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Abstract

Systems subject to (continuous) physical effects and con-
trolled by (discrete) digital equipments, are today very com-
mon. Thus, many realistic domains where planning is re-
quired are represented by hybrid systems, i.e., systems con-
taining both discrete and continuous values, with possibly a
nonlinear continuous dynamics. The PDDL+ language al-
lows one to model these domains, however the current tools
can generally handle only planning problems on (possibly
hybrid) systems with linear dynamics. Therefore, universal
planning applied to hybrid systems and, in general, to non-
linear systems is completely out of scope for such tools. In
this paper, we propose the use of explicit model checking-
based techniques to solve universal planning problems on
such hardly-approachable domains.

1. Introduction

An interesting feature of many realistic domains where plan-
ning and universal planning are required is the presence of
both discrete and continuous values, which are also com-
monly regulated by complex (e.g., differential) equations.
Such systems are usually called hybrid systems. Hybrid
systems are very common in contexts where (continuous)
physical rules are managed by (discrete) digital equipments:
for example, the product processing in a plant (Aylett et al.
1998) or the activity management of an autonomous vehi-
cle (Léauté and Williams 2005) are both well-known prob-
lems in the planning field, where reasoning about continu-
ous change is fundamental to the planning process (Fox and
Long 2006).

Moreover, several real world (universal) planning prob-
lems present complex nonlinear behaviors which are diffi-
cult to handle by any analytical method (Sontag 1995). Non-
linearity can arise from the intrinsic dynamics of the system
(e.g., the regulation of a steering antenna, which leads to an
inverted pendulum problem), or the saturation of actuators
(e.g., valves that cannot open more than a certain limit, con-
trol surfaces in an aircraft that cannot be deflected more than
a certain angle, etc.). Indeed, the behavior of nonlinear sys-
tems can be so complex to be completely unpredictable after
a small interval of time (see, e.g., (Schuster 1988)).
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1.1 Motivation

In the past years, a relevant effort has been made to ex-
tend PDDL (The AIPS-98 Planning Competition Commit-
tee 1998), the standard modelling language for planning
problems, to PDDL+ (Fox and Long 2006; 2001), which
allows one to model domains presenting both discrete and
continuous variables and continuous resource consump-
tion (Edelkamp 2003). Also the planning algorithms have
been improved to cope with this extended setting (Edelkamp
2002), and the current tools have been proved very useful to
perform planning w.r.t. such problems. However, universal
planning on PDDL+ problems is still an open issue.

1.2 Contribution

In this paper, we propose the use of explicit model checking-
based techniques to solve universal planning problems on
hardly-approachable domains like hybrid systems and non-
linear systems.

In particular, we have developed the UPMurphi univer-
sal planner, which is able to build the transition graph for a
large class of systems (including systems whose dynamics is
hard to be inverted), by exploiting the capabilities of explicit
model checking algorithms to deal with huge state spaces
and complex dynamics. UPMurphi is thus able, given a goal
to achieve, to generate a universal plan.

As an added value to our tool, and to easily integrate this
new technology in the planning community, we designed
and implemented a compilation procedure which allows the
user to directly feed UPMurphi with PDDL+ domain and
problem specifications, without the need to translate them
in different formalisms, as usually required by other (es-
pecially model checking based) approaches. Finally, UP-
Murphi automatically generates PDDL+ plans and validates
them using the well-known PDDL+ validator VAL (Howey,
Long, and Fox 2004).

Therefore, the presented tool aims to offer a fully PDDL+
compliant universal planner that is able to cope with prob-
lems that are very hard to handle by the current state-of-the-
art tools.

The UPMurphi implementation described in this paper is
not final, but the presented case study shows how the tool
can be used to solve a well-known and complex planning
problem in a relatively easy way.
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The paper is organized as follows. In Sec. 2.we give an
overview of the related work. Then, in Sec. 3.we define the
universal planning problem and describe the corresponding
model checking based algorithm. The UPMurphi tool is pre-
sented in Sec. 4., where we also describe the PDDL+ compi-
lation process. Sec. 5.shows the experimental results related
to the planetary lander case study. Finally, Sec. 6.contains
some concluding remarks.

