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Abstract

A planning problem is k-dependent if each action has at
most k pre-conditions on variables unaffected by the action.
This concept is well-founded since k is a constant for all but
a few of the standard planning domains, and is known to
have implications for tractability. In this paper, we present
several new complexity results for P(k), the class of k-
dependent planning problems with binary variables and poly-
tree causal graphs. The problem of plan generation for P(k)
is equivalent to determining how many times each variable
can change. Using this fact, we present a polytime plan gen-
eration algorithm for P(2) and P(3). For constant k > 3,
we introduce and use the notion of a cover to find conditions
under which plan generation for P(k) is polynomial.

Introduction

It is generally acknowledged that most interesting planning
domains exhibit some sort of structure, and that identifying
this structure is often key to solving them efficiently. This
is at least clear from a theoretical point of view, since it is
well known that planning is intractable in general (Chapman
1987), and PSPACE-complete when restricted to propo-
sitional variables (Bylander 1994). An ongoing research
project in the planning community is to classify planning
problems according to their computational complexity.

From a practical point of view, the previous research
is of special interest when some class of planning prob-
lems is shown to be polynomial-time solvable, a well-
established theoretical notion that is often identified with
practical tractability. Now and then, the significance of this
type of result goes further than identifying a new class of
planning problems that is easy to solve. Tractable classes of
planning have been exploited in the past to define domain-
independent heuristics: typically, one estimates the cost of
solving a (complex) planning problem by relaxing it until
it can be solved efficiently. Also, tractable classes that are
defined in terms of structural restrictions play an important
role in the context of factored planning.

Causal graphs and k-dependence

The causal graph of a planning problem is a directed graph
whose edges describe variable dependencies (Knoblock
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1994). The shape of the causal graph captures part of the
underlying structure of the problem. For example, causal
graphs have been used in the context of hierarchical decom-
position. Also, the Fast Downward planner (Helmert 2006)
is based on the domain-independent causal graph heuristic,
which approximates the cost of solving a multi-valued plan-
ning problem by exploiting its causal graph structure.

However, a simple causal graph does not guarantee that
the corresponding planning problem is easy to solve. For in-
stance, solving planning problems with directed-path singly
connected causal graphs is NP-hard (Brafman and Domsh-
lak 2003), even for binary variables and causal graphs with
bounded degree. When the causal graph is a directed path,
the problem is NP-hard for variables with domains of size at
least 5 (Giménez and Jonsson 2009). The situation is even
worse for multi-valued variables, since Chen and Giménez
(2008) showed the following. Let C be any infinite family of
directed graphs whose underlying undirected graph is con-
nected. Then, unless standard complexity-theoretic assump-
tions fail, no polynomial-time algorithm exists for solving
the class of planning problems with causal graphs in C.

Based on these results, a question that naturally arises is
which additional assumptions we need to impose on plan-
ning problems to solve them in polynomial time. Clearly,
the focus here is to find reasonable assumptions that are
present in actual planning problems. We mention just a few.
If the domain transition graphs are strongly connected, we
can solve problems with acyclic causal graphs (Williams and
Nayak 1997; Helmert 2006). For bounded local depth (i.e.,
the number of times that the value of a variable has to change
on a plan solving the problem), plan generation is polyno-
mial for planning problems with causal graphs of bounded
tree-width (Brafman and Domshlak 2006).

With this in mind, Katz and Domshlak (2008b) introduced
the notion of k-dependent actions. The dependence of an ac-
tion is the number of pre-conditions on variables unaffected
by the action; an action is k-dependent if its dependence is
at most k. Generally, the dependence is bounded: Table 1
shows the largest k of actions in STRIPS planning domains
from the IPC. For reference, the table also shows the largest
p of actions, defined as the total number of pre-conditions.
The values include static pre-conditions, which is why the
results for Pipesworld and Rovers differ, since the actions in
the IPC5 domains are already grounded. For all but a few
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IPC2 IPC5
Blocks 0/3 Openstacks 95/97
Miconic-STRIPS 2/3 Pathways 1/2
FreeCell 6/10 Pipesworld 0/4
Logistics 2/3 Rovers 2/4
Schedule-STRIPS 5/9 Storage 3/5

IPC3 TPP 1/3
Depots 2/5 Trucks 6/8
DriverLog 2/3 IPC6
ZenoTravel 2/4 Cyber security 8/31
Rovers 5/6 Elevator 3/5
Satellite 6/6 Openstacks 9/11

IPC4 PARC printer 3/7
Airport 4/29 Peg solitaire 1/5
Pipesworld-No tankage 5/8 Scanalyzer 1/5
Pipesworld-Tankage 6/11 Sokoban 3/6
Promela optical 46/47 Transport 1/4
Promela philosophers 31/32 Woodworking 6/9
PSR 52/53

Table 1: Largest k/p for IPC STRIPS planning domains.

domains, k appears to be a small constant.
Interestingly, the actual dependence of actions cannot be

inferred from the causal graph. Consider, for instance, the
causal graph in Figure 1. Since variable v has high indegree,
there exist actions affecting v that depend on the values of
its many predecessors. However, what is lost is the structure
of these actions: there may be multiple 1-dependent actions,
one for each predecessor; or maybe there is a single action
depending on all predecessors; or a combination of several
types of actions. In particular, problems with actions whose
dependence is small may be easier to solve than is apparent
from the shape of the causal graph alone.

