goal can be found by only
expanding preferred successors. For Eager, however, “PO >
H” is worse than PO pruning because with “PO > H” Eager
evaluates all successors, whereas with PO pruning it evalu-
ates only preferred successors.

Comparing Eager with Lazy, we note that Eager per-
forms better in most of the configurations; with boosted
dual queue, however, deferred evaluation is better. The best
performance obtainable from each search variant (using the
dual-queue setting for Eager, and boosted dual-queue for
Lazy) is very similar. Lazy consistently evaluates fewer
states than Eager and is usually faster. Eager, on the other
hand, finds plans of better quality. This is not surprising
as Eager is better informed with respect to heuristic values
than Lazy. For both search variants, plan quality is improved
when using preferred operators.

Interactions Between Search Type and PO Use

When using deferred evaluation, all successors of a state are
placed in the open list with the same heuristic value (that of
the parent). Preferred operators are thus particularly useful
for lazy search as they can help recognise the best successor
of a state. This is why stronger uses of preferred operators

276

Perf. Crit. Lazy Search Eager Search

(avg. scores) No PO H > PO PO > H Prun. DQ B. DQ No PO H > PO PO > H Prun. DQ B. DQ

Assembly: heur = FF

Coverage 63.33 66.67 86.67 86.67 96.67 100.00 56.67 56.67 80.00 86.67 100.00 90.00

Eval. 40.02 42.88 82.00 82.00 81.27 87.75 29.29 29.94 55.31 74.85 70.52 55.80

Quality 61.63 64.97 84.99 84.99 93.55 97.19 55.13 55.44 78.61 85.14 97.25 87.14

Time 59.57 59.33 86.61 86.61 93.34 98.73 51.05 51.27 78.84 85.19 100.00 84.07

Openstacks: heur = Cea

Coverage 83.33 86.67 90.00 93.33 90.00 86.67 76.67 76.67 90.00 90.00 86.67 90.00

Eval. 43.50 43.63 62.07 62.44 50.22 61.37 35.25 35.23 59.76 61.49 50.35 59.76

Quality 82.79 85.83 89.59 92.93 89.16 86.26 76.12 76.12 89.68 89.68 86.34 89.68

Time 66.72 67.20 79.98 79.83 72.34 78.86 58.70 58.63 79.17 79.79 72.97 78.89

TPP: heur = Additive

Coverage 63.33 76.67 96.67 96.67 80.00 100.00 63.33 70.00 93.33 93.33 100.00 90.00

Eval. 33.50 40.19 67.17 65.78 44.57 68.44 33.14 35.09 58.33 64.15 62.25 58.12

Quality 58.33 70.36 92.89 92.55 73.34 96.04 56.33 62.51 89.54 87.91 91.51 86.30

Time 50.48 58.98 81.99 80.01 62.08 82.99 50.17 52.57 76.85 80.53 82.04 76.91

Pipesworld-Tankage: heur = Additive

Coverage 36.00 38.00 76.00 74.00 44.00 72.00 34.00 34.00 80.00 80.00 54.00 78.00

Eval. 20.40 25.46 54.21 55.89 27.48 52.61 19.98 19.46 42.61 58.09 30.05 42.28

Quality 30.06 33.43 57.13 55.35 38.17 56.58 31.62 31.59 64.24 63.93 50.41 62.81

Time 25.26 29.62 57.08 60.66 31.22 54.74 25.45 23.99 51.89 62.92 36.20 50.79

Storage: heur = CG

Coverage 53.33 60.00 70.00 56.67 63.33 70.00 53.33 60.00 60.00 53.33 60.00 60.00

Eval. 44.28 46.66 58.53 43.97 52.54 58.09 43.26 44.73 47.60 43.11 48.94 47.60

Quality 50.93 53.30 66.61 53.70 61.75 66.28 50.91 56.02 56.31 50.68 56.96 56.31

Time 52.67 54.94 65.84 53.03 58.91 65.40 52.61 54.84 59.03 52.39 59.31 59.05

PSR-Large: heur = Additive

Coverage 58.00 66.00 46.00 50.00 64.00 64.00 58.00 60.00 46.00 50.00 54.00 48.00

Eval. 36.95 53.03 29.09 31.88 50.67 42.64 37.46 37.89 24.81 31.93 31.45 25.41

Quality 50.88 61.15 39.75 44.61 57.25 56.22 51.41 52.44 41.72 45.51 49.46 42.64

Time 54.18 61.63 42.32 48.72 60.56 58.75 54.69 55.50 41.81 48.77 50.08 43.09

Philosophers: heur = FF

Coverage 100.00 100.00 43.75 43.75 100.00 81.25 100.00 52.08 35.42 47.92 100.00 37.50