2. Related Work

The PDDL+ language (Fox and Long 2006; 2001) is an ex-
tension of the PDDL language (The AIPS-98 Planning Com-
petition Committee 1998) that allows one to model contin-
uous change through the use of autonomous processes and
exogenous events.

A great effort has been made to develop algorithms and
tools that are able to solve PDDL+ planning problems
(Edelkamp 2001; Shin and Davis 2005) and, more gener-
ally, planning problems with time and resources constraints
(Smith and Weld 1999; Fox and Long 2002; Penberthy and
Weld 1994). Unfortunately, none of the above approaches
is capable to manage the dynamics of hybrid and nonlinear
systems, which can be modelled through PDDL+.

The LPSAT planner (Wolfman and Weld 1999) is able
to solve resource planning problems with real values, but
it cannot handle PDDL+ features such as, e.g., processes
or events, whereas TM-LPSAT (Shin and Davis 2005) can
solve PDDL+ problems only on linear domains. This is also
the case of the UPPAAL/TIGA tool (Behrmann et al. 2007;
UPPAAL-TIGA web page 2009) that, being built on top of
UPPAAL, allows one to use real variables only as clocks
(i.e., real variables can be modelled only if their first deriva-
tive is 1), thus excluding systems with nonlinear dynam-
ics. Furthermore, the Kongming planner (Li and Williams
2008), thanks to the concept of Flow Tubes, is able to com-
pactly represent hybrid plans and encode hybrid flow graphs
as a mixed logic linear/nonlinear program, solvable using an
off-the-shelf solver. However, it can only address planning
problems with constant action duration and does not support
the use of PDDL+.

Moreover, the tools above are only planners. Universal
planning is well known as a harder problem, and it cannot be
efficiently solved by applying the same algorithms and tools
of planning. Indeed, in this field, the research is still trying
to provide a reliable and at least semi-automatic support to
simple universal planning problems.

In particular, (Cimatti, Roveri, and Traverso 1998a;
1998b; Jensen and Veloso 2000) use a symbolic (OBBD-
based) model checking approach to obtain optimal univer-
sal plans for non-deterministic plants. On the other hand,
the DPlan (Schmid 2003) and FPlan (Schmid and Wysotzki
2000) tools use an explicit state-based representation instead
of OBDDs. However, they both require the explicit defini-
tion of an inverse function for each operator used in the do-
main, and thus their application is hard when dealing with
systems whose dynamics is difficult to invert (the typical sit-
uation for hybrid and/or nonlinear systems).

3. Planning through Explicit Model Checking

Model checking algorithms are typically divided in two cat-
egories: symbolic algorithms (e.g., (Burch et al. 1992)) and
explicit algorithms (e.g., (Edelkamp, Lafuente, and Leue
2001)). Symbolic algorithms, however, do not work well
on hybrid systems with nonlinear dynamics, due to the com-
plexity of the state transition function (Della Penna et al.
2003). Therefore, explicit model checking performs bet-
ter with the kind of systems we intend to approach. Also
these algorithms are subject to the state explosion problem:
however, the ability to build the system transition graph
on demand and generate only the reachable states of the
system (through the reachability analysis), together with
many space saving techniques (see, e.g., (Della Penna et al.
2004)), help to mitigate it.

Generally speaking, given a set E of error states, a model
checker looks, via an exhaustive search, for an error se-
quence leading to an error state e ∈ E. If we look at er-
ror states as goal states, and collect all the error sequences
instead of the first one, we can use a model checker as a
universal planner. This very simple fact allows one to use
the model checking technology to automatically synthesize
universal plans for complex systems.

3.1 Universal Planning on Finite State Systems

A hybrid system is a system whose state description involves
continuous as well as discrete variables. In order to ap-
ply model checking algorithms and exploit the reachability
analysis, the system should have a finite number of states.
To this aim, we approximate the system by discretizing the
continuous components of the state (which we assume to be
bounded) and their dynamic behavior. For lack of space,
we cannot describe here the approximation process, how-
ever the reader can see how our approach works by looking
at the case study in Sec. 5.; a discussion about the mapping
from hybrid automata to LTSs can be found, e.g., in (Fox
and Long 2006; T. Henzinger 1996). In the following we
first give a formal definition of the approximated model, the
finite state system, and then describe how the universal plan-
ning problem can be solved for such system.