Polytree causal graphs

A polytree is a directed graph whose underlying undirected
graph (i.e., with every directed edge replaced by an undi-
rected one) is acyclic, such as the graph in Figure 1. Braf-
man and Domshlak (2003) showed that the class P of plan-
ning problems with polytree causal graphs and binary vari-
ables can be solved in polynomial time if variables have
bounded indegree. On the other hand, if the indegree is
unbounded, Giménez and Jonsson (2008) showed that plan
existence for this class is NP-complete by reduction from 3-
SAT. Figure 1 shows an example causal graph of planning
problems that 3-SAT formulas reduce to. Interestingly, the
reduction produces graphs that contain a single variable v
whose indegree depends on the size of the formula; more-
over, all actions affecting v are 3-dependent1, except one,
which has an unbounded number of pre-conditions.

Katz and Domshlak (2008a) introduced the subclass P(k)
of P of planning problems with k-dependent actions, and
proposed to study the complexity of solving planning prob-
lems in P(k). Since the proof of NP-completeness for P

1Although the given reduction uses 7-dependent actions, only 3
of the pre-conditions on predecessors of v are strictly necessary.

Figure 1: Polytree causal graph in the 3-SAT reduction of
Giménez and Jonsson (2008).

requires an action that is not k-dependent for any k, it does
not apply to P(k). Indeed, Katz and Domshlak (2008a) de-
scribed a polynomial-time algorithm for solving planning
problems in P(1) optimally, thus showing that the indegree
of variables in the causal graph does not have to be bounded
for a problem to be tractable.

Our contribution

In this work, we present several new tractability results for
the class P(k) of planning problems. First, we provide
a polynomial-time plan generation algorithm for the class
P(2), and claim that the same result applies to P(3) (de-
tails are omitted due to lack of space). In contrast with the
work of Katz and Domshlak (2008a), our algorithm does not
produce optimal solutions. This way, we are able to prove
tractability for planning problems with k larger than 1. This
relates to a question raised by Katz and Domshlak (2008a),
namely whether one can aim for more by relaxing the opti-
mality requirement.

For k > 3, we also present an plan generation algorithm
that can solve planning problems in a subclass of P(k) in
polynomial time. Let the depth of a variable v be the longest
path in the causal graph between a source node and v. For
instance, the variable v in Figure 1 has depth 2. Our al-
gorithm is polynomial-time for planning problems in P(k)
such that variables with large indegree have bounded depth.

Note that the only variable with unbounded indegree in
the polytree reduction of Giménez and Jonsson (2008) has
depth 2. Thus, our algorithm would be able to solve these
planning problems, were it not for the presence of a single
action with unbounded dependence. Consequently, it is not
possible to rewrite the action with unbounded dependence
in terms of k-dependent actions, for any k. Hence, if one is
to show that P(k) plan existence is NP-complete for some
fixed k, a more involved reduction is necessary.

The key insight behind both algorithms is that although a
variable v may have an unbounded number of predecessors
in the causal graph, only some of these predecessors are rel-
evant for changing the value of v. If there are actions for
alternating the value of v whose pre-conditions can be sat-
isfied simultaneously, the problem is easy to solve with re-
spect to v. Otherwise, the fact that actions are k-dependent
severely restricts the possible configurations to consider.
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Causal-graph structural patterns

Most interesting planning domains do not fall inside the few
classes of planning that are known to be polynomial-time
tractable. One of the techniques used by general purpose
planners to deal with these domains is heuristic search. To
develop domain-independent heuristics, one typically per-
forms abstraction in the planning problem at hand so that
the abstracted problem falls inside a tractable class, and then
estimates the cost of solving the real instance by computing
the optimal cost of solving the simplified instance. Clearly,
one seeks simplifications that are both informative and effi-
cient to solve.

Domain-independent pattern database (PDB) heuristics
(Edelkamp 2001; Haslum et al. 2007; Helmert, Haslum,
and Hoffmann 2007) try to achieve these simplifications
by projecting sets of states of the planning instance onto
subproblems of small dimensionality, to be solved by ex-
haustive search. Katz and Domshlak (2008b) introduced a
generalization of the PDB abstractions that they call causal
graph structural patterns (CGSP). They proposed to let the
causal graph of the planning instance guide the projection
onto smaller subproblems, in order to leverage the knowl-
edge of tractable planning with respect to the causal graph.
In principle, such projections could overcome the limitation
of PDB heuristics with respect to the size on the subprob-
lems, since exhaustive search would no longer be required
to solve them. Hence, tractable classes of planning can be
used to extend the palette of patterns the problem can be de-
composed into.

Cast into this context, our work is not a direct extension
of the work of Katz and Domshlak (2008a), since our al-
gorithms do not produce optimal plans for solving the cor-
responding planning problems. Thus, any resulting heuris-
tic would not be admissible. However, increasing the value
of k allows actions to be more expressive, since they can
have pre-conditions on multiple variables. Thus, a reduc-
tion onto P(k) for k > 1 might be more informative than
a corresponding reduction onto P(1). Our work thus offers
the possibility to trade off the admissibility of the resulting
heuristic with the informativeness of the same heuristic.

Notation

Let V be a set of binary variables with domain {0, 1}. A
value set C ⊆ V ×{0, 1} is a subset of variable-value pairs.
Let W (C) = {v ∈ V : (v, 0) ∈ C ∨ (v, 1) ∈ C} be the set

of variables appearing in C. Let C = {(v, x) ∈ V ×{0, 1} :
(v, 1−x) ∈ C} be the complement of C. A partial state p is
a value set such that for each v ∈ V , (v, 0) /∈ p or (v, 1) /∈ p.
A state s is a partial state for which |s| = |V |.