Eval. 37.87 38.31 19.80 19.80 38.37 26.62 37.61 23.73 15.73 19.92 37.67 15.98

Quality 100.00 100.00 29.24 29.24 97.87 66.04 100.00 52.08 23.49 30.91 100.00 25.81

Time 74.46 73.96 36.07 36.05 73.79 58.16 75.58 44.52 31.06 38.56 73.61 32.32

Schedule: heur = FF

Coverage 18.00 16.00 86.67 86.67 75.33 99.33 22.00 16.67 75.33 88.00 100.00 76.00

Eval. 12.65 15.19 72.85 72.36 46.39 79.18 14.27 12.00 33.42 67.35 46.25 33.42

Quality 17.09 15.53 79.12 79.31 67.12 90.05 21.55 16.32 70.77 81.46 94.65 71.43

Time 17.51 15.79 82.81 82.38 62.19 93.95 21.25 16.26 61.96 82.69 84.50 62.17

Satellite: heur = FF

Coverage 69.44 100.00 100.00 100.00 88.89 100.00 69.44 72.22 77.78 91.67 77.78 77.78

Eval. 38.59 79.21 81.34 81.34 66.98 81.24 36.74 40.53 43.11 70.78 42.05 43.11

Quality 63.70 94.47 94.33 94.33 83.76 94.33 68.48 71.49 76.18 89.85 76.77 76.18

Time 57.24 81.02 82.29 82.53 74.12 82.99 57.97 60.77 65.59 78.30 64.82 65.63

Logistics-98: heur = CG

Coverage 100.00 94.29 91.43 94.29 100.00 97.14 97.14 97.14 85.71 94.29 97.14 88.57

Eval. 68.66 66.96 63.12 65.08 71.51 64.37 49.51 49.30 40.02 48.69 47.87 40.23

Quality 98.20 87.53 84.33 92.61 92.97 89.66 96.37 95.54 80.21 93.91 95.38 82.94

Time 89.39 85.14 81.66 84.60 90.17 83.06 75.34 75.53 65.52 74.17 74.03 65.50

Pathways: heur = Cea

Coverage 26.67 30.00 63.33 63.33 40.00 63.33 33.33 30.00 93.33 90.00 93.33 93.33

Eval. 18.48 21.51 49.68 49.68 26.56 49.31 17.90 19.27 47.43 62.65 45.92 47.43

Quality 25.67 29.28 60.93 60.93 38.26 60.89 33.14 29.49 92.22 88.70 92.24 92.22

Time 25.08 28.02 62.91 62.92 36.42 62.50 27.28 27.16 84.05 87.61 83.04 84.06

Table 2: Detailed results for select domains.

277

consistently improve results for Lazy. Eager search, on the
other hand, evaluates all successors of a state at once. Ea-
ger search thus has an estimate (through the h-values of the
successors) of which successors are best, and preferred op-
erators may not provide as much additional information to
Eager than to Lazy. Preferred operators can be helpful to
decide among states of equal h-value, for example, as they
act as a second type of information about which states likely
lie on a path to the goal. However, preferred operators may
even be detrimental to the performance of Eager if they are
ill-informed (i. e. if successors are deemed preferred even
though they are in fact worse than some of their siblings).

Summary of Findings

We summarise the main findings that hold on average, as
shown by Table 1.

• Preferred operators are very helpful. For both search
types, an average coverage improvement of 10-15% can
be obtained with the respective best PO use; this is far
more than the difference between the various heuristics.

• Best PO use depends on the search type. While both ea-
ger and lazy search improve by a similar amount through
using POs, Eager performs best with PO pruning and the
standard dual-queue approach, while Lazy excels when
using POs more strongly via the boosted dual queue.

