
Efficient Solutions to Factored MDPs with Imprecise Transition Probabilities

Karina Valdivia Delgado
University of Sao Paulo

Sao Paulo, Brazil
kvd@ime.usp.br

Scott Sanner
NICTA & ANU

Canberra, Australia
ssanner@nicta.com.au

Leliane Nunes de Barros
University of Sao Paulo

Sao Paulo, Brazil
leliane@ime.usp.br

Fabio G. Cozman
Escola Politecnica-USP

Sao Paulo, Brazil
fgcozman@usp.br

Abstract

When modeling real-world decision-theoretic planning prob-
lems in the Markov decision process (MDP) framework, it
is often impossible to obtain a completely accurate estimate
of transition probabilities. For example, natural uncertainty
arises in the transition specification due to elicitation of MDP
transition models from an expert or data, or non-stationary
transition distributions arising from insufficient state knowl-
edge. In the interest of obtaining the most robust policy un-
der transition uncertainty, the Markov Decision Process with
Imprecise Transition Probabilities (MDP-IPs) has been intro-
duced to model such scenarios. Unfortunately, while solu-
tions to the MDP-IP are well-known, they require nonlinear
optimization and are extremely time-consuming in practice.
To address this deficiency, we propose efficient dynamic pro-
gramming methods to exploit the structure of factored MDP-
IPs. Noting that the key computational bottleneck in the so-
lution of MDP-IPs is the need to repeatedly solve nonlin-
ear constrained optimization problems, we show how to tar-
get approximation techniques to drastically reduce the com-
putational overhead of the nonlinear solver while producing
bounded, approximately optimal solutions. Our results show
up to two orders of magnitude speedup in comparison to tra-
ditional “flat” dynamic programming approaches and up to
an order of magnitude speedup over the extension of factored
MDP approximate value iteration techniques to MDP-IPs.

Introduction

Markov decision processes (MDP) (Puterman 1994) have
become the de facto standard model for decision-theoretic
planning problems and a great deal of research in recent
years has aimed to exploit structure in order to compactly
represent and efficiently solve factored MDPs (Boutilier,
Hanks, and Dean 1999; Hoey et al. 1999; St-Aubin, Hoey,
and Boutilier 2000; Guestrin et al. 2003). However, in many
real-world problems, it is simply impossible to obtain a pre-
cise representation of the transition probabilities in an MDP.
This may occur for many reasons, including (a) imprecise
or conflicting elicitations from experts, (b) insufficient data
from which to estimate precise transition models, or (c) non-
stationary transition probabilities due to insufficient state in-
formation.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, in an MDP for traffic light control, it is dif-
ficult to estimate the turn probabilities for each traffic lane
that has the option of going straight or turning. These lane-
turning probabilities may change during the day or through-
out the year, as a function of traffic at other intersections, and
based on holidays and special events; in general it is impos-
sible to accurately model all of these complex dependencies.
In this case it would be ideal to have a traffic control policy
optimized over a range of turn probabilities in order to be
robust to inherent non-stationarity in the turn probabilities.

To accommodate optimal models of sequential decision-
making in the presence of strict uncertainty over the tran-
sition model, the MDP with imprecise transition probabil-
ities (MDP-IP) was introduced (Satia and Lave Jr. 1970;
White III and El-Deib 1994). While the MDP-IP poses a
robust framework for the real-world application of decision-
theoretic planning, its solution requires nonlinear optimiza-
tion, which is extremely time-consuming in practice.

To address this computational deficiency, we extend the
factored MDP model to MDP-IPs and propose efficient,
scalable algorithms for solving these factored MDP-IPs.
This leads to the following novel contributions in this work:

• We propose to replace the usual dynamic Bayes net
(DBN) (Dean and Kanazawa 1990) used in factored
MDPs, with dynamic credal nets (DCNs) (Cozman 2000)
to support compact factored structure in the imprecise
transition model of factored MDP-IPs.

• We extend the decision-diagram based SPUDD and
APRICODD algorithms for MDPs (Hoey et al. 1999;
St-Aubin, Hoey, and Boutilier 2000) to MDP-IP algo-
rithms capable of exploiting DCN structure. For this, we
introduce the parameterized ADD (PADD) with polyno-
mial expressions at its leaves and explain how to extend
ADD operations to PADDs.

• As shown in the experiments, the generalization of
SPUDD and APRICODD to MDP-IPs using PADDs is
just the first step in obtaining efficient solutions. Ob-
serving that the key computational bottleneck in the solu-
tion of MDP-IPs is the need to repeatedly solve nonlinear
constrained optimization problems, we show how to tar-
get our approximations to drastically reduce the compu-
tational overhead of the nonlinear solver while producing
bounded, approximately optimal solutions.

98

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

As our results will demonstrate, using the above contribu-
tions we can obtain up to two orders of magnitude speedup
in comparison to traditional “flat” dynamic programming
approaches and up to an order of magnitude speedup over
the generalization of state-of-the-art approximate factored
MDP solvers to accommodate MDP-IPs.