A planning problem is a tuple P = 〈V, init, goal, A〉,
where V is the set of variables, init is an initial state, goal
is a partial goal state, and A is a set of actions. An action
a = 〈pre(a); post(a)〉 ∈ A consists of a partial state pre(a)
called the pre-condition and a partial state post(a) called the
post-condition. Action a is applicable in any state s such that
pre(a) ⊆ s, and applying a in state s results in a new state

s′ = (s − post(a)) ∪ post(a).
The causal graph (V, E) of a planning problem P is a

Figure 2: Polytree causal graph of a planning problem P . In
bold, the causal graph of P (v).

directed graph with the variables of P as nodes. There is
an edge (u, v) ∈ E if and only if u �= v and there exists
an action a such that u ∈ W (pre(a)) ∪ W (post(a)) and
v ∈ W (post(a)). A planning problem P belongs to the
class P(k) if and only if its causal graph is a polytree and for
each action a ∈ A, |W (pre(a)) − W (post(a))| ≤ k. The
fact that the causal graph is a polytree implies that actions
are unary, i.e., |post(a)| = 1 for each a ∈ A.

Plan Generation for P(k)
Let P be a planning problem in P(k). In this section we
show that determining plan existence for P can be reduced
to the problem of determining, for each v ∈ V , the maxi-
mum number of times that the value of v can change. More-
over, the problem of plan generation for P can be reduced to
generating, for each v ∈ V , plans that change v a maximum
number of times. Although the same argument was used by
Brafman and Domshlak (2003), we repeat large parts of it
here, since our subsequent proofs require a specific form of
reduction: that of P to k-dependent inverted fork problems.

Without loss of generality, we assume throughout that
init = V × {0}. Otherwise, for each v ∈ V such that
(v, 1) ∈ init, we can just relabel the domain of v. For
each v ∈ V , let u1, . . . , um be the predecessors of v in the
causal graph, i.e., (ui, v) ∈ E for each i ∈ {1, . . . , m}.
We recursively define the set anc(v) of ancestors of v as⋃

i ({ui} ∪ anc(ui)).

Definition 1. Let P = (V, init, goal, A) be a planning prob-
lem in P(k). Define the planning problem P (v) as the re-
striction of P to variables in V ′ = {v} ∪ anc(v), i.e.,
P (v) = (V ′, init′, goal

′, A′) where init′ and goal
′

are the
intersections of init and goal with V ′ × {0, 1}, and A′ ⊆ A
contains actions a such that pre(a),post(a) ⊆ V ′×{0, 1}.

Figure 2 shows the causal graph of a planning problem
P ∈ P(k), as well as the causal graph of the planning prob-
lem P (v), which is a subgraph of the former.

Definition 2. We define N(v) ∈ N ∪ {∞,⊥} as the maxi-
mum number of times that v can change on a plan solving
P (v), with ⊥ denoting that P (v) is unsolvable.

Note that unless N(v) = ∞, N(v) must agree with the
goal. Namely, if (v, 0) ∈ goal, N(v) must be even, and
if (v, 1) ∈ goal, N(v) must be odd. While computing the
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maximum number of changes of v, we can safely ignore the
goal: if the parity of the computed value does not agree with
the goal, subtracting 1 from it results in the correct value.

Our procedure for computing N(v) requires N(u) to be
known for each predecessor u of v in the causal graph. Since
the causal graph is acyclic it is possible to compute these
values bottom-up.

For a predecessor u of v such that N(u) = 0, the value
of u can never change, so we do not need to consider u
while computing N(v). For a predecessor u of v such that
N(u) = ∞, u does not restrict the number of times that
v can change, since any pre-condition on u can always be
satisfied by changing u an extra time. Thus, the set of rele-
vant predecessors are those that can change a positive finite
number of times.

Definition 3. For each v ∈ V , let pred(v) = {u ∈ V :
(u, v) ∈ E ∧ 0 < N(u) < ∞} be the set of relevant prede-
cessors of v.

Note that if N(u) = ⊥ for some predecessor u of v, the
planning problem P (v) is unsolvable, implying N(v) = ⊥.

Next, we define the set of relevant actions that change the
value of v. For a predecessor u of v such that N(u) = 0, any
action with pre-condition (u, 1) is irrelevant, in the sense
that it could never appear in a valid plan. Hence, we ex-
clude such actions while computing N(v). Furthermore,
we project the pre-conditions of relevant actions onto the
set pred(v) of relevant predecessors of v.

Definition 4. For each (v, x) ∈ V × {0, 1}, let Ax
v =

{pre(a)∩pred(v)×{0, 1} : a ∈ A∧post(a) = {(v, x)}∧
� ∃(u, 1) ∈ pre(a) s.t. N(u) = 0} be the set of relevant
actions that change v to x.

Note that we abuse notation slightly by claiming that Ax
v

is a set of actions even though it is in fact a set of partial
states. The reason is that there is a one-to-one correspon-
dence between actions and partial states in Ax

v , since we can
change the value of v to x in any state s for which there
exists p ∈ Ax

v such that p ⊆ s, by applying the associated
action. Note that Ax

v may contain the empty partial state ∅;
in particular, this happens if v has no predecessors in the
causal graph.