Definition 1 (Finite State System) A Finite State System
(FSS) S is a 4-tuple (S,I ,A,F ), where: S is a finite set of
states, I ⊆ S is a finite set of initial states, A is a finite set
of actions and F : S × A × S → {0, 1} is the transition
function, i.e. F (s, a, s′) = 1 iff the system from state s can
reach state s′ via action a.

By abuse of language, we denote with F (s, a) the set
of successor states of s through action a, i.e. F (s, a) =
{s′|F (s, a, s′) = 1}.

In order to define the universal planning problem for such
system, we assume that a set of goal states G ⊆ S has been
specified. Moreover, to have a finite state system, we fix a
finite temporal horizon T and we require each plan to reach
the goal in at most T actions. Note that, in most practical
applications, we always have a maximum time allowed to
complete the execution of a plan, thus this restriction, al-
though theoretically quite relevant, has a limited practical
impact.

107



Now we are in position to state the universal planning
problem for finite state systems.

Definition 2 (Universal Planning Problem on FSS) Let S
= (S, I, A, F ) be an FSS. Then, an universal planning prob-
lem (UPP in the following) is a quadrupleP = (S, G, C, T )
where G ⊆ S is the set of the goal states, C : S × A → R

+

is the cost function and T is the finite temporal horizon.

Intuitively, a solution to an UPP is a set of minimal cost
paths in the system transition graph, starting from any sys-
tem state state and ending in a goal state. More formally, we
have the following.

Definition 3 (Trajectory) A trajectory in the FSS S =
(S, I, A, F ) is a sequence π = s0a0s1a1s2a2 . . . where,
∀i ≥ 0, si ∈ S is a state, ai ∈ A is an action and
F (si, ai, si+1) = 1. If π is a trajectory, we write πs(k)
(resp. πa(k)) to denote the state sk (resp. the action ak). Fi-
nally, we denote with |π| the length of π, given by the number
of transitions.

By abuse of language we denote with C(π) the cost
of a trajectory π = s0a0s1a1 . . . sk, i.e., C(π) =
∑k−1

i=0 C(si, ai).

Definition 4 (Reachable States) Let s ∈ I be an initial
state of the FSS S = (S, I, A, F ). Then, we say that a state
s′ is reachable from s iff there exists a trajectory π in S such
that πs(0) = s and πs(k) = s′ for some k >= 0. We denote
with Reach(s) the set of states reachable from s.

Definition 5 (Solution for UPPs) Let S = (S, I, A, F ) be
an FSS and let P = (S, G, C, T ) be an UPP. Then a solution
for P is a map K from S to A s.t. ∀s ∈ Reach(sI) with
sI ∈ I there exist k ≤ T and a trajectory π∗ in S s.t.:
π∗

s(0) = s, ∀t < k : π∗
s(t + 1) = F (π∗

s (t),K(π∗
s (t)))

and π∗
s(k) ∈ G. We denote with Kπ(s) the trajectory π∗

generated by K and s.t. π∗
s(0) = s.

An optimal solution is a solution K s.t. for all other solu-
tions K′ the following holds: for all s ∈ S s.t. Kπ(s) and
K′

π(s) are defined, then C(Kπ(s)) ≤ C(K′
π(s)).

In the next section, we present an algorithm which takes
as input an UPP and outputs an optimal solution for it.

3.2 Universal Planning Algorithm

Since we are interested in hybrid systems, possibly having a
nonlinear dynamics, and we know that symbolic approaches
do not work well on such systems, we adopt an explicit al-
gorithm, organized in two phases, to solve the UPP.

In the first phase, we exploit the reachability analysis per-
formed by an explicit model checking algorithm in order to
build a representation of the system dynamics that can be
later easily analyzed during the universal plan generation.
The corresponding BUILD GRAPH procedure, whose pseu-
docode is given in Fig. 1, can be seen as an extension of
the common breadth-first visit performed by many explicit
model checking algorithms.