• Deferred evaluation trades time for quality. Both Ea-
ger and Lazy obtain similar coverage. But Lazy is faster
while Eager finds better plans. Our work thus confirms a
claim by Helmert (2006) which had been lacking empiri-
cal support to date.

Details and Special Cases

In Table 2, we report individual results for a number of
domain-heuristic combinations. The top part of the table
contains “typical” cases which reflect the general findings
discussed above. Preferred operators increase performance
notably, and lazy and eager search perform similarly well.
While there is some variation (e. g. in Pipesworld-Tankage),
in general it holds that “H > PO” is slightly better than not
using POs, while the other PO uses are noticeably better;
and PO pruning or dual-queue usage is best for Eager while
the boosted dual-queue approach is best for Lazy.

The rest of the table contains exceptions from the general
trend, which we discuss in turn. Firstly, we examine cases
which are outliers with regard to PO use. In PSR-Large with
the additive or FF heuristic, we find that both search types
gain some improvement from subtle use of preferred opera-
tors in the “H > PO” setting. However, stronger use of POs
is detrimental, which becomes particularly evident in the set-
tings “PO > H” and PO pruning. The reason seems to be that
few preferred operators are found in this domain; this holds
for both the additive and the FF heuristic. The setting “H
> PO” uses the information about preferred operators only
when it exists and adds to the knowledge about h-values, and
thus improves results. By contrast, restricting the search to
POs means that we may often be precluded from expand-
ing the current best state because it may not happen to be
preferred.

The Philosophers domain with the additive or FF heuris-
tic is interesting because even the subtle use of POs via “H
> PO” is detrimental for eager search, and with the excep-
tion of the dual-queue approach, all strong uses of POs lead
to worse performance for both search types. When exam-
ining the domain, we found that it contains large plateaus
or near-plateaus, and many ill-informed preferred operators.
In large areas of the search space 80–100% of the operators
are preferred, of which only 5–10% lead to states with bet-
ter h-values. Breadth-first search may be the best way to
escape from plateaus, and when not using POs, this is what
our search does (due to the open list acting FIFO on states of
equal h-value). When using the dual queue, the search per-
forms breadth-first search half of the time, which still works
very well. By contrast, strong use of POs means that the
search spends most of the time following ill-informed POs,
and by not doing breadth-first search it may not manage to
leave the plateaus as quickly.

In Schedule with the FF heuristic, the use of POs in a
dual-queue approach is a substantial improvement over not
using POs, however, the subtle use of POs as tie-breakers
in “H > PO” is notably worse than not using POs. While
we are at present not sure what causes this behaviour, one
possible explanation is that POs are helpful in some parts of
the search space but useless or even detrimental in others.

It is noteworthy that the dual-queue approach may be the
most “robust” way of using preferred operators. For all other
PO uses, bad cases exist where they perform significantly
worse than not using POs. By contrast, the dual-queue ap-
proach always performs fairly well and seems to be able to
make use of helpful POs while not getting overly distracted
by ill-informed POs.

Lastly, the third part of Table 2 contains examples where
the two search variants Eager and Lazy exhibit substan-
tially different behaviour. In Satellite and Logistics, a large
branching factor in combination with an informative heuris-
tic leads to lazy search being extremely useful, so that it
dominates eager search notably with respect to coverage,
evaluations and runtime. We will discuss this effect in Satel-
lite in more detail below. On the other hand, Pathways
is a domain where deferred evaluation seems to be partic-
ularly harmful, so that Eager performs significantly better
than Lazy.