Markov Decision Processes

Formally, a Markov Decision Process (MDP) is defined by
the tuple M = 〈S, A, R, P, γ〉 where: S is a finite set of
fully observable states, A is a finite set of actions, R : S ×
A → R is a fixed reward function associated with every
state and action, P defines the transition probabilities, where
P (s′|s, a) is the conditional probability of reaching state s′

when starting in state s ∈ S and taking action a ∈ A. γ
is a discount factor s.t. 0 ≤ γ < 1 where rewards t time
steps in the future are discounted by γt. A stationary policy
π : S → A indicates the action a = π(s) to take in each state
s. The value of a policy π is defined as the sum of expected
discounted rewards over an infinite horizon starting in state
s and following π:

Vπ(s) = Eπ

[
∞∑

t=0

γtrt|s = s0

]
(1)

rt is the reward obtained at time t. Our objective is to find
an optimal policy π∗ that yields the maximal value in each
state, i.e., ∀s, π′ Vπ∗(s) ≥ Vπ′(s).

A well known algorithm to solve an MDP is value itera-
tion (Puterman 1994). It constructs a series of t-stage-to-go
value functions V t. Starting with arbitrary V 0, value itera-
tion performs value updates for all states s, computing V t

based on V t−1. The Q-value for state s and action a is:

Qt(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V t−1(s′) (2)

and the best value attainable at decision stage t and state s is

V t(s) = max
a∈A

Qt(s, a). (3)

We define the greedy policy πV w.r.t. some V as follows:

πV (s) = argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
(4)

At the infinite horizon, the value function provably con-
verges

lim
t→∞

max
s

|V t(s) − V t−1(s)| = 0 (5)

leading to a stationary, deterministic optimal policy π∗ =
πV ∞ (Puterman 1994). For practical MDP solutions, we are
often only concerned with ε-optimality. If we terminate the
MDP when the following condition is met:

max
s

|V t(s) − V t−1(s)| <
ε(1 − γ)

2γ
(6)

then we guarantee that the greedy policy πV t loses no more
than ε in value over an infinite horizon in comparison to
π∗ (Puterman 1994).

MDPs with Imprecise Transitions

As described in our introductory traffic example, it is often
necessary to work with imprecise probabilities in order to
represent incomplete, ambiguous or conflicting expert be-
liefs about transition probabilities. An MDP with imprecise
transition probabilities (MDP-IP) is specifically designed
for this setting. Note that the term MDP-IP was proposed
by White III and Eldeib (White III and El-Deib 1994), while
Satia and Lave Jr. (Satia and Lave Jr. 1970) adopt instead
the term MDP with Uncertain Transition Probabilities.

To specify an MDP-IP, one must specify all elements of an
MDP except the transition probabilities; then one must spec-
ify a set of probabilities for each transition between states.
We refer to these sets as transition credal sets. Formally, an
MDP-IP is defined by MIP = (S, A, R, K, γ). This defi-
nition is identical to the MDP M, except that the transition
distribution P is replaced with a set of distributions K . We
will represent K implicitly as the set of transition probabili-
ties consistent with a set of side linear constraints.

There are several optimization criteria that can be used to
define the value of a policy in an MDP-IP. In the context
of the discounted infinite horizon setting that we focus on
in this work, there is always a deterministic stationary pol-
icy that is maximin (Satia and Lave Jr. 1970); moreover,
given the assumption that A is finite and the credal set K is
closed, this policy induces an optimal value function that is
the unique fixed-point solution of:

V
∗(s) = max

a∈A
min
P∈K

(
R(s, a) + γ

X
s′∈S

P (s′|s, a)V ∗(s′)

)
. (7)

The idea of the above MDP-IP solution is to be as robust
as possible in the face of the transition uncertainty given by
K . In this case, the agent’s goal is to maximize the reward
gained, assuming that Nature tries to minimize the agent’s
reward. Nature’s policy is not necessarily stationary, it may
change over time. In the traffic scenario, we note the traf-
fic patterns may differ on holidays versus normal weekdays
even though the controller may not be explicitly aware of the
holiday in its state description.

There are various algorithms for solving flat (i.e., enumer-
ated state) MDP-IPs based on dynamic programming (Satia
and Lave Jr. 1970; White III and El-Deib 1994). In this
work, we build on a flat value iteration solution to MDP-
IPs (Satia and Lave Jr. 1970):

V
t(s) = max

a∈A
min
P∈K

(
R(s, a) + γ

X
s′∈S

P (s′|s, a)V t−1(s′)

)
(8)

Value iteration for MDP-IPs is the same as that given in (2)
and (3) for MDPs except that now for every state s, we opti-
mize our action choice a ∈ A w.r.t. the worst-case distribu-
tion P ∈ K that minimizes the future expected value. Thus
we ensure that the resulting value function and policy are
robust to the worst outcome that Nature could choose.

We note that Nature’s true transition function P may be
non-stationary; Nature can choose a different P ∈ K for ev-
ery action a and every state s and every time t. Convergence
properties of value iteration in (8) still hold when Nature’s
transitions are non-stationary but bounded by P ∈ K since
(8) optimizes w.r.t. the worst-case (Satia and Lave Jr. 1970).