Note that, in the general theory of universal planning, the
concept of start state is not present (Schoppers 1987). How-
ever, in the practice, the concept of reachable state implies

1BUILD_GRAPH(UPP P = (S, G, C, T )) {

2 let S = (S, I, A, F);

3 foreach s ∈ I {

4 Enqueue(Q_S, s); Insert(HT, s);

5 if(s ∈ G) {Enqueue(Q_G, s); HT[s].cost := 0;}

6 }

7 while((Q_S �= ∅) ∧ (current_BF_level ≤ T)) {

8 s := Dequeue(Q_S);

9 foreach s′ ∈ {F (s, a) | (a) ∈ A} {

10 if(s′ /∈ HT) {

11 Insert(HT, s′
);

12 if(s′ ∈ G) {Enqueue(Q_G, s′
); HT[s′

].cost := 0;}

13 else Enqueue(Q_S, s′
);

14 }

15 PT[s′
] := PT[s′

] ∪ {s};

16} } }

Figure 1: The BUILD GRAPH procedure

such a start state. In other words, we need to start-up the uni-
versal planning with a set of start states, that we call a start
state cloud. These states should be distributed in the sys-
tem state space so that all the interesting states are reachable
from at least one of them. This can be accomplished, with
a reasonable approximation, through a random selection al-
gorithm. However, a start state cloud can be also suitably
prepared to concentrate the planning process on the most in-
teresting state space regions, or to exclude hardly reachable
states from the universal plan. Indeed, a complete universal
plan could generally contain many rarely-used plans, whose
computation requires however time and space. Therefore,
an user-assisted formulation of the start state cloud is a key
feature of our algorithm, helping to minimize the universal
plan generation effort and maximize its usefulness.

The procedure uses the hash table HT to store already vis-
ited states, while the queues Q S and Q G store the states
to be expanded and the reached goal states (to be used in
the next phase), respectively. This information is also used
to detect and exploit trajectories intersections, so avoiding
work duplication. Note that the computation of the succes-
sor states involves discretized values, i.e., continuous com-
ponents of both s and s′ in line 9 of Fig. 1 are rounded ac-
cording to the chosen discretization. Finally, the predecessor
table PT contains the immediate predecessors of each vis-
ited state. This structure is at the heart of the second phase
of the algorithm, represented by the UPLAN GENERATION

procedure, whose pseudocode is given in Fig. 2.

The UPLAN GENERATION procedure performs another
breadth first visit, this time on the inverted transition graph,
starting from the reached goal states. To this end, the pro-
cedure uses the information in Q G, HT and PT prepared by
BUILD GRAPH. The output is the table UPLAN, containing
(state,action) pairs that represent the map K as described in
Definition 5.

In particular, the check on line 11 of Fig. 2, which up-
dates the action associated to a state only if either no action
has been defined yet or the current action leads to a better
result, and the ordered insertion in the queue Q S, guarantee
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1UPLAN_GENERATION() {

2 UPLAN := ∅;

3 Q_S := Q_G; //this erases the previous content of Q

4 while(Q_S �= ∅) {

5 s := Dequeue(Q_S);

6 prev_cost := HT[s].cost; //0 if s ∈ G

7 foreach �s ∈ PT[s] { //�s is a predecessor of s

8 local_cost := min
(a)∈A | F (�s,a)=(s)

C(�s, a);

9 U := {a ∈ A | F (�s, a) = s ∧ C(�s, a) =local_cost};

10 local_action := pick an action in U;

11 if(UPLAN[�s]=∅∨HT[�s].cost>prev_cost+local_cost){

12 UPLAN[�s] := local_action;

13 HT[�s].cost := prev_cost + local_cost;

14 Enqueue_in_Order(Q_S, �s);

15 } } }

16 return UPLAN;

17}

Figure 2: The UPLAN GENERATION procedure

that the algorithm returns an optimal solution according to
Definition 5.

Note that, since our approach rebuilds the system transi-
tion graph by a forward analysis of its dynamics, the system
fed to the planning algorithm can be of any complexity, and
in particular its transition function can be also very difficult
to invert.