There are four easy cases for computing N(v):

Lemma 5. Let P be a planning problem in P(k), and v ∈ V
a variable. Then

N(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⊥, |A1
v| = 0 ∧ (v, 1) ∈ goal,

0, (|A1
v| = 0 ∧ (v, 1) /∈ goal) ∨

(|A0
v| = 0 ∧ (v, 0) ∈ goal),

1, |A1
v| > 0 ∧ |A0

v| = 0 ∧ (v, 0) /∈ goal,
∞, ∃(p, q) ∈ A0

v × A1
v s.t. p ∩ q = ∅.

This classification is not exhaustive, since there are in-
stances of v that do not fall within these four cases.

Proof. The first case states that if the goal value of v is 1 and
there is no relevant action for changing the value of v to 1,
the problem P (v) is unsolvable, so N(v) = ⊥. The second
case states that there is no relevant action for changing the
value of v to 1, but the goal value of v is not 1, or the goal

value of v is 0 and there is no relevant action for resetting
the value of v to 0. The third case states that there exist
relevant actions for changing the value of v to 1, but there is
no relevant action for resetting the value to 0. The fact that
there exists (p, q) ∈ A0

v×A1
v such that p∩q = ∅ implies that

we can satisfy p and q simultaneously and repeatedly apply
the associated actions to change the value of v an arbitrary
number of times.

Note that if v has no predecessors in the causal graph, one
of the easy cases in Lemma 5 always holds.

Next, we introduce the notion of a cover. As we shall
see, covers are useful since they bound the number of value
changes for each variable v that does not fall into an easy
case for computing N(v). In particular, we use covers to
provide a global bound on the number of value changes for
such variables.

Definition 6. Let 〈K0, K1〉 be two sets of partial states on
V ×{0, 1}. A cover C ⊆ V ×{0, 1} for 〈K0, K1〉 is a value
set such that for each (p, q) ∈ K0 ×K1, |p∩ q ∩C| ≥ 1. A
minimum cover is a minimum such value set.

Lemma 7. Let C be a cover for 〈A0
v, A1

v〉. Then N(v) ≤
1 +

∑
u∈W (C) N(u).

Proof. Since |p ∩ q ∩ C| ≥ 1 for each (p, q) ∈ A0
v × A1

v,
whenever we change the value of v we cannot change its
value again without first changing the value of at least one
variable in W (C). The maximum number of times we can
do this is

∑
u∈W (C) N(u). Possibly, we can change the

value of v an additional time in the initial state.

Lemma 8. For each v ∈ V such that N(v) < ∞, it holds
that N(v) ≤ 1 + |anc(v)|.

Proof. By induction on v. Since N(v) < ∞, there exists
no pair (p, q) ∈ A0

v × A1
v such that p ∩ q = ∅. Then by

definition pred(v) × {0, 1} is a cover for 〈A0
v, A1

v〉. From
Lemma 7 we obtain

N(v) ≤ 1 +
∑

u∈pred(v)

N(u) ≤

≤ 1 +
∑

u∈pred(v)

(1 + |anc(u)|) =

= 1 + |pred(v)| +
∑

u∈pred(v)

|anc(u)| ≤

≤ 1 + |anc(v)|,

where we have applied the inductive argument on the second
line. The last inequality follows from the fact that the causal
graph is a polytree, implying that the predecessors of v can
have no common ancestors.

We now show that solving P ∈ P(k) is equivalent to solv-
ing several instances of inverted fork problems, i.e., plan-
ning problems whose causal graphs are inverted forks. Such
problems were introduced by Katz and Domshlak (2008b),
but with a different definition. In our definition, an inverted
fork problem consists of determining the maximum number
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of times that the root variable v can change and generat-
ing an action sequence that produces these changes, given
bounds on the number of changes of each predecessor u.

Definition 9. An inverted fork computational problem is a
tuple 〈v, U, n, A〉 where

• v is the root variable;

• U is the set of predecessors of v;

• n : U �→ N−{0} (i.e., 0 < n(u) < ∞) is a bound on the
number of times that each variable u ∈ U can change;

• A = 〈A0, A1〉, where Ax is a non-empty set of unary
actions changing v to x, i.e., a non-empty set of partial
states on U × {0, 1}. Moreover, we require that for each
(p, q) ∈ A0 × A1, it holds that |p ∩ q| ≥ 1.

The output of 〈v, U, n, A〉 is a pair 〈n(v), π〉, where n(v)
is the maximum number of times that v can change using
actions of A, assuming that all variables start with value
0 and that each variable u ∈ U can change freely, but no
more than n(u) times; π is a sequence of actions attaining
this maximum.

Lemma 10. Let 〈v, U, n, 〈A0, A1〉〉 be an inverted fork
problem, and let C be a cover for 〈A0, A1〉. Then n(v) ≤
1 +

∑
u∈W (C) n(u).

Proof. Follows by the same argument as in the proof of
Lemma 7.

Let ‖A‖ denote the sum of the sizes of actions in A0 and
A1. We take the size of 〈v, U, n, A〉 to be |U | + ‖A‖ +∑

u∈U n(u), i.e., as if the numbers n(u) were expressed in
unary notation. Otherwise, the solution could be exponential
in the size of the input. Note that the output satisfies 0 <
n(v) < ∞; n(v) > 0 since A1 is non-empty, and n(v) ≤
1 +

∑
u∈U n(u) < ∞ by Lemma 10 and the fact that U ×

{0, 1} is a cover for 〈A0, A1〉.

Definition 11. Let I(k) be the class of inverted fork prob-
lems with k-dependent actions, i.e., |p| ≤ k for each p ∈
A0 ∪ A1.