99

Figure 1: a) Dynamic Credal Network for action a1 ∈ A. b) Con-
ditional probability table for the state variable X ′

1 and the con-
straints related to the probabilities. c) The Parameterized ADD

representation for P (x′1|x1, a1) that we call CPT
x′
1

a1 .

Factored MDP-IPs

We define a factored MDP-IP as an MDP-IP where states
�x ∈ {0, 1}n are compactly specified as a joint assignment to
a vector of n binary state variables (X1, . . . , Xn). While our
extensions are not necessarily restricted to binary state vari-
ables, we make this restriction here for simplicity of nota-
tion. As our first major contribution, we extend the factored
MDP representation (Boutilier, Hanks, and Dean 1999) to
compactly represent MDP-IPs.

Compact Representation

Factored model In MDP-IPs, the transition probabilities
are specified using linear constraints, meaning that the tran-
sition probability may be any distribution consistent with
these constraints. We refer to the set of all legal distribu-
tions as a credal set (K). The challenge then is to specify
such transition credal sets in a factored manner that is itself
compact. For this purpose, we can use dynamic credal net-
works (DCNs) (Cozman 2000; 2005).

An example DCN is shown in Figure 1a. A DCN has
the same two-layer structure as a dynamic Bayesian network
(DBN) (Dean and Kanazawa 1990). For each variable X ′

i
in a DCN, we have a conditional probability table (CPT)
with imprecise probabilities. If we examine the CPTs in Fig-
ure 1b, we note that entries are specified by parameters pij (i
for variable X ′

i , j for the jth parameter in the CPT for X ′
i).

Furthermore, we note that we have side linear constraints
on these pij shown in the box below the CPT. Thus, given
�p = (. . . , pij , . . .) consistent with the side linear constraints,
we obtain a legal transition distribution where paa(X ′

i) are
X ′

i’s parents in the DCN for action a ∈ A:

P (�x′|�x, �p, a) =
nY

i=1

P (x′i|pa(X ′

i), a, �p) (9)

For the example in Figure 1 we have: P (X ′
1 = 0, X ′

2 =
0|X1 = 1, X2 = 1, a1, �p) = p12p24. Note that we use xi

to represent the value assignment of the state variable Xi.
Then we can define the factored transition credal set K =
{P (�x′|�x, �p, a)| �p is consistent with side linear constraints }.

Decision Diagrams With algebraic decision diagrams
(ADDs) (Bahar et al. 1993), we can compactly represent
functions {0, 1}n → R. ADDs are directed acyclic graphs
(DAGs) whose variable tests on any path from root to leaf

Figure 2: An example reward function R(x1, x2, x3) =
P3

i=1
xi

represented as an ADD. A solid line indicates the true (1) branch
of a variable test and a dashed line indicates the false (0) branch.

follow a fixed total variable ordering. ADDs often provide
an efficient representation of functions with context-specific
independence (Boutilier et al. 1996) and shared structure.

For example, the reward function R(x1, x2, x3) =
∑3

i=1 xi

represented in Figure 2 as an ADD exploits the redundant
structure of sub-diagrams through its DAG representation.

Unary operations such as min, max, marginalization over
variables (

∑
xi∈Xi

), as well as binary operations such as ad-

dition (⊕), subtraction (
), multiplication (⊗), min(·, ·) and
max(·, ·) can be performed efficiently on ADDs. Space lim-
itations prevent an algorithmic description of these opera-
tions; we refer the reader to (Bahar et al. 1993) for details.

In order to represent the conditional probabilities for an
MDP-IP in a compact form, we propose a novel extension
of ADDs called parameterized ADDs (PADDs) since the
leaves are parameterized expressions as shown in Figure 1c.
PADDs generalize the constant leaves of ADDs to polyno-
mials expressed in the following sum-of-products canonical
form where the di are constants and the pij are parameters:

d0 +
X

i

di

Y
j

pij (10)

It is straightforward to extend the unary and binary opera-
tions for ADDs to also apply to PADDs — this only requires
that (a) identical leaves are assigned the same unique identi-
fier and that (b) operations on the leaves are modified to ac-
cept and produce resulting polynomials in the form of (10).
We crucially note that the binary operations of ⊕,
, and ⊗
are closed for PADDs with leaves in the form of (10), that
is, these operations on PADDs yield new PADDs with leaves
that can also be expressed as (10). Note that PADDs are not
closed under binary division, min(·, ·), or max(·, ·); fortu-
nately, such operations will not be needed in our proposed
solution to factored MDP-IPs.