4. The UPMurphi Universal Planner

The UPMurphi tool is built on top of the CMurphi (Cached
Murphi web page 2006) model checker. In particular, UP-
Murphi consists of two main modules: the PDDL+ to UP-
Murphi compiler, which automatically translates PDDL+
domains and problems into models written in the CMurphi
description language, and the UPMurphi engine, which is
the core of the tool and implements the BUILD GRAPH and
UPLAN GENERATION algorithms on the top of the CMur-
phi algorithms and data structures. Thanks to this, the uni-
versal planning algorithm presented in Sec. 3.2can exploit
all the CMurphi built-in state space optimization techniques
(such as bit compression (Murphi web page 2004), hash
compaction (Stern and Dill 1995), symmetry reduction (Ip
and Dill 1993), secondary memory storage and state space
caching (Della Penna et al. 2004)) to handle large systems
with huge state spaces.

The CMurphi input consists of a description of the system
to be verified, modelled as a finite state system, and a def-
inition of the property to be checked, both described in the
CMurphi description language, a high-level programming
language for finite state asynchronous concurrent systems,
which offers many features found in common high-level pro-
gramming languages such as Pascal or C, like user-defined
data types, functions and procedures.

Moreover, CMurphi provides two important features
to ease the hybrid systems modelling activity: the type
real(m,n) of real numbers (with m digits for the man-
tissa and n digits for the exponent), and the use of exter-
nally defined C/C++ functions in the modelling language.

In this way, for example, one can use the C/C++ language
constructs and library functions to model complex dynam-
ics.

The behavioral part of a CMurphi model is a collection
of transition rules. Each transition rule is a guarded com-
mand which consists of a condition (a boolean expression on
global variables) and an action (a statement that can modify
the variable values).

Finally, to support the universal planning problem speci-
fication, the CMurphi input language has been extended to
include the goal construct, used to define the properties
that a goal state must satisfy.

4.1 Model Generation from PDDL+

In order to automate the universal planning on PDDL+ prob-
lems, an important issue is to provide automatic or semi-
automatic methods which allow one to use model check-
ing based planners directly on planning problems defined in
such language.

To this aim, we designed and implemented the PDDL+
to UPMurphi compiler. In the following, we describe how
the most interesting PDDL+ constructs are translated in the
CMurphi description language.

Predicates and Functions. Each PDDL+ predicate pred
is mapped on a global boolean variablepred valuewhich
can be modified through appropriate get/set functions.

PDDL+ functions are mapped to bounded numeric vari-
ables. Bounds are defined through constants, as shown in
Fig. 3.

PDDL+ UPMurphi

( d e f i n e ( domain c a r )

( : f u n c t i o n s

( acc ) . . . )

( d e f i n e ( problem c a r p )

( : domain c a r )

( : i n i t ( acc 0 ) . . . ) )

const

acc_LB: 0;

acc_UB: 100;

var acc : acc_LB..acc_UB;

externfun update_acc(

int_type):int_type "lib.h";

Figure 3: Mapping of PDDL+ functions

Since model checking works on finite state systems, the
translation process needs to discretize and bound all these
variables, casting them to finite-precision real numbers.
Finding a suitable discretization is an important issue, since
it can affect the plan generation speed, the precision of the
solution and, sometimes, its correctness.

It is possible to prove that, given an error threshold, there
always exists a discretization that generates correct solutions
with an approximation error below that threshold. How-
ever, this issue will not be further discussed here, for sake
of brevity. By default, in the tool, continuous variables
are rounded up to the second decimal, whereas the time is
rounded to the first decimal: our experiments proved that
these values are usually “safe”, generating errors below 2%
(see the case study for details on how this error is computed).
Anyway, the domain expert can interactively modify these
settings, even for single variables, during the PDDL+ trans-
lation process.
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During the universal plan generation, the tool computes
an error estimation and presents it to the user at specific
intervals, so he/she can quickly know if the discretization
parameters are wrong and possibly stop the computation to
adjust them.

Note that external C++ libraries (e.g., lib.h in Fig. 3)
can be used to easily describe complex update functions.

Actions. PDDL+ actions represent discrete components of
the control, and are thus mapped on CMurphi rules, where
the action precondition becomes the rule guard and the ac-
tion effect is copied in the rule update code. If the action has
no parameters the result is a simple rule as in the example of
Fig. 4.