We show that plan generation for P(k) can be reduced to
solving inverted fork problems in I(k). The idea is to inde-
pendently generate plans that change each variable v ∈ V
a maximum number of times by solving the corresponding
planning problem P (v). To do so, it is only necessary to
consider the immediate predecessors {u1, . . . , um} of v. For
example, to solve the planning problem P (v) in Figure 2 we
only have to consider the predecessors u1, u2, and u3 of v.

Proposition 12. Plan generation for P(k) is polynomial-
time reducible to solving I(k).

Proof (Sketch). Let P = 〈V, init, goal, A〉 be an instance of
P(k). We describe an algorithm that generates a plan solv-
ing P . Recall that P (v) is the restriction of P to variables
{v}∪anc(v). For each v ∈ V in topological order, compute
N(v), the maximum number of times that v can change in
P (v), and if N(v) < ∞, a plan solving P (v) attaining this
maximum. If N(v) = ∞, instead produce a pair of actions
that can change the value of v as many times as necessary.

If one of the easy cases in Lemma 5 apply, we can com-
pute N(v) in polynomial time. If N(v) = 0, the empty
sequence attains the maximum. If N(v) = 1, any action
q ∈ A1

v attains the maximum. If N(v) = ∞, we keep the
two actions (p, q) ∈ A0

v×A1
v such that p∩q = ∅. Otherwise,

we ask for a solution to 〈v,pred(v), N, 〈A0
v, A1

v〉〉 ∈ I(k);
note that we already know N(u) for each u ∈ pred(v) since
u comes before v in topological order. In this case, N(v) is
either n(v) or n(v) − 1, depending on the goal value of v.

Note that each resulting action sequence only includes ac-
tions for changing the value of v. To obtain a plan for P (v),
we have to merge the sequence for v with the plans for P (u),
where u is a predecessor of v with N(u) > 0. To do this,
whenever the sequence for v requires a value of u different
from its current value, insert the part of the plan for P (u)
that changes the value of u once. Merging is possible pre-
cisely because the causal graph is a polytree, implying that
the planning problems P (u) have no variables in common.

Finally, to construct a plan solving P we have to merge
the plans solving P (v1), . . . , P (vn), where vi are the sink
variables in the causal graph of P . This is possible since,
if v is a common ancestor of vi and vj , the plans solving
P (vi) and P (vj) were generated using the same partial plan
for solving P (v). P is unsolvable if and only if P (vi) is
unsolvable for some such vi. Otherwise, since the merged
plan solves P (v) for each v ∈ V , it also solves P .

Our algorithm for solving P is polynomial if we can solve
the instances of I(k) in polynomial time. Whenever we ask
for a solution to an instance of I(k), the numbers n(u) are
bounded by 1+ |anc(u)| due to Lemma 8. This ensures that
the reduction is polynomial-size preserving.

We remark that the converse is also true, i.e., we can solve
instances of I(k) by solving planning instances of P(k).
The idea is to construct planning problems Pt ∈ P(k) where
variables u ∈ U can only change n(u) times, and variable
v must change at least t times; then, we look for the small-
est t such that Pt has a solution. These restrictions can be
imposed, for instance, by using the direct-path causal graph
constructions proposed by (Giménez and Jonsson 2008).

P(2) and P(3)

In this section we show that inverted fork problems in I(2)
and I(3) can be solved in polynomial time. By Proposition
12, this implies that plan generation is polynomial for P(2)
and P(3). To show that I(2) and I(3) can be solved in
polynomial time, we prove that the problems of each type
can be reduced to equivalent problems with only a constant
number of variables and actions. Here, equivalent means
that the problems have identical solutions.

Lemma 13. Each inverted fork problem 〈v, U, n, A〉 ∈ I(2)
can be reduced in polynomial time to an equivalent problem
〈v, U ′, n, A′〉 such that |U ′| ≤ 4 and |A′| ≤ 6.

Proof. Recall that, by definition of inverted fork problems,
|p∩ q| ≥ 1 for each (p, q) ∈ A0 ×A1. We use this property
to classify the inverted fork problems in I(k) into several
cases. For some of them, the desired property already holds.
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For each remaining case, we explain how to perform the re-
duction. We begin by analyzing the partial states in A0.

I There exists (u, x) ∈ U × {0, 1} such that (u, x) ∈ p for
each p ∈ A0.

(a) For each q ∈ A1, (u, 1 − x) ∈ q.

(b) There exists q ∈ A1 such that (u, x) /∈ q, implying
|A0| ≤ 2 since |q| ≤ 2 and |p∩q| ≥ 1 for each p ∈ A0.

II There exist {(u1, x1), (u2, x2)}, {(u3, x3), (u4, x4)} ∈
A0, where (u1, x1)–(u4, x4) are distinct. Each q ∈ A1

has to contain either (u1, 1 − x1) or (u2, 1 − x2), and
either (u3, 1 − x3) or (u4, 1 − x4), implying |A1| ≤ 4.

(a) A0 contains no other partial states, so |A0| = 2.

(b) {(ui, xi), (u5, x5)} ∈ A0 for i ∈ {1, 2, 3, 4} and
(u5, x5) distinct from (u1, x1)–(u4, x4). Then each
q ∈ A1 has to contain (ui, 1 − xi), so |A1| ≤ 2.

(c) {(u1, x1), (u3, x3)} ∈ A0. Then A1 cannot contain
{(u2, 1 − x2), (u4, 1 − x4)}, so |A1| ≤ 3. The same
argument holds for any {(ui, xi), (uj , xj)}, i ∈ {1, 2}
and j ∈ {3, 4}.