Factored MDP-IP Value Iteration

SPUDD-IP Description We extend the SPUDD (Hoey et
al. 1999) algorithm for exploiting DBN and ADD structure
in the solution of MDPs to a novel algorithm SPUDD-IP
for exploiting DCN and PADD structure in the solution of
MDP-IPs. We begin by expressing MDP-IP value iteration
in the following factored form using operations on decision
diagrams:

V
t
(�x) = max

a∈A

8><
>:R(�x, a)⊕ γ min

�p

X
�x′

nO
i=1

P (x
′
i|paa(x

′
i), a, �p)V

t−1
(�x

′
)

9>=
>;

(11)

100

Figure 3: a) We show V 0
ADD = R(x1, x2) =

P2

i=1
xi repre-

sented as an ADD. b) The PADD representation for P (x′1|x1, a1)

(CPT
x′
1

a1). c) The multiplication V 0
ADD ⊗ CPT

x′
1

a1 resulting in a
PADD. d) The result of summing out over x′1, which is a PADD.

Because the transition CPTs P (x′i|paa(x
′
i), a, �p) in the

MDP-IP DCN contain parameters �p, these CPTs must be
represented in decision diagram format as PADDs. On the
other hand, the reward R(�x, a) can be represented as an
ADD since it contains only constants (for the purpose of op-
erations, note that ADDs are special cases of PADDs). Al-
though it may appear the form of V t(�x) might be a PADD,
we note that the parameters �p are “minimized”-out w.r.t. the
side constraints on �p during the min�p � operation. This
is crucial, because the maxa∈A can only be performed on
ADDs (recall that max is not a closed operation on PADDs).
Thus the resulting V t(�x) computed from the maxa∈A has
constant leaves and can be expressed as the ADD special
case of PADDs.

To explain the efficient evaluation of (11) in more detail,
we can exploit the variable elimination algorithm (Zhang
and Poole 1994) in the marginalization over all next states∑

�x′ . For example, if x′1 is not dependent on any other x′i
for i �= 1, we can “push” the sum over x′1 inwards to obtain:

V
t(�x) = max

a∈A

j
R(�x, a)⊕ γ min

�p
(12)

X
x′

i
(i�=1)

nO
i=1(i�=1)

P (x
′
i|paa(X

′
i), a, �p)

X
x′
1

P (x
′
1|paa(X

′
1), a, �p)V

t−1
(�x

′
)

9>>=
>>;

We show this graphically in an example in Figure 3. Here,
we have the ADD representation for the first value function

V 0 = R (Figure 3a), which we multiply by CPT x′
1

a (Fig-
ure 3b) yielding the result (Figure 3c) and sum this out over
x′1 to obtain the final result (Figure 3d). Then we can con-

tinue with x′2, multiplying this result by the CPT x′
2

a , sum-
ming out over x′2, and repeating for all x′i to compute �.

Representing the contents of � as f(�x, a, �p), we obtain

V
t(�x) = max

a∈A

j
R(�x, a) ⊕ γ min

�p
f(�x, a, �p)

ff
. (13)

Figure 4: a) The PADD before minimization and a multilinear
program for the first leaf, the solution for this leaf is the constant
value c1. b) The resulting ADD after the minimization at all leaves.

Note that min�p f(�x, a, �p) leads to a separate nonlinear ex-
pression minimization for every �x and every a subject to the
side linear constraints on �p. This optimization problem may
be represented as a simple multilinear program1 if pij only
appears in the DCN CPT for X ′

i (this prevents multiplication
of pij by itself, thereby preventing non-multilinear terms).

To demonstrate how the min�p � is performed on PADDs,
we refer to Figure 4. Here, each leaf expression in � (Fig-
ure 4a) given by the PADD corresponds to the function that
Nature must minimize in each state. We crucially note that
the PADD aggregates states with the same minimization ob-
jective, thus saving time-consuming calls to the multilinear
solver. We will observe this time savings in our experiments.

Now, we need to make a call to the multilinear solver for
each leaf, passing the leaf expression as the objective to min-
imize subject to the side constraints of our DCN that specify
the legal �p – we can then replace this leaf with a constant
for the optimal objective value returned by the multilinear
solver (Figure 4b). We can see that after the min�p operation,
all PADDs are simplified to the special case of ADDs with
leaf nodes that are constants.

To complete one step of factored MDP-IP value iteration,
we take the ADD resulting from the min operation, multi-
ply it by the scalar γ, add in the reward R(�x, a), and finally
perform a sequence of binary ADD max(·, ·) operations to
compute the maxa, thus yielding the ADD V t(�x) from the
ADD for V t−1(�x) and completing one step of value iteration
from (11).

SPUDD-IP Algorithm Factored MDP-IP value iteration
is formally specified in the following two procedures:

Solve (Algorithm 1) constructs a series of t-stage-to-go
value functions V t

DD that are represented as ADDs. First
we create the PADD representation of all DCN CPTs in the
MDP-IP and initialize the first value function to 0. The loop
is repeated until a maximum number of iterations or until a
Bellman error BE termination condition (BE < tol) is met.

1To qualify as multilinear, nonlinear terms are allowed if the
exponent of each parameter in a term is 1. For example, p1p2p3 is
multilinear, but p2

1p2p3 is not.