PDDL+ UPMurphi

( : a c t i o n a c c e l e r a t e

: parameters ( )

: p r e c o n d i t i o n ( r u n n i n g )

: e f f e c t ( and ( r u n n i n g )

( i n c r e a s e a 1 ) ) )

rule"accelerate" (running

()) ==>

begin

a := a + 1 ;

set_running(true);

end;

Figure 4: Mapping of a PDDL+ action

On the other hand, parametric actions are translated into a
family of rules, one for each possible parameter value, using
the CMurphi ruleset construct.

Events and Processes. Events are used to model instan-
taneous changes, not necessarily as a direct consequence of
the actions, and are particularly interesting when used to ini-
tiate processes, which in turn model continuous changes of
the system.

PDDL+ UPMurphi

( : a c t i o n a

: parameters ( )

: p r e c o n d i t i o n ( r u n n i n g )

: e f f e c t ( and

( p1 go ) ( p2 go )

( i n c r e a s e a 1 ) ) )

( : p r o c e s s p1

: parameters ( )

: p r e c o n d i t i o n ( p1 go )

: e f f e c t ( i n c r e a s e a 1 ) )

( : p r o c e s s p2

: parameters ( )

: p r e c o n d i t i o n ( p2 go )

: e f f e c t ( i n c r e a s e a 2 ) )

procedure p1();

begin

if (p1_go()) then

a_value := a_value + 1;

endif; end;

procedure p2();

begin

if (p2_go()) then

a_value := a_value + 2;

endif; end;

procedure proc_exec();

begin

p1(); p2();

end;

rule "modify_a" running()

==>

begin

proc_exec();

a_value := a_value + 1;

end;

Figure 5: Mapping of a PDDL+ process

Processes are mapped on procedures that encode their be-
havior and are invoked by each rule of the model. Indeed

processes, once started, are executed in parallel with other
actions and events. An example of this mapping is shown in
Fig. 5. Note that, for sake of clarity, we use a single proce-
dure proc exec() to map all active processes.

PDDL+ UPMurphi

( : p r o c e s s moving

: p r e c o n d i t i o n ( r u n n i n g )

: e f f e c t ( and

( i n c r e a s e ( d ) (∗ # t ( v ) ) )

( i n c r e a s e ( v ) ( ∗ # t ( a ) ) )

) )

const

T: 0.1 -- user defined

procedure moving();

begin

if(running()) then

d := update_d(d,v);

v := update_v(v,a);

endif; end;

Figure 6: Mapping of PDDL+ process with continuous up-
date expressions

In PDDL+, continuous update expressions are restricted
to occur only in process effects. Continuous effects are rep-
resented by update expressions that refer to the special vari-
able #t. In CMurphi this effect is achieved through a global
constant T which defines the sampling time. T is used in the
update functions, as shown in Fig. 6, where T=0.1 seconds
and update t, update v compute next values of t and
v, respectively, after a time T.

Durative Actions. PDDL+ offers an alternative to the
continuous durative action model of PDDL 2.1, adding a
more flexible and robust model of time-dependent behavior
(Fox and Long 2006). Basically, PDDL+ introduces a three-
part structure for modelling periods of continuous change:
the start-process-stop model. An action or event starts a pe-
riod of continuous change on a numeric variable expressed
by means of a process. An action or event finally stops the
execution of that process and terminates its effect on the nu-
meric variable.

Having previously described the mapping of actions,
events and processes, the start-process-stop model can be
easily implemented in CMurphi as shown in the example of
Fig. 7. Note that we use a special variable obs clk in or-
der to count the number of sampling times passed from the
beginning of the action.

Problem. In PDDL+ a problem defines an instance of the
domain, represented by an initial condition and a goal defi-
nition. These two elements simply become the startstate and
the goal in the CMurphi model, respectively. An example is
shown in Fig. 8. Of course, in universal planning problems
no initial condition is given, so the start states should be se-
lected as described in Sec. 3.2. Moreover, note that UPMur-
phi currently supports only the minimize(total − time)
metric, which is however very common in (universal) plan-
ning problems.