III Remaining cases.

Note that in Case II(c), we cannot add another partial state
to A0 without excluding at least one more partial state from
A1. By symmetry, the same cases hold for A1.

If we are in case III for both A0 and A1, we show
that the only remaining possibility is |A0| = |A1| = 3.
Let {(u1, x1), (u2, x2)}, {(u1, x1), (u3, x3)} be two partial
states in A0. Since Case I does not hold, there exists p ∈ A0

such that (u1, x1) /∈ p. Since Case II does not hold, p has
to share a variable-value pair with each other partial state
in A0. The only possibility is p = {(u2, x2), (u3, x3)}. A
similar argument for A1 suffices to show that A1 contains
{(u1, 1 − x1), (u2, 1 − x2)},{(u1, 1 − x1), (u3, 1 − x3)},
and {(u2, 1 − x2), (u3, 1 − x3)}.

Note that the property |U | ≤ 4 and |A| ≤ 6 already holds
in Cases II(a), II(c), and III. By symmetry, Case II(b) for A0

is equivalent to Case I(b) for A1 using (u, x) = (ui, 1−xi).
It remains to show that Cases I(a) and I(b) can be reduced to
equivalent problems with the desired property.

In Case I(a), let p = {(u, x), (w, y)} be a partial state in
A0, and assume |A1| > 1. At least one partial state in A1

has to be different from {(u, 1 − x), (w, 1 − y)}. Call it q.
Since we can simultaneously satisfy variable-value pairs of
p and q not involving u, we can ignore those variable-value
pairs while computing n(v). Thus, an equivalent problem is
given by A0 = {{(u, x)}} and A1 = {{(u, 1 − x)}}. The
case |A1| = 1, |A0| > 1 follows by symmetry.

In Case I(b), let p1 and p2 be the (at most) two partial
states in A0. At most, A1 contains q, p1, p2, and an un-
bounded number of partial states that contain (u, 1− x) and
a variable-value pair outside q. Since the second variable-
value pair does not interfere with either p1 or p2, it can be
satisfied and ignored, so replacing all such partial states in
A1 with a single fourth partial state {(u, 1 − x)} results in
an equivalent problem.

In Cases I(a) and I(b), any solution to a reduced problem
can be projected back onto the original problem, inserting
the pre-conditions that were removed if necessary.

Theorem 14. Each inverted fork problem 〈v, U, n, A〉 ∈
I(2) can be solved in polynomial time.

Proof. Due to Lemma 13 we only need to consider 4 pre-
decessors u1–u4 of v. We can now determine n(v) using
dynamic programming. For each x ∈ {0, 1}, each prede-
cessor ui of v, i ∈ {1, 2, 3, 4}, and each number of changes
0 ≤ ν(ui) ≤ n(ui), let Q(x, ν(u1), . . . , ν(u4)) be the max-
imum number of times that v can change given that its value
is currently x and that ui has changed ν(ui) times.

The base case is Q(x, n(u1), . . . , n(u4)) = 0 for x = 0
or x = 1, since v cannot change further for at least one
value of x when u1–u4 have changed a maximum number
of times. To solve any other subproblem, choose a partial
state p ∈ A1−x and increase ν(ui) by one for each ui such
that (ui, ν(ui) mod 2) disagrees with p. Recursively com-
pute the maximum number of changes for v in the resulting
subproblem. The value for Q(x, ν(u1), . . . , ν(u4)) is ob-
tained by taking the maximum over all such p and adding 1.
By definition, n(v) = Q(0, 0, . . . , 0).

To extract the corresponding plan, store the partial state p
that maximizes each value Q(x, ν(u1), . . . , ν(u4)). The re-

sulting table holds 2
∏4

i=1 (1 + n(ui)) values, and dynamic

programming can be done in time 6
∏4

i=1 (1 + n(ui)) since
there are at most 6 actions in A. If c is an upper bound on
the values n(ui), the worst-case complexity is O(c4), which
is polynomial in the size of the input.

Remark. The dynamic programming algorithm described
here uses the same idea underlying the algorithm of Braf-
man and Domshlak (2003) for solving planning problems
with polytree causal graphs of bounded indegree (although
in that work, the algorithm is expressed in terms of graphs).

Lemma 15. Each inverted fork problem 〈v, U, n, A〉 ∈ I(3)
can be reduced in polynomial time to an equivalent problem
〈v, U ′, n, A′〉 such that |U ′| ≤ 10 and |A′| ≤ 30.

Just like the proof of Lemma 13, the proof of Lemma 15
is based on a case-by-case analysis. However, the number
of cases is much larger and we omit the details here. The
upper bound on the number of actions follows from a situ-
ation equivalent to Case II for I(2). Namely, in this situa-
tion there are three partial states in A0 that do not intersect
among themselves. This allows up to 27 actions of the other
type. An additional complication is that if A0 has many ac-
tions, not all of them intersect actions in A1 in the same
point, like in Case I for I(2).

Theorem 16. Each inverted fork problem 〈v, U, n, A〉 ∈
I(3) can be solved in polynomial time.

Proof. Due to Lemma 15, we can use the same dynamic
programming algorithm as in the proof of Theorem 14 to
compute n(v). The worst-case complexity is O(c10) where
c is an upper bound on n(u) for each predecessor u of v.

Corollary 17. For planning problems in P(2) and P(3),
plan generation can be done in polynomial time.