101

Algorithm 1: Solve(MDP-IP, tol , maxIter , δ, APP , Obj)

begin

Create PADD CPTs CPT x′
i

a for MDP-IP;
V 0
ADD = 0;

Vmax = max(RDD);
t = 0;
while i < maxIter do

t = t + 1;
V t
DD = −∞;

foreach a ∈ A do

Qt
DD=Regress(V t−1

DD , a, δ ·Vmax ,Obj);
V t
DD=max(V t

DD ,Qt
DD);

Diff DD = V t
DD
 V t−1

DD ;
BE = max(max(Diff DD),−min(Diff DD));
if BE < tol then

break;
if APP pruning then

V t
DD =ApproxADD (V t

DD , δ · Vmax);
Vmax = max(RDD) + γVmax ;

return V t
DD ;

end

We note that setting the tolerance tol according to (6) guar-
antees ε-optimality for MDP-IPs since the same termination
conditions used for MDPs directly generalize to MDP-IPs in
the discounted case (γ < 1). At each iteration the Regress
algorithm is called and V t

DD is updated with the max over

all Qt
DD for each action a computed by regress(V t−1

DD , a).

After this, BE = max�x|V
t(�x)−V t−1(�x)| is computed and

tested for termination. δ,APP ,Obj , and Vmax play no role
now; they are used for approximation in the next section.

Regress (Algorithm 2) computes Qt
DD, i.e, it regresses

V t−1
DD through action a that provides the values Qt

DD that
could be obtained if executing a and acting so as to obtain
V t−1

DD thereafter. During regression we “prime” the variables

by converting each Xi to X ′
i (since the V i

DD is now part of
the “next” state) and the CPTs for action a are multiplied in
and summed out.2 After this, the multilinear solver is called
to find the minimizing �p for each leaf in the PADD w.r.t. the
side linear constraints on the DCN, resulting in an ADD. We
note that if a leaf is already a constant, then the multilinear
solver call can be avoided altogether; this observation will
prove important later when we introduce objective pruning.
Finally, the future value is discounted and the reward ADD
is added in to complete the regression. Obj and error are
used for approximate value iteration and will be discussed
later.

Factored MDP-IP Approximate Value Iteration

The previous SPUDD-IP exact value iteration solution to
factored MDP-IPs often yields an improvement over flat

2We assume there are no synchronic arcs among variables X ′

i ,
X ′

j for i �= j in the DCN. If sychronic arcs are present, the algo-
rithm can be modified to multiply in all relevant CPTs.

Algorithm 2: Regress(VDD , a, error ,Obj)

begin
QDD = convertToPrimes(VDD);
for all X ′

i in QDD do

QDD = QDD ⊗ CPT x′
i

a ;
QDD =

∑
x′

i∈X′
i
QDD ;

if Obj pruning then
QDD =approxPADDLeaves (QDD , error);

QDD = callSolverForEachLeafIn (QDD);
return RDD ⊕ (γ ⊗ QDD) ;

end

Algorithm 3: ApproxADD(valuei
DD,error)

begin

leavesold=collectLeavesADD (valuei
DD);

{leavesold → leavesnew}
=mergeLeaves (leavesold , error);

return createNewDD
(valuei

DD, {leavesold → leavesnew});

end

Figure 5: a) The value function V t
DD represented as an ADD.

b) the result of ApproxADD applied to V t
DD with approximation

error = 1; note that the leaves within error of each other have
been merged and averaged and the resulting ADD simplified.

value iteration as we will demonstrate in our experiments.
But as the number of state variables in a problem grows
larger, it often becomes impossible to obtain an exact so-
lution due to time and space limitations.

Approximate value iteration (AVI) is one way to trade off
time and space with error by approximating the value func-
tion after each iteration. In this section, we propose two
(bounded) AVI extensions of SPUDD-IP. Each method uses
a different way to approximate the value, but both meth-
ods incur a maximum of δ · Vmax error per iteration where
Vmax as computed in Solve represents the maximum pos-
sible value at each step of value iteration. By making the
approximation error sensitive to Vmax we prevent over-
aggressive value approximation in the initial stages of AVI
when values are relatively small as suggested in (St-Aubin,
Hoey, and Boutilier 2000). Even with this value approxima-
tion at every iteration, satisfying the termination condition
BE < tol for some tol still yields strict guarantees on the
overall approximation error given by (6) as discussed previ-
ously for SPUDD-IP.

102

APRICODD-IP Algorithm The APRICODD algo-
rithm (St-Aubin, Hoey, and Boutilier 2000) provides an
efficient way of approximating the ADD value repre-
sentation for a factored MDP, reducing its size and thus
computation time per iteration. This approach immediately
generalizes to MDP-IPs since V t

DD is also an ADD. To
execute APRICODD-IP AVI for MDP-IPs, we simply
call Solve (Algorithm 1) with APP = true and set δ
(0 < δ ≤ 1) to some fraction of the maximum possible value
Vmax with which to approximate using ApproxADD:

ApproxADD (Algorithm 3) collects all leaves of the ADD
and determines which can be merged to form new values
without approximating more than error . The old values are
then replaced with these new values creating a new (mini-
mally reduced) ADD that represents the approximated value
function. An illustrative example is shown in Figure 5.

