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Abstract

The growing presence of household robots in inhabited
environments arises the need for new robot task plan-
ning techniques. These techniques should take into con-
sideration not only the actions that the robot can per-
form or unexpected external events, but also the actions
performed by a human sharing the same environment,
in order to improve the cohabitation of the two agents,
e.g., by avoiding undesired situations for the human.
In this paper, we present a human-aware planner able
to address this problem. This planner supports alterna-
tive hypotheses of the human plan, temporal duration
for the actions of both the robot and the human, con-
straints on the interaction between robot and human,
partial goal achievement and, most importantly, the pos-
sibility to use observations of human actions in the pol-
icy generated for the robot. The planner has been tested
as a standalone component and in conjunction with our
framework for human-robot interaction in a real envi-
ronment.

Introduction

Public interest in home robots is steadily increasing and peo-
ple are looking at robots as new means to improve the quality
of their everyday life. The aging of the population, for in-
stance, could open a wide space for new applications (Tapus,
Mataric, and Scassellati 2007). Robots could then become
effective workers, precious butlers and, eventually, friendly
helpers in our houses. Similar opportunities could also arise
in industrial environments.

The identification of suitable interfaces for the interaction
between humans and robots is only one of the many chal-
lenges that the cohabitation introduces. The presence of hu-
mans in the space where robots operate also has a profound
influence on how the embodied agents should perform high
level reasoning and plan their actions.

As many researchers have already pointed out, a clas-
sical AI planning system in which the robot is in control
and the state of the world is only affected by the actions
of the robot (Nau, M., and Traverso 2004) is not applicable
anymore. In order to be effective collaborators in house-
hold environments, the robots should include the state of
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the humans in their control loop (Jenkins, González, and
Loper 2007). We believe that, as remarked by Hoffman and
Breazeal (2007b; 2007a), the interaction and teamwork of
robots and humans can be greatly improved if the former can
anticipate the forthcoming actions of the latter. However,
our approach goes beyond the one of Hoffman and Breazeal
on two points: first, we aim to forecast not only one human
action at a time, but a full plan for a wider timespan. Sec-
ond, we use a planning system to decide which sequence of
actions the robot should perform to achieve its goals while
respecting a given set of interaction constraints.

The main contribution of this article is a planning tech-
nique able to deal with the presence of the human in the en-
vironment. This technique is applied to situations in which
there is a controllable agent (the robot) whose actions we
can plan, and an uncontrollable agent (the human) whose
action we can only try to predict. For simplicity, we assume
there are only one robot and one human. Multiple alterna-
tive human plans are considered, and the domain is partially
observable. Therefore the planner generates policies condi-
tional on what the human is observed doing. Actions have
duration, but for the purpose of this paper we assume that
durations are deterministic.

Although the main focus of this paper is on the planning
algorithm, we also describe the inclusion of our planner in a
full framework for human aware task planning. This frame-
work includes a plan recognition system for estimating the
plans carried out by a person living in a small apartment, the
human-aware planner itself, and an execution and monitor-
ing system through which the robot plans are executed.

Related Work

There has been extensive work on planning with external
events (as human actions can be considered). An early ex-
ample is the work of Blythe (1994), which used Bayesian
nets to compute the probability of success in the presence of
external events. Our approach is also somehow reminiscent
of early work on collaborative planning (Grosz and Kraus
1996). In the robotics field, some works have considered
human-robot co-habitation. Often these works take a view-
point which is different from the one adopted here, by focus-
ing on aspects such as safety (e.g., within MORPHA (Graf,
Hans, and Schraft 2004)), acceptable motion (e.g., within
COGNIRON (Akin Sisbot et al. 2006)) or human-aware
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manipulation (Sisbot, Marin, and Alami 2007). The prob-
lem of task planning in the presence of humans is currently
still open, although some researchers have started explor-
ing the issue (Alami et al. 2006; Broz, Nourbakhsh, and
Simmons 2008). Montreuil et al. (2007) and Galindo et
al. (2008) have addressed the complementary problem of
how a robot could generate collaborative plans involving a
human. In our work, by contrast, the robot does not plan ac-
tions for the human, but instead tries to forecast actions and
plans of the human from previous actions. Our approach
also diverges from the techniques developed for plan merg-
ing (Gravot and Alami 2001), because in our case the hu-
man is not controllable and some of his actions can prompt
new goals for the robot. Therefore, the actions of the human
cannot be re-scheduled, and the plan of the robot cannot be
created a priori and then rearranged.