Note that for k = 4, the case-by-case analysis of Lemmas
13 and 15 becomes so large that it is unclear to us whether
the same result applies to inverted fork problems in I(4).
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P(k)
In this section, we consider inverted fork problems in I(k).
Although we have been unable to extend the analysis of the
previous section to I(k) for k > 3, we can still show in-
teresting properties on this type of problems. We prove that
any inverted fork problem in I(k) has a cover whose size
is bounded by 4kkk. That is, inverted fork problems with
bounded dependence have bounded-size covers.

We highlight two consequences of this fact. First, we
can improve the bound on n(v) of Lemma 10, since it is
no longer necessary to consider all variables in U , but only
those belonging to the cover. A second consequence is that
we can solve problems in I(k) in polynomial time if the
numbers n(u) are bounded.

Definition 18. Let I(i, j) be the class of inverted fork prob-
lems such that |p| ≤ i for each p ∈ A0 and |q| ≤ j for each
q ∈ A1.

Definition 19. A cut G ⊆ U ×{0, 1} for inverted fork prob-
lem 〈v, U, n, A〉 ∈ I(i, j) is a value set such that for each
p ∈ A0, |p ∩ G| ≥ 1, and for each q ∈ A1, |q ∩ G| ≥ 1. A
minimum cut is a minimum such value set.

The notion of a cut is weaker than that of a cover. A cut
G is a subset of U × {0, 1} that every action in p ∈ A0 and
q ∈ A1 intersects with, that is, |p ∩G| ≥ 1 and |q ∩G| ≥ 1.
In contrast, a cover C is a subset of U × {0, 1} that every
pair of actions (p, q) ∈ A0 × A1 intersects within, that is,
|(p∩q)∩C| ≥ 1. Cuts are easy to find since, by definition of
inverted fork problems, each pair of actions (p, q) ∈ A0×A1

intersects.

Lemma 20. A minimum cut G for 〈v, U, n, A〉 ∈ I(i, j) has
size |G| ≤ i + j − 1.

Proof. Consider any (p, q) ∈ A0 × A1, and let G = p ∪
q. From the definitions of 〈v, U, n, A〉 and I(i, j) it follows
that |G| ≤ i+j−1. For each p′ ∈ A0 it holds that |p′∩q| ≥
1, implying |p′ ∩ G| ≥ 1. For each q′ ∈ A1 it holds that
|p ∩ q′| ≥ 1, implying |q′ ∩ G| ≥ 1. Thus G is a cut.

To prove that minimum covers also have bounded size,
we show how to extend a cut G into a cover. If G is a cut
that is not a cover, then there are pairs of actions (p, q) ∈
A0×A1 that intersect outside G. In particular, if we remove
the values of G from U × {0, 1}, these pairs of actions still
intersect. Moreover, they have smaller dependence. The
following lemma concretizes this argument.

Lemma 21. Let G be a cut for 〈v, U, n, A〉 ∈ I(i, j) and let
S, |S| < i, be a subset of G. Let K0 = {p−G : p ∈ A0∧p∩
G = S} and K1 = {q−G : q ∈ A1∧q∩S = ∅}. If K0 and
K1 are non-empty, 〈v, U, n, 〈K0, K1〉〉 ∈ I(i− |S|, j − 1).

Proof. Since each p ∈ A0 has size at most i and p∩G = S,
p − G has size at most i − |S|. Since each q ∈ A1 has size

at most j and |q ∩ G| ≥ 1, q − G has size at most j − 1.
Finally, p ∩ G = S and q ∩ S = ∅ imply p ∩ G ∩ q =
S ∩ q = ∅. Since |p ∩ q| ≥ 1 by definition of 〈v, U, n, A〉,
p ∩ G ∩ q = ∅ implies that p and q intersect outside G, so
|(p− G) ∩ (q − G)| ≥ 1, implying that 〈v, U, n, 〈K0, K1〉〉
is an inverted fork problem.

The key argument of the previous lemma is that the prop-
erty of inverted fork problems is preserved, namely that each
pair of actions (p, q) ∈ K0 × K1 of the new inverted fork
problem intersect. We can now use an inductive argument to
prove a bound on the size of a minimum cover.

Lemma 22. Let 〈v, U, n, 〈A0, A1〉〉 ∈ I(i, j) be an inverted
fork problem, and let M i,j be the size of a minimum cover
for 〈A0, A1〉. For each 1 ≤ i, j ≤ k, M i,j < 2i(i + j − 1)i.

Proof. By induction on i and j. If i = 1, each partial state
p ∈ A0 contains a single variable-value pair. Since |p∩ q| ≥
1 for each partial state q ∈ A1, A0 cannot contain more than
j partial states (else a partial state in A1 could not intersect
all of them). The union of the partial states in A0 forms a
cover of size at most j. Hence M1,j ≤ j < 21(1+j−1)1 =
2j. By symmetry, M i,1 ≤ i < 2i(i + 1 − 1)i = (2i)i.