Table 3 provides a closer look at the effect of deferred
evaluation in the Satellite domain when using the context-
enhanced additive heuristic (results for the other heuristics
are similar). We show the number of evaluations for the last
12 instances of the domain. With the configurations that are
not shown (H > PO, PO > H, and boosted dual queue), Lazy
performs exactly the same as with PO pruning, while Eager
performs no better than without POs. Eager obtains best
performance with PO pruning in this domain as the prun-
ing greatly reduces the large branching factor of the search
space. However, even in this setting Lazy outperforms Ea-
ger notably with regards to evaluations and, consequently,
runtime. Table 3 shows that with exception of the first two
instances, Lazy evaluates substantially fewer states than Ea-
ger, with differences as high as two orders of magnitude
in some cases. On instance 34, eager search with the dual

278

Lazy Eager

inst. No PO Prun. DQ No PO Prun. DQ

25 150K 1K 2K 71K 2K 71K

26 211K 1K 3K 116K 3K 80K

27 24K 1K 2K 96K 3K 96K

28 46K 2K 3K 195K 6K 195K

29 — 1K 3K — 7K 285K

30 — 3K 6K — 10K 420K

31 — 4K 5K — 14K —

32 — 10K — — 28K —

33 — 8K — — 41K —

34 — 4K 7K 265K 15K 265K

35 — 10K — — 26K —

36 — 7K — — 27K —

Table 3: Evaluations in Satellite with the cea heuristic.

queue finds a plan of length 287 expanding only 287 states,
i. e., it is guided straight to the goal. However, it still needs
to evaluate more than 265,000 states, and runs for 29 min-
utes, while Lazy only evaluates 4,000 states and terminates
after 43 seconds.

A Controlled Experiment

To more closely analyse how the benefit from preferred
operators varies with different characteristics of the search
space, we conducted a set of experiments on a manually-
designed search space. We chose the parameters of this
artificial search space without much experimentation, as it
was straightforward to find settings that show informative
behaviour, i. e. where the task is not too easy and not too
hard. Other settings are possible and may often lead to simi-
lar results. Our goal was to create a scenario where preferred
operators can be useful but also harmful, depending on how
well the preferredness of an operator predicts that it actually
leads to a better state, and how well informed the heuristic
is in comparison. The parameters we vary are:

• The quality of the heuristic. We use an admissible heuris-
tic that randomly deviates by up to a factor dev. fac. ≤

1 from the approximate goal distance agd (see below) of
a state. We experimented with values from 0.1 to 0.9. in
0.1-step increases.

• The recognition rate rec. rate for preferred operators, i. e.,
in what percentage of cases a useful operator (one that
leads to a better state) is labelled as preferred. For this
parameter, we tested values between 0% and 100% using
steps of 10%.

We fixed a branching factor of 25 and a typical solution
depth of 50. States are characterised by their approximate
goal distance (agd). The initial state has an agd-value of
50 and states with a value of 0 are labelled as goals. For
each state with agd-value d, we generate the values of the
25 successors randomly as follows: with probability 0.04
they are d−1, with probability 0.16 they are d+1, and with
probability 0.8 they are d. This means that there exist on
average one successor with a lower agd-value, 20 successors
with equal agd-values, and 4 successors with higher agd-
values than the parent. Likewise, the decision whether or

not an operator is labelled as preferred is made randomly: if
an operator is useful, i. e. if it leads to a successor state with
better agd-value, it is preferred in the percentage of cases
given by rec. rate; else it is preferred in 10% of the cases.
If the recognition rate decreases, this means that the relative
chance of a preferred operator not being useful increases.

Figures 1 and 2 show the results of our experiment. In
Fig. 1, we fixed the heuristic quality at three different values
(low in the left panel, medium in the centre and high on the
right), and varied the recognition rate of preferred operators.
The numbers shown are averaged over 100 runs with differ-
ent random seeds. As can be seen, a low recognition rate
leads to preferred operators being detrimental to the search,
while with a high recognition rate, using preferred operators
improves performance compared to not using them. It is
also evident that PO pruning suffers more strongly from ill-
informed preferred operators than the dual-queue approach.
The relative performance of the approaches shown in Fig. 1
is notably independent of the quality of the heuristic. The
dual-queue approach typically becomes better than not us-
ing POs if the recognition rate is more than 20–30%; PO
pruning has a higher threshold of 40–50%.

Fig. 2 provides a different look on the same data, where
we fix the recognition rate of preferred operators and vary
the heuristic quality. As can be seen in the centre and right
panels, the advantage of using preferred operators decreases
for high values of heuristic quality, i. e., preferred operators
are most useful if the heuristic is not well informed. But
even given very high heuristic quality, POs can still notably
improve performance if the recognition rate is high.