An important property of our planning problem is that ac-
tions can be executed simultaneously and have durations,
and that property has been addressed before in the literature.
For instance, Mausam and Weld (2008) present an MDP
model (fully observable) based on the concept of interwo-
ven epoch search space, adapted from Haslum and Geffner
(2001).

The Planner

The main feature of our human-aware planner is that it is
able to consider the plan that the human is currently exe-
cuting — or, more generally, a set of possible alternative
human plans, called agendas — and generate a robot plan
that is compliant with these agendas. The possible agen-
das, together with an associated probability distribution, are
assumed to be estimated by a separate plan recognition mod-
ule. As one doesn’t know in advance which of these agendas
is the actual one, the planning problem has the property of
partial observability. The planner, which is an extension of
PTLplan (Karlsson 2001), generates policies which are con-
ditional on observations relating to the human’s actions.

In this section we present the human-aware planner. Later
in the paper we show how this planner has been incorpo-
rated into a full experimental system, including a simple
plan recognition module and an execution module.

States, situations and actions

A state s is represented in terms of a set of state variables
and their values. The set of all states is denoted S.

An action a has a precondition Pra : S → {T, F}, a
time duration ta ∈ R

+, a cost function Costa : S → R
+

and a transition function Resa : S × S → [0, 1] such that
Resa(s, s′) is the probability of going to state s′ when action
a is performed in state s. We assume in this paper that an
action always takes the same amount of time to perform, and
cannot be interrupted once started. The end state, however,
can both depend on the starting state and be stochastic. Note
that actions include both those performed by the human and
by the robot. We use HA and RA to denote the sets of
human actions and robot actions, respectively.

An agenda is a finite list of consecutive human actions:
(a1, a2, ..., an).

A situation is a tuple 〈s, rt, ht, ha〉 where s is a state,
rt ∈ R

+ is the time when the robot latest action ended,
ht ∈ R

+ is the time when the human latest action ended,
and ha is the remaining agenda of the human. The set of
situations is denoted Σ. Note that the concept of a situa-
tion can be generalized in a straight-forward manner to have
more robots and more humans, but for the sake of simplicity,
we only consider one of each here.

We can now define what happens when the robot performs
an action a in a situation 〈s, rt, ht, ha〉 by extending the
function Resa to transitions between situations:

Resa(〈s, rt, ht, ha〉, 〈s′, rt′, ht′, ha′〉) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
s′′ Resa′(s, s′′)·

Resa(〈s′′, rt, ht′′, ha′′〉, 〈s′, rt′, ht′, ha′〉)
when a′ = first(ha) ∧ ha′′ = rest(ha)∧
ht′′ = ht + ta′ ∧ ht′′ ≤ rt + ta

Resa(s, s′) when rt′ = rt + ta ∧ ht′ = ht∧
∀a′(a′ = first(ha) ⇒ rt′ < ht + ta′)∧
ha′ = ha

Here, the first part is the recursive case when the next hu-
man action a′ finishes before the robot current action a, and
the second part is the case when the robot current action a
finishes before the next human action a′ provided there is
one. Note that the first situation is when the robot action is
started, and the second situation is when it ends.

As an example (figure 1), consider three states s,
s′, s′′, one robot action clean such that tclean =
5 and Resclean(s′, s′′) = 1, and two human ac-
tions watchTV and eatDinner such that twatchTV =
4, ReswatchTV (s, s′) = 1, teatDinner = 4 and
ReseatDinner(s′′, s′′′) = 1. In that case:

Resclean(〈s, 5, 3, (watchTV, eatDinner)〉,
〈s′′, 10, 7, (EatDinner)〉) =

ReswatchTV (s, s′) · Resclean(〈s′, 5, 7, (eatDinner)〉,
〈s′′, 10, 7, (EatDinner)〉) =

ReswatchTV (s, s′) · Resclean(s′, s′′) = 1.0

s s’ s’’

watchTV eatDinner

clean
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Figure 1: Example of robot and human action transitions.