Objective-IP Algorithm APRICODD is an effective ex-
tension of SPUDD for factored MDPs (not MDP-IPs) be-
cause it reduces the size of the value function ADDs, which
largely dictate the time complexity of the algorithm. How-
ever, in solving (factored) MDP-IPs, the time is dictated less
by the size of the value ADD and more by the number of
calls to the nonlinear solver to compute the min�p. SPUDD-
IP started to attack this source of time complexity by ag-
gregating states with the same objective for the min�p. Our
goal with the Objective-IP pruning algorithm will be to more
closely target the source of time complexity in an AVI ver-
sion of SPUDD-IP by approximating the nonlinear objec-
tives. We do this by moving the approximation step into the
Regress algorithm where the nonlinear solver is called.
Noting that each PADD leaf in Regress is a nonlinear ob-
jective, we simplify it by calling ApproxPADDLeaves:

ApproxPADDLeaves (Algorithm 4) is called for a PADD
(by Regress if Obj = true) just prior to carrying out the
nonlinear optimization at the leaves of that PADD. The main
loop of the algorithm attempts to approximate each leaf in
PADD. Approximation is done in the inner loop by prun-
ing out multilinear terms di

∏
j pij from the leaf expression

and replacing them with the average of their maximum and
minimum values. This requires knowing the absolute upper
pU

ij and lower bounds pL
ij for any pij , which can be easily

precomputed once for the entire MDP-IP by calling the non-
linear solver to compute pU

ij = max pij and pL
ij = min pij

subject to the side linear constraints on all CPTs. In some
cases the complexity of the leaf expression may be reduced,
in others, it may actually be reduced to a constant. Note that
the leaves are each approximated independently, this can be
done since each leaf corresponds to a different state (or set
of states) and the system can only be in one state at a time.
We guarantee that no objective pruning at the leaves of the
PADD incurs more than error :
Theorem (ApproxPADDLeaves Error Bound). Given
an MDP-IP, its precomputed constants pL

ij and pU
ij for all

pij , and the maximum approximation error , then when-
ever ApproxPADDLeaves (Algorithm 4) reduces a leaf

d0 +
∑#terms

i=1 di

∏
j pij to a simpler expression, the ap-

proximation error in the objective minimization (min�p) of

Algorithm 4: ApproxPADDLeaves(DD, error)

begin

foreach leaf : d0 +
∑#terms

i=1 di

∏
j pij ∈ DD do

i = 1, curError = 0;
while curError < error ∧ i ≤ #terms do

newValue = di

2

(∏
j pU

ij +
∏

j pL
ij

)
;

termError i =
∣∣di

2

(∏
j pU

ij −
∏

j pL
ij

) ∣∣ ;

if curError + termError i < error then
remove term di

∏
j Pij from leaf ;

d0 = d0 + newValue;
curError = curError + termError i;

i = i + 1;

return DD ;

end

that leaf is bounded by error .

Proof. We begin by showing that the approximation error
induced by removing a single term i from the objective is
bounded by termError i. To do this, we first find upper and
lower bounds on term i (diΠjpij) based on the legal values
of �p. We know the maximal (minimal) possible value for

each pij is pU
ij (pL

ij). Thus for any possible legal values of �p

the term i must be bounded in the interval [Li, Ui] with Li

and Ui defined as follows:

Li =

j
di > 0 diΠjp

L
ij

di < 0 diΠjp
U
ij

, Ui =

j
di > 0 diΠjp

U
ij

di < 0 diΠjp
L
ij

Let g be a value for term i and ĝ = Li+Ui

2 , then maxg|g− ĝ|
occurs at g = Li or g = Ui. So the max termError i =
max (|Li − ĝ|, |Ui − ĝ|) = max

(
|Li−Ui

2 |, |Ui−Li

2 |
)

=

|Li−Ui

2 | as computed in Algorithm 4.

Now, let OBJ1 = d0 +
∑#terms

i=1 diΠjpij be the original
non-approximated objective expression to minimize and v1

the optimal objective value using �p = �p1. Let OBJ2 =

d0 + ĝ +
∑#terms

i=2 diΠjpij be the approximated objective

expression to minimize after replacing term 1 with L1+U1

2
and v2 the optimal objective using �p = �p2.

We want to prove that −
∣∣L1−U1

2

∣∣ < v1 − v2 <
∣∣L1−U1

2

∣∣.
First we prove the second part of this inequality. Using �p2
in OBJ1 we obtain v′1 = d0 + eval(d1Πjp1j , �p2) + v2 −
d0 − ĝ (where eval is a function to evaluate the term with
the assigned values). Because v1 is optimal v1 ≤ v′1 then:

v1 − v2 ≤ eval(d1Πjp1j , �p2) − bg (14)

Additionally for any possible legal values of �p and for �p2,

|eval(d1Πjp1j , �p2) − ĝ| < |L1−U1

2 |, i.e., −
∣∣L1−U1

2

∣∣ <

eval(d1Πjp1j , �p2) − ĝ <
∣∣L1−U1

2

∣∣. From this equation and

(14) we obtain v1 − v2 <
∣∣L1−U1

2

∣∣. The proof of the first
inequality follows by the same reasoning, but this time sub-
stituting �p1 into OBJ2 .