Conclusion
We have examined two search enhancement techniques for
planning that are widely used, preferred operators and de-
ferred evaluation. Our findings include that the obvious
method of using preferred operators as tie-breakers has lit-
tle use, compared to other approaches; and that the dual-
queue approach, which keeps preferred operators in a sec-
ond open list, performs best amongst all tested approaches
in a standard best-first search. In particular, the dual-queue
approach dominates pruning, the method that was proposed
when preferred operators were first introduced. With con-
trolled experiments in an artificial search space, we showed
that pruning performs badly if the preferred operators are
ill-informed. Our results thus suggest that FF might be im-
proved by using the dual-queue approach, though exper-
iments with FF’s enforced hill-climbing search algorithm
would be needed to confirm this hypothesis.

Our work confirms previous claims that deferred evalua-
tion can be very useful in the presence of large branching
factors and that this method trades time for plan quality.
Our findings also help to explain the good performance of
Fast Downward at IPC 2004 and LAMA at IPC 2008. Both
planners used deferred evaluation in combination with the
boosted dual-queue option, a combination which led to best
performance in our experiments. However, the conceptually
simpler approach of using standard best-first search with the
unboosted dual queue performs equally well on average, al-
beit having different strengths and weaknesses. Our results

279

2K

4K

8K

16K

32K

64K

128K

 0 20 40 60 80 100

E
va

lu
at

io
ns

PO recognition rate (%)

No POs
PO pruning
Dual queue

(a) bad heuristic: dev. fac. 0.5

2K

4K

8K

16K

32K

64K

128K

 0 20 40 60 80 100

PO recognition rate (%)

No POs
PO pruning
Dual queue

(b) mediocre heuristic: dev. fac. 0.7

2K

4K

8K

16K

32K

64K

128K

 0 20 40 60 80 100

PO recognition rate (%)

No POs
PO pruning
Dual queue

(c) good heuristic: dev. fac. 0.9

Figure 1: Experiments in an artificial search space. On the x-axis we vary the rate at which good operators are recognised
(labelled as preferred). Results are shown for three different levels of heuristic quality: rather uninformative, moderately
informative and very informative.

3k

6k

12k

24k

48k

96k

192k

384k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
va

lu
at

io
ns

Heuristic quality (dev. fac.)

No POs
PO pruning
Dual queue

(a) bad PO recognition: 20%

3k

6k

12k

24k

48k

96k

192k

384k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Heuristic quality (dev. fac.)

No POs
PO pruning
Dual queue

(b) mediocre PO recognition: 50%

3k

6k

12k

24k

48k

96k

192k

384k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Heuristic quality (dev. fac.)

No POs
PO pruning
Dual queue

(c) good PO recognition: 80%

Figure 2: Experiments in an artificial search space. On the x-axis we vary the quality of the heuristic. Results are shown for
three different rates of PO recognition: recognising 20%, 50% and 80% of the useful operators in a state as preferred.

show that boosting the dual queue in Fast Downward and
LAMA should always be done for best results, but it would
be detrimental in a standard best-first search.

Acknowledgements

We thank Patrik Haslum for helpful discussions.

NICTA is funded by the Australian Government, as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy, and the Australian Research
Council, through the ICT Centre of Excellence program.

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS). For more in-
formation, see http://www.avacs.org/.

The computing resources for the experiments reported in
this paper were provided by the Black Forest Grid Initiative.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.

Helmert, M., and Geffner, H. 2008. Unifying the causal

graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Keyder, E., and Geffner, H. 2009. Trees of shortest paths
vs. Steiner trees: Understanding and improving delete re-
laxation heuristics. In Proc. IJCAI 2009.

Richter, S., and Westphal, M. 2008. The LAMA
planner — Using landmark counting in heuristic search.
IPC 2008 short papers, http://ipc.informatik.
uni-freiburg.de/Planners.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI 2008, 975–982.

Röger, G.; Eyerich, P.; and Mattmüller, R. 2008.
TFD: A numeric temporal extension to Fast Downward.
IPC 2008 short papers, http://ipc.informatik.
uni-freiburg.de/Planners.

Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS 2004, 150–159.

280

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