Partial observability

The framework presented above is sufficient as long as we
have full observability, that is we always know the current
situation, including the agenda of the human agent. How-
ever, that is not always the case. Therefore, we need to in-
troduce partial observability (Kaebling, Littman, and Cas-
sandra 1998), by defining a belief situation to be a probabil-
ity distribution over situations. This implies that the robot
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can have alternative hypotheses about the current state of
the world, the human’s agenda, and so on. In addition, par-
tial observability involves observations as results of actions.
Those are introduced in the standard way by defining a func-
tion Obsa : S×O → [0, 1] which specifies the probability of
having an observation o ∈ O when action a is performed re-
sulting in state s. An observation is a set of literals, that can
be empty. If a is an action by the robot, then a is assumed
to be a sensing action (like testing whether a door is open or
closed). If a is an action by the human, on the other hand,
then o is still assumed to be an observation by the robot, but
an indirect observation of a or some effect of a (if the TV
is switched off, the system can observe that the watchTV
action is over). Notice that also in the second case, the ob-
servation is dependent on the state, so we can specify that
a human action only results in an observation under certain
conditions.

The observation function Obsa only concerns states, and
not situations. For the latter, it becomes a function Obsa :
Σ × Σ × Ω → [0, 1] which specifies the probability of an
observation sequence ω ∈ Ω (where Ω is the set of all ob-
servation sequences) when a transition from one situation to
another occurs. This observation sequence consists of the
observations resulting from all human actions, that can pro-
vide observations, being completed between the two situa-
tions, e.g. while a is being executed. The last element of
the observation sequence would be the observation resulting
from the robot action (that can also be an empty observation,
if a is not a sensing action). It must be noticed that some
human actions are not observed by the system and give the
empty observation.

Obsa(〈s, rt, ht, ha〉, 〈s′, rt′, ht′, ha′〉, ω) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
s′′(Resa′(s, s′′) · Obsa′(s′′, first(ω))·

Obsa(〈s′′, rt, ht′′, ha′′〉, 〈s′, rt′, ht′, ha′〉, rest(ω)))
when a′ = first(ha) ∧ ha′′ = rest(ha)∧
ht′′ = ht + ta′ ∧ ht′′ ≤ rt + ta

Obsa(s′, first(ω)) when rt′ = rt + ta ∧ ht′ = ht∧
∀a′(a′ = first(ha) ⇒ rt′ < ht + ta′) ∧ ha′ = ha

In analogy with the standard POMDP model (Kaebling,
Littman, and Cassandra 1998), different observations result
in different belief situations. The probability of a situation σ′
in the belief situation b′ resulting from an action a performed
in a belief situation b with observations ω is computed as
follows:

P (σ′|b′) = P (σ′|b, ω) =∑
σ P (σ|b) · Resa(σ, σ′) · Obsa(σ, σ′, ω)

η
The denominator η in the equation above is a normalizing

factor, and is defined as P (ω|b, a) below.
The posterior probability for a certain observation sequence
ω (and a corresponding resulting belief situation b′) when
action a is taken in b is:

P (ω|b, a) =
∑

σ

∑
σ′

P (σ|b) · Resa(σ, σ′) · Obsa(σ, σ′, ω)

Planning problem and policy

A human-aware planning problem consists of:

1. An initial belief situation b0, where the different situations
can contain both alternative human agendas (as obtained
from a plan recognition system), and different states.

2. A set of goals G to achieve in terms of constraints on
states (logical formulas), with different values V (g) ∈
[0, 1] such that

∑
g∈G V (g) = 1. Each V (g) represents

the importance value associated to the achievement of the
corresponding goal.

3. A set of interaction constraints IC not to violate referring
to states (temporal logic formulas).

4. A set of robot actions RA.

5. A set of human actions HA.

A policy is a graph 〈n0, N, E〉 where the nodes N are
marked with the robot actions to perform there (n0 is the
initial node), and the edges E are marked with observation
sequences (possibly empty). Some nodes are marked with
the special actions success and failure, and these nodes are
terminal.

The policy is executed by performing the action of the
current node, and then selecting the edge matched with the
observations that occur, following it to the next node, and
repeating the process until a terminal node (success, failure)
is reached.