This bounds the objective approximation error for one
term approximation and by simple induction, we can addi-
tively bound the accumulated error for multiple approxima-
tions as calculated using curError in Algorithm 4.

103

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

factory-22

factory-21

factory-19

traffic-14

traffic-12

traffic-10

indep-ring-8

indep-ring-7

indep-ring-6

bi-ring-8

bi-ring-7

bi-ring-6

uni-ring-8

uni-ring-7

uni-ring-6

Ti
m

e(
se

co
nd

s)

DNF DNF DNF DNF DNF

Exact SPUDD-IP Exact Flat Value Iteration

Figure 6: Time performance comparison for TRAFFIC, SYSAD-
MIN and FACTORY problems using SPUDD-IP and Flat Value Iter-
ation. The name includes the number of variables in each problem,
so the corresponding number of states is 2#variables.

Experimental Results

In this section, we empirically evaluate four algorithms: Flat
Value Iteration from (8) and our three previously defined
contributions: SPUDD-IP, APRICODD-IP, and Objective-
IP. We evaluate these algorithms on factored MDP-IP ver-
sions of three domains: (1) FACTORY (St-Aubin, Hoey, and
Boutilier 2000) where the success (failure) probability p1

(p2) of the bolt action is constrained by 0.2 + p2 ≤ p1 ≤ 1
and 0.5 ≤ p2 ≤ 1. (2) SYSADMIN (Guestrin et al. 2003)
(three topologies: (a) unidirectional ring, (b) bidirectional
ring, (c) independent bidirectional rings of pairs of comput-
ers) where the probability pi (pi’) that each computer i fails
(reboots) is governed by the constraints: 0.85 + p′i ≤ pi ≤
0.95 and 0 ≤ p′i ≤ 0.1. (3) We introduce TRAFFIC, a fac-
tored MDP-IP domain motivated by a real traffic intersec-
tion control problem. Space limitations preclude a detailed
description, but we note that the objective is to minimize the
count of occupied road cells around an intersection. Estimat-
ing turn probabilities is difficult and so we model them with
a non-stationary distribution where for two lanes of traffic
with turn probabilities p1 and p2, we have the constraint
p1 ≥ p2 (cars turn more often from one lane than the other).
For all algorithms, we set maxIter = 50 for SYSADMIN

and maxIter = 75 for the other domains and used γ = 0.9.

Flat Value Iteration vs. SPUDD-IP In Figure 6 we com-
pare the running time of the two exact solution methods:
SPUDD-IP and Flat Value Iteration. Solutions not complet-
ing in five hours are marked Did Not Finish (DNF). We note
that SPUDD-IP did not outperform Flat Value Iteration on
the SYSADMIN domains because the exact value function
has little structure as an ADD. However, both TRAFFIC and
FACTORY had highly structured value functions and up to
two orders magnitude time improvement is demonstrated by
SPUDD-IP, largely due to the ability of the PADDs to aggre-
gate common nonlinear objectives, thus saving a substantial
number of calls to the nonlinear solver and therefore time.

APRICODD-IP vs. Objective-IP For approximate value
iterations comparisons of each algorithm, we ran Solve for
a range of δ; in the plots we refer to the actual approximation
error resulting from this δ, which is max�x |V

maxIter
DD (�x) −

V ∗DD (�x)| with V ∗DD computed using δ = 0, i.e., SPUDD-IP.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14

 0

 5000

 10000

 15000

 20000

 25000

Si
ze

(n
od

es
) a

nd
 T

im
e(s

ec
on

ds
)

No
nli

ne
ar

So
lve

r C
all

s

True Approximation Error

traffic-10

APRICODD-IP Pruning Time
APRICODD-IP Pruning Calls Solver

APRICODD-IP ADD size
Objective-IP Pruning Time

Objective-IP Pruning Calls Solver
Objective-IP Pruning ADD size

Figure 7: Detailed comparison between APRICODD-IP pruning
and Objective-IP pruning for the traffic problem with 10 variables.
True Approximation Error is max�x|V

∗(�x) − Vapprox (�x)|.

In Figure 7 we present a detailed comparison of the time,
space, and number of nonlinear solver calls required by
APRICODD-IP and Objective-IP plotted vs. the true ap-
proximation error for traffic-10. We note little relationship
between the space required by the ADD value representa-
tion and the running times of the algorithms (space actu-
ally increases slightly for Objective-IP while running time
decreases). But what is striking about this plot is that the
running time of each algorithm is directly correlated with
the number of nonlinear solver calls made by the algorithm
(taking up to 100ms in some cases), reflecting our intuitions
that the time complexity of solving MDP-IPs is governed by
the computational overhead of nonlinear optimization.

In Figure 8, we show a comparison of true approximation
error vs. running times for three problems and three different
sizes of each problem. The results here echo one conclusion:
Objective-IP consistently takes less time than APRICODD-
IP to achieve the same approximation error and over one
order of magnitude less time in the case of FACTORY.