For i > 1 and j > 1, consider a minimum cut G for
〈v, U, n, 〈A0, A1〉〉. In the worst case, a minimum cover
C for 〈A0, A1〉 contains all variable-value pairs in G. We
bound the number of variable-value pairs of C outside G
in the following way. Consider all subsets S of G of
size less than i, and construct the inverted fork problem
〈v, U, n, 〈K0, K1〉〉 ∈ I(i−|S|, j−1) described in Lemma
21. In the worst case, C contains all variable-value pairs
in a minimum cover for 〈K0, K1〉. Summing over all such
subsets we obtain the following inequality for M i,j :

M i,j ≤ |G| +
∑

S⊆G,|S|<i

M i−|S|,j−1 =

= |G| +
i−1∑
m=1

(
|G|

i − m

)
Mm,j−1 <

< |G| +
i−1∑
m=1

(
i + j − 1
i − m

)
2m(m + j − 2)m ≤

≤ |G| +
i−1∑
m=1

(i + j − 1)i−m2m(i + j − 1)m <

<

(
1 +

i−1∑
m=1

2m

)
(i + j − 1)i < 2i(i + j − 1)i.

The inequality uses Lemma 20, the inductive argument, and
the fact that |G| ≤ (i + j − 1) < (i + j − 1)i for i > 1.

Lemma 23. For each 〈v, U, n, 〈A0, A1〉〉 ∈ I(k), the size of
a minimum cover for 〈A0, A1〉 is strictly bounded by 4kkk.

Proof. By definition, 〈v, U, n, 〈A0, A1〉〉 belongs to I(k, k).
Lemma 22 implies that a minimum cover for 〈A0, A1〉 has
size Mk,k < 2k(k + k − 1)k = (4k − 2)k < 4kkk.

Remark. The bound in Lemma 22 (and hence in Lemma 23)
is not tight, since it assumes that the covers for the inverted
fork problems corresponding to subsets S of G are disjoint.
This is not true in general since the sets K1 of such inverted
fork problems share many elements. However, the bound is
at least exponential in k since we have observed minimum
covers with size O(2k).
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Theorem 24. If c and k are constants and n(u) < c for each
u ∈ U , the inverted fork problem 〈v, U, n, 〈A0, A1〉〉 ∈ I(k)
can be solved in polynomial time. Moreover, the output n(v)
is bounded by 4kkkc.

Proof. Let C be a minimum cover for 〈A0, A1〉. Then
n(v) ≤ 1 +

∑
u∈W (C) n(u) by Lemma 10 and |W (C)| ≤

|C| < 4kkk by Lemma 23. Since n(u) < c, this implies
n(v) ≤ 4kkkc, which is constant (albeit large) for constant
k. We compute the output 〈n(v), π〉 via iterative deepening,
trying all action sequences of increasing constant length,

with worst-case complexity O(|A|n(v)).

Remark. Clearly, a constant bound which is exponential in
k is too large to be useful in practice. However, we believe
that the bound could be significantly improved.

Using this result, we can define a subclass of planning
problems in P(k) that can be solved in polynomial time.

Definition 25. If G = (V, E) is an acyclic graph, we define
the depth D(v) of a node v ∈ V as the longest path in the
graph between a source node and v.

Definition 26. Let P(k, d, b) be the subclass of P(k) such
that D(v) < d for each variable v ∈ V with more than
b predecessors, where D(v) is the depth of v in the causal
graph of P .

Theorem 27. For constant k, d, and b, plan generation for
P(k, d, b) can be done in polynomial time.

Proof. We show by induction on v that N(v) and the cor-
responding plan for P (v) can be computed in polynomial
time. Moreover, N(v) is either ∞ or bounded by a constant
for each v such that D(v) < d. If v has no predecessor in
the causal graph, its depth is 0 and we can compute N(v)
and the corresponding plan in polynomial time using one of
the easy cases in Lemma 5.

If D(v) < d, then by definition of depth D(u) < d for
each predecessor u of v. By induction, N(u) is either ∞
or bounded by a constant. Because of Proposition 12, com-
puting N(v) and the corresponding plan for P (v) is equiv-
alent to solving an inverted fork problem in I(k) with v as
root variable. Note that any predecessor u of v such that
N(u) = ∞ is excluded from the inverted fork problem by
definition of pred(v). We can now apply Theorem 24 to
solve the inverted fork problem in polynomial time.

Finally, for each variable v ∈ V with no more than b
predecessors, we can apply the dynamic programming al-
gorithm described in the proof of Theorem 14 to solve the
corresponding inverted fork problem. Instead of 4 prede-
cessors there now are b predecessors, so the complexity of
dynamic programming is exponential in b.

Conclusion

We have presented two novel complexity results for the class
P(k) of planning problems with polytree causal graphs, bi-
nary variables, and k-dependent actions. First, we showed
that plan generation for the classes P(2) and P(3) can be
done in polynomial time. In addition, we showed that for
any constant k, plan generation for P(k) is polynomial

if variables with unbounded indegree have bounded depth.
Both algorithms are based on a reduction from planning
problems in P(k) to inverted fork problems in I(k).

As long as an inverted fork problem can be reduced to an
equivalent problem with a constant number of variables and
actions, we can apply dynamic programming to solve it. The
existence of a constant-size minimum cover for I(k) hints at
the possibility of doing this for any fixed k. However, noth-
ing prevents the pre-conditions of actions from intersecting
outside a cover, so a more careful analysis is necessary to
extend the result for I(2) and I(3) to I(k) for fixed k > 3.

As a consequence of our second result, the maximum
number of changes n(u) of the predecessors of v play an
important role for the complexity of solving inverted fork
problems. In addition, imposing a bound c on the number of
such changes is similar to the notion of bounded local depth
introduced by Brafman and Domshlak (2006). However, our
algorithm does not require all variables to have bounded lo-
cal depth, as long as the other variables either a) can change
an arbitrary number of times, or b) have bounded indegree.
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