A policy 〈n0, N, E〉 is admissible in an initial belief sit-
uation b0 if and only if the following conditions hold. Each
node ni ∈ N can be assigned a belief situation bi, in particu-
lar with b0 assigned to n0, such that: the preconditions of the
action in ni hold in all situations of bi; and for each possible
transition resulting from the action reaching to some other
belief situation bj and producing the observation sequence
ω, there is an edge marked with ω from ni to another node
nj that has been assigned bj ; and there are no other edges.
In addition, there should be no edges from terminal nodes.

A policy violates an interaction constraint ic ∈ IC if and
only if there is a node in it with an assigned belief situation
in which ic is false.

The value (success degree) of a terminal node nj in
a policy with assigned belief situations is computed as
Σg∈GP (g|bj) ·V (g), and the values of other nodes are com-
puted (maximized) according to the Bellman equations, as is
done for Markov Decision Processes (Puterman 1994). The
cost is computed analogously but has lower priority than the
value: if there are several policies with maximal value, the
one with lowest cost will be selected. The value and cost of
the entire policy are the value and cost of the initial node n0.

A policy solves a planning problem with a degree of p if it
is admissible, only contains actions from RA, has a value of
p (or more) for the goals in G and no interaction constraints
in IC are violated.

In addition, one can add requirements for the human agen-
das to be completed, alternatively not completed, in the suc-
cess nodes.
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Procedure HumanAwarePlanning(b0, RA, HA, IC, G, V, succ)
1. Let B := {b0}
2. Select a node b ∈ B with untested actions
3. Select an action a ∈ RA not tried in b
4. If Prea hold in b
5. compute the set {b′|P (b′|b, a) > 0}

while checking IC and search control
(the human agendas are progressed here)

6. add the new b′ to B
7. If there are b′ for which some goals g ∈ G hold,
8. compute the values of those b′ using V
9. perform Bellman update of success and cost for nodes in B
10. If no nodes in B with untried actions or value in b0 ≥ succ
11. return best policy
12. goto 2.

Figure 2: Algorithm for human aware planning.

The algorithm

We have extended the planner PTLplan (Karlsson 2001;
Bouguerra and Karlsson 2005) for probabilistic and par-
tially observable domains to work on our representation
for human-aware planning. PTLplan is a progressive plan-
ner, starting from the initial belief state, or in the extended
version: belief situation, exploring belief states/situations
reachable from there until a policy with sufficient value has
been found. PTLplan, which itself is an extension of TLplan
(Bacchus and Kabanza 2000), uses temporal logic formulas
to eliminate belief states/situations from the search space.
The algorithm of the human aware planner is detailed in
pseudocode in figure 2. As mentioned in the previous sec-
tions, our main extensions to the original planner are:

• The use of HA to include human actions, the addition to
the belief situations of agendas consisting of such actions,
and the fact that the effects of the human actions are taken
into consideration when the new belief situations are com-
puted in step 5

• The possibility to generate policies with partial goal
achievement and the use of weights V (g) (step 8) to pri-
oritize the accomplishment of a subset of the goals g ∈ G

• The introduction of IC, that are checked in every state
encountered while the new belief situation is computed
(step 5), to avoid undesirable situations from the human
side

We refer to (Karlsson 2001) for further technical details
about the original PTLplan.

Performance

To evaluate the performance of the planner as a standalone
component, we designed two scenarios. The first one, the
vacuum cleaner scenario, is an extension of the real test that
we performed with the full framewok. The second one is
a purely simulated scenario, in which an autonomous table
is required to serve the human when needed. Our intention
was to test the performance of the planner with respect to the
number of applicable actions, the number of human agendas
provided as input and the number of events that compose

each of the agendas. We tested each scenario first with-
out, and then with domain knowledge. In this way, we can
both see the total difficulty of each problem and what can be
achieved using heuristics. All the agendas provided to the
planner as an input are assumed to be equally probable.

The vacuum cleaner scenario

A robotic vacuum cleaner is deployed in an apartment. The
set of goals G given to the agent specifies that each room of
the apartment must be clean and that the agent must be back
at its charging station at the end of the plan. The only inter-
action constraint IC is that the robot and the human should
never be located in the same room, to avoid disturbances.
The following formula describes this IC:
forall r: (not((robot-in=r)and(human-in=r)))

The agent is provided with an action set RA of four para-
metric actions, specified in terms of name, preconditions, ef-
fects and time. The effects include a measure of cost, which
in this case represents battery consumption. An example of
a robot action is:
name: robot-clean(r)
precond: room(r) and dirt(r) > 0
results: dirt(r):=(dirt(r) - 1) and cost:=2
time: 10

It should be noted that the number of action instances ap-
plicable at each step is dependent on the number of rooms
of which the apartment is composed.