Related Work

The Bounded-parameter Markov Decision Process (BMDP)
(Givan, Leach, and Dean 2000) is a special case of an MDP-
IP, where the probabilities and rewards are specified by con-
stant intervals. Recent solutions to BMDPs include ro-
bust versions of real-time dynamic programming (Buffet and
Aberdeen 2005). The Markov Decision Process with Set-
valued Transitions (MDPSTs) (Trevizan, Cozman, and de
Barros 2007) is another subclass of MDP-IPs where proba-
bility distributions are given over finite sets of states. The al-
gorithms defined in this paper clearly apply to both BMDPs
and MDPSTs, however all of the above techniques do not
generalize to the MDP-IPs we examined in this paper that
use linear constraints on a DCN probability specification.
This representation was used in all of our MDP-IP domains.

Concluding Remarks

Motivated by the real-world need to solve MDPs with transi-
tion uncertainty, we proposed the compact factored MDP-IP
model and developed a decision diagram-based factored
value iteration extension of the SPUDD algorithm. We con-
tributed the parameterized ADD (PADD) data structure and

104

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

factory-19
APRICODD-IP Pruning

Objective-IP Pruning

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

factory-21
APRICODD-IP Pruning

Objective-IP Pruning

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

factory-22
APRICODD-IP Pruning

Objective-IP Pruning

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

traffic-10
APRICODD-IP Pruning

Objective-IP Pruning

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

traffic-12
APRICODD-IP Pruning

Objective-IP Pruning

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000 7000 8000

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

traffic-14
APRICODD-IP Pruning

Objective-IP Pruning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

bi-ring-6
APRICODD-IP Pruning

Objective-IP Pruning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200 400 600 800 1000 1200 1400 1600 1800

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

bi-ring-7
APRICODD-IP Pruning

Objective-IP Pruning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000

Tr
ue

 A
pp

ro
xi

m
at

io
n

Er
ro

r

Time(seconds)

bi-ring-8
APRICODD-IP Pruning

Objective-IP Pruning

Figure 8: True Approximation Error (max�x|V
∗(�x) − Vapprox(�x)|) vs. time required for APRICODD-IP and Objective-IP.

operations and used PADDs in novel inference algorithms
with compact factored MDP-IP transition credal sets repre-
sented as Dynamic Credal Networks (DCNs). The resulting
SPUDD-IP algorithm yielded up to two orders of magnitude
speedup over pre-existing value iteration techniques.

Seeking to scale SPUDD-IP further, we contributed two
novel approximate value iteration extensions: APRICODD-
IP and Objective-IP. While APRICODD-IP is the obvious
extension based on previous work, it did not specifically tar-
get the main source of time complexity for solving MDP-IPs
— calls to the nonlinear solver during MDP-IP value itera-
tion. Based on this observation, we developed an alternate
and novel approximation method that directly approximated
the objective of nonlinear solver calls, proving the theoret-
ical correctness of this approach and substantially reducing
the number of nonlinear solver calls and thus running time of
approximate value iteration. Altogether these novel exten-
sions enable the modeling and (bounded approximate) solu-
tion of factored MDP-IPs that can scale orders of magnitude
beyond existing flat value iteration approaches to MDP-IPs.

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.; Macii,
E.; Pardo, A.; and Somenzi, F. 1993. Algebraic decision diagrams
and their applications. In ICCAD-93, 188–191.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D. 1996.
Context-specific independence in Bayes nets. In UAI-96,115–123.

Boutilier, C.; Hanks, S.; and Dean, T. 1999. Decision-theoretic

planning: Structural assumptions and computational leverage.
JAIR 11:1–94.

Buffet, O., and Aberdeen, D. 2005. Robust planning with
LRTDP. In IJCAI-05, 1214–1219.

Cozman, F. G. 2000. Credal networks. Artif. Intell. 120:199–233.

Cozman, F. G. 2005. Graphical models for imprecise probabili-
ties. Internat. Journal of Approx. Reasoning 39(2-3):167–184.

Dean, T., and Kanazawa, K. 1990. A model for reasoning about
persistence and causation. Comput. Intell. 5(3):142–150.

Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-parameter
Markov decision processes. Artif. Intell. 122:71–109.

Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S. 2003.
Efficient solution algorithms for factored MDPs. JAIR 19:399–
468.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Stochastic
planning using decision diagrams. In UAI-99, 279–288.

Puterman, M. L. 1994. Markov Decision Processes. New York:
John Wiley and Sons.

Satia, J. K., and Lave Jr., R. E. 1970. MDPs with uncertain
transition probabilities. Operations Research 21:728–740.

St-aubin, R.; Hoey, J.; and Boutilier, C. 2000. Approximate
policy construction using decision diagrams. In NIPS-00.

Trevizan, F. W.; Cozman, F. G.; and de Barros, L. N. 2007. Plan-
ning under risk and Knightian uncertainty. In IJCAI-07.

White III, C. C., and El-Deib, H. K. 1994. MDPs with Imprecise
Transition Probabilities. Operations Research 42(4):739–749.

Zhang, N. L., and Poole, D. 1994. A simple approach to Bayesian
network computations. In CCAI-94, 171–178.

105

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