The initial belief situation for the planner is automatically
generated according to the number of rooms in the apart-
ment and to the human agendas that are provided at each
run. The elements common to all initial belief situations can
be formalized as:

rt := 0
ra := 0
s :=

⋃
1≤j≤n{dirt(rj) = ij}∧

robot in = robotdocking ∧ human in = r1

Where n is the number of rooms generated and each ij is
set to 1 with probability 0.3, 0 otherwise.

As said before, domain knowledge can be injected into the
planner by means of formulas expressed in temporal logic.
An example of the formulas used follows:
forall r: always (not [[(robot-in=r) and

(dirt(r)=d) and (d>0)] and
[next ((dirt(r)=d) and

(not (human-in=r)))]])

The operator next specifies the check to be performed in
the next belief situation relatively to the one in which the
formula is first evaluated. This rule defines that it is unac-
ceptable a transition from belief situation b to belief situation
b′ such that: in b the robot is in a room with a dirt level d > 0
and in b′ the human is still not in the room and the level of
dirt is unchanged. Thanks to this progression formula the
robot is forced to clean whenever it is possible.

We analyzed the performance of our planner in three dif-
ferent test setups.
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First setup In the first setup, we fixed the number of
rooms in the apartment to 3, plus a special location, the
robot-docking, where the robot can recharge its batteries and
is virtually unreachable by the human. For this setup, we au-
tomatically generated 81 problems, grouped in 9 situations,
varying the number of human agendas (1, 3, 5) and the num-
ber of human actions that compose each of the agendas (1,
3, 5). The problems generated for this experimental setup
are fully solvable, that is, a complete search would lead to a
robot policy where all the goals have been achieved.

The human actions, also generated automatically, can be
of two types: the user can move from one room to another
(in such case the duration of the event is fixed to 1 minute) or
stay in the current location (the duration of such events is set
to a random time value, spanning from 10 to 120 minutes,
when the the problem is generated). Moreover, each event
can be marked at problem generation time as observable by
the system with probability 0.3 and can produce effects in
the environment (that is, it can add new dirt on the floor and
therefore a new goal to the robot) with probability 0.2. The
actions of the human are specified like those of the robot but
they do not have preconditions, as we do not need to test
their applicability in the planning process. An example of a
human action follows:
name: a1
results: human-in := r1

and obs (human-in = r1)
and dirt(r1):=(dirt(r1)+1)

time: 60

Figure 3: The vacuum cleaner scenario, first setup. Planning time
when brute force is employed (top) and when domain knowledge
is injected into the planner (bottom). The box plots detail the CPU
user time (in seconds) for each set of runs on a PC with an Intel(R)
Pentium(R) D 3 GHz processor and 2 GB of RAM. The problems
are grouped by the number of human agendas provided as input
to the planner (1,3,5) and the number of events composing each
of the agendas (1,3,5). The central mark of each boxplot is the
median of the represented values, while its edges are the 25th and
75th percentiles. Whiskers contain all the remaining data points
not considered outliers, that are plotted individually.

Each problem is solved first exploring the full search

space, with exhaustive breadth-first search, limited by the
time duration of the human agendas, and then injecting do-
main knowledge into the planner. Figure 3 shows the results
in terms of execution time for this setup. As expected, the
run time increases with both the number of human agen-
das employed and the number of events that compose each
agenda. The use of domain knowledge proved to cut by al-
most 10 times the execution time and the number of nodes
explored in the search. The generated policies solved the
corresponding problems with the same success degree than
the ones generated without using domain knowledge, and
had the same costs.

It is worth mentioning that our actual scenarios, in which
we use the planner in a real environment as the core of our
human aware framework, typically have the same complex-
ity of the test runs of this setup. In our experimental setup,
we observed that the plan recognition module typically pro-
vides the planner with 2 or 3 human agendas, each com-
posed by a number of events that rarely exceeds 5. There-
fore, our real problems are typically solved in a matter of a
few seconds, which is more than acceptable considering that
the time granularity we employ in this domain is one minute.

Second setup The problems analyzed in this second setup
are generated in the same way detailed above. The differ-
ence here is the number of rooms — 5 instead of 3 — and
therefore the number of applicable actions at each step. Also
in this case, we tested the planner on 81 automatically gen-
erated, fully solvable problems, grouped in 9 situations.

Figure 4 shows the outcome of this setup in terms of CPU
user time. As in the previous setup, domain knowledge
speeds up the computation, reducing the required time to
less than 20 seconds even for the most difficult problems.
The use of domain knowledge did not affect the success rate
degree. However, in 5 out of 81 problems a slight increase
in the cost has been observed. In the worse case, one of the
problems with 5 human agendas each composed by 3 human
events, the cost of the plan increased by 4.58 % compared to
the one generated by brute force.

Figure 4: The vacuum cleaner scenario, second setup. Planning
time using brute force (top) and using domain knowledge (bottom).
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Third setup The third and final setup is meant to exten-
sively test the performance of the planner also under circum-
stances that would not normally arise in a real environment.
In this setup, we generated 450 problems, each with a poten-
tial success degree of at least 0.8 (that is,

∑
g∈G V (g) ≥ 0.8)

and for these problems we aimed to find the best possible
robot policy. The actions and the events are automatically
generated as in the previous setups, but now the number of
agendas used is increased to (5, 7, 9) and the number of
events per agenda to (3, 5, 7). 50 problems have been gen-
erated for each of the 9 situations.

As we can see from figure 5, also in this case the progres-
sion formulas significantly prune the search space (bottom).
However, a little loss in terms of success degree can be ob-
served: the solutions of 5.11 % of the problems using do-
main knowledge reported a loss in success degree of at most
6 %.

Figure 5: The vacuum cleaner scenario, third setup. Planning time
using brute force (top) and using domain knowledge (bottom).

The moving table scenario

In the second scenario, the interaction constraints IC of the
planner are designed to provide a service to the user, instead
of avoiding interference with him. In this case, we used the
planner to generate policies for a moving table that can au-
tonomously bring drinks to the user. The IC of the table is
to be ready with a drink within ten minutes from the arise of
a request by specific actions of the user:

always ((not(human-wants-drink=t)) or
(time-elapsed-since-request<=10))

The goal G of the table is to be back at its docking station
when the execution of the policy is over. In this case, the set
RA is composed by 5 parametric actions, that are specified
as in the previous example. The agent can move from room
to room, stay or sleep in a room (the sleep action lasts longer
and has a lower cost), get a drink from the fridge and deliver
it in the room where the human is located.

We tested this scenario in a single setup, in which the
robot must satisfy the user’s requests in an apartment com-
posed by 3 rooms plus the special robot-docking location.

As in the previous scenario, we automatically generated the
initial belief situations, while keeping the initial positions of
both robot and human fixed. We generated 300 problems,
each with a potential success degree of at least 0.8, grouped
into 6 situations according to the number of human agendas
(5,7) and the number of human events per agenda (3,5,7).

The human events that compose the agendas have the
same structure of the ones detailed in the vacuum cleaner
scenario. Each of them, at problem generation time, has a
0.3 probability of being observable by the system, and a 0.5
probability of arising the request for a drink. The duration
of each event is also generated as in the previous scenario.

The 300 problems were first solved by brute force, and
then by providing domain knowledge to the planner (one of
the formulas employed, for instance, specifies that the robot
should move only to the robot-docking or in the room where
the human is located, in case he requires a drink).

Figure 6: The moving table scenario. Planning time using brute
force (top) and using domain knowledge (bottom).

As it can be observed from figure 6, also in this case the
use of domain knowledge sped up the computation. The
increased performance came at the price of a drop in the
success degree in the solution of 7.3 % of the problems of at
most 20 %.

A Full System Test Case
We now describe how our planner can be incorporated into
a full system for human-aware task planning. The system
we describe has been implemented and deployed in a real
robotic home environment (Saffiotti et al. 2008), including
a variety of sensors and a mobile robot, where a single per-
son is acting (see figure 7). The system is composed of three
main parts: a human plan recognition module, the planner,
and an execution and monitoring module. A single illus-
trative run is presented below, since extensive testing of the
complete system is not the concern of this paper.

Plan recognition module

The task of the plan recognition module is to produce an
estimate of the possible agendas being executed by the hu-
man, by taking as input sensor readings and a pre-defined set
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Figure 7: The home environment used in our experiment.

of potential agendas. From the perspective of human-aware
planning, the most important aspects of this estimate are the
forecast of the future actions that the human will perform
and the detection of completion of recognized activities.

The used plan recognition module has a multi-layer struc-
ture, and it refines and abstracts the data received as input
from the sensors step after step. At the base layer, sensor
data are collected and coupled. Using a rule based system,
simple instantaneous actions are detected (e.g.: the pres-
ence of the user in the kitchen and the fact that the fridge
door is open let us infer that the human is using the fridge).
In the next layers, we use Hidden Markov Models to iden-
tify more complex activities and finally to recognize human
plans among a set of pre-defined ones. Similar approaches
have already been successfully used (Aoki et al. 2005), al-
though in our case the HMMs are defined beforehand and
not learned from training data.

It should be emphasized that this component is not in-
tended to be state-of-the-art, since the research issues related
to plan recognition are not the focus of our work. In fact, this
module could be easily replaced by another one in future ex-
periments. The module that we used, however, proved to be
sufficiently efficient and robust to noise in the sensor data
for the purposes of our experiments.

Execution and monitoring module

The executor receives from the planner the sequence of ac-
tions that the robot should perform and it sends them, one
by one and with the appropriate timing, to the robot itself.

The monitoring module provides continuous support to
the execution of the plan. If the plan recognition module
updates the human plans identified, then a replanning signal
is raised: the execution is suspended, the status of the robot
and the effects on the environment of the actions of the robot
so far executed are passed to the planner. The planner can
thus calculate a new plan, that will be consistent with both
the environment status and the new human plans.

A test run

We have tested the system in our home environment where
one user is executing daily activities in the morning, from 8

am to 1 pm, following one of six pre-defined agendas, as dis-
cussed in the previous section. During the same time span, a
robotic vacuum cleaner has the task to clean the floor in all
the rooms that need it, minimizing the interference with the
user. In our case, this means that the robotic vacuum cleaner
must both operate and wait in rooms that the system has pre-
dicted as not occupied by the human at that time. In our test
run, all rooms were marked as dirty from the beginning, so
the robot must clean all of them.
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Figure 8: The robot policy generated by the planner (top) with the
two agendas (bottom) identified as possible by the plan recognition
module. The observation of the completion of the human activity
RELAX allows the robot to decide which branch must be executed.

The agenda executed by the user in our test run was the
one marked A1 in figure 8. Another agenda (A2) among the
pre-defined ones is very similar to this one. After a delay,
the plan recognition module identifies these two agendas as
possible given the received observations, and passes both of
them to the planner as suitable candidates for the subsequent
actions of the human.

In general, when more than one agenda have been identi-
fied as possible, the policy to be executed by the robot will
contain branches and the observation of the last completed
human activity should be used to discriminate which action
to perform next. In our case, the output policy contains one
branch: the robot will follow the policy marked b in case the
system observes that the human has completed the RELAX
activity at the time of the branching. Otherwise, if there is
no such observation, the robot will follow the a branch.

In the actual run, the robot executed successfully every
action marked in a darker color, and it used the observation
variable RELAX to discern the correct course of action.

Conclusions and Future Works

We have presented a human aware planner, designed to be
part of a larger framework deployed in a real environment.
The main contribution of our work is represented by the new
techniques we designed to take into account forecasted hu-
man actions at planning time. Such actions do not only im-
pose constraints on the robot, e.g., never schedule the clean-
ing of a room while the human is there. They can also be
the source of new goals, e.g., the kitchen must be cleaned
after the human has used it for cooking. The possibility of
observing the results of some human actions can then be em-
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ployed by the planner to identify the best policy to achieve
the identified goals.

In our future work, we intend to perform extensive tests
of the full system in a real environment, possibly deploying
different robots with different tasks. Another priority is to
relax the constraint that limits us to actions of fixed dura-
tion, both for the robot and the human. In this context, it
is interesting to note that Mausam and Weld (Mausam and
Weld 2008) showed that by first planning with only the ex-
pected duration and then improve or re-plan the policy with
other possible/actual durations, one can still obtain policies
that are quite close to the optimum.
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