State Mapping. Finally, model checking requires an ex-
plicit representation of the state in terms of state variables.
To this end, it simply suffices to consider the set of variables
deriving from the translation of the predicates and functions
defined in the PDDL+ domain, as shown in the correspond-
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PDDL+ UPMurphi

( : durat ive−act ion

o b s e r v e

: parameters ( )

: durat ion

( = ? durat ion (

durTime ) )

: c o n d i t i o n ( and

( a t s t a r t ( r e a d y ) )

( ove r a l l ( day ) ) )

: e f f e c t ( and

( a t s t a r t ( not (

r e a d y ) ) )

( a t end ( r e a d y ) )

( a t end (

o b s c o m p l e t e ) ) ) )

const

T: 0.1 -- user defined

procedure process_observe();

begin

if (obs_clk_started) then

obs_clk := obs_clk + T;

endif; end;

function event_obs_fail() :

boolean;

var temp:boolean;

begin

if ((obs_clk_started) &

(obs_clk != durTime) &

!(get_day())) then

durTime := durTime + T;

return true;

endif;

return false;

end;

rule"obs_start" (ready()) &

(!obs_clk_started) ==>

begin

set_ready(false);

obs_clk := obs_clk + T ;

obs_clk := 0 ;

obs_clk_started := true ;

proc_exec();

end;

rule"obs_end" (obs_clk=

durTime

& obs_clk_started) ==>

begin

set_obs_complete(true);

set_ready(true);

obs_clk := obs_clk - 1 ;

obs_clk_started := false ;

proc_exec();

end;

Figure 7: Mapping of a PDDL+ durative-action

PDDL+ UPMurphi

( d e f i n e ( problem

c a r p r o b l e m )

( : domain c a r )

( : i n i t ( not ( engineBlown ) )

( r u n n i n g )

( = d 0 )

( = a 0 )

( = v 0 ) )

( : goa l ( >= d 2 0 ) )

( : metr ic m i n i m i z e

( t o t a l− t i m e ) ) )

startstate "startstate"

begin

v := 0 ;

a := 0 ;

d := 0 ;

set_engineblown(false);

set_running(true);

end;

goal ((d >= 20 ));

Figure 8: Mapping of a PDDL+ problem

ing sections above.

5. Case Study: The Planetary Lander

In this section we present a motivating case study for our
model checking based universal planning technology. The
problem is inspired by the specifications of the “Beagle 2”
Mars probe (Blake and others 2004), designed to operate on
the Mars surface with tight resource constraints. In particu-
lar, we use the PDDL+ domain presented in (Fox and Long
2006), based on a simplified model of a solar-powered lan-
der, the Planetary Lander.

Basically, the lander must perform two observation ac-
tions, called Observe1 and Observe2. However, before mak-
ing each observation, it must perform the corresponding
preparation task, called prepareObs1 and prepareObs2, re-
spectively. Alternatively, the probe may choose to perform
a cumulative preparation task for both observations by exe-
cuting the single long action fullPrepare. The shorter actions
have higher power requirements than the single preparation
action.

The power needed to perform these operations comes
from the probe solar panels. The energy generated by the
panels (through the generating process) is influenced by the
position of the sun, i.e., it is zero at night, rises until midday
and then returns to zero at dusk. Power coming from the so-
lar panels is also used to charge a battery (the charging pro-
cess), which is then discharged to give power to the lander
(the discharging process) when the panels do not produce
enough energy (e.g., at night). Moreover, the probe must al-
ways ensure a minimum battery level to keep its instruments
warm.

The state of charge of the battery is therefore an impor-
tant variable to monitor. Unfortunately, it follows a complex
curve, since the charge/discharge process is nonlinear, and
has several discontinuities, caused by the initiation and ter-
mination of the actions. Indeed, Table 1 shows the set of or-
dinary differential equations that are used to recalculate the
values of the state variables soc (state of charge) and sup-
ply (solar panel generation). The symbols used in the equa-
tions have the following meaning: s = soc, h = supply,
d = demand, r = charge rate, sc = solar const and
D = daytime. The equations clearly show the nonlinear
dynamics of the system.

Name ODE

charging
ds(t)

dt
= [h(t) − d(t)] · r · (100 − s(t))

discharging
ds(t)

dt
= −[d(t) − h(t)]

generating
dh(t)

dt
= [sc · D(t)]·

·[(D(t) · ((4 · D(t)) − 90))] + 450

Table 1: PDDL+ events and processes with associated ordi-
nary differential equations

Obviously, the problem here is to find the best correct se-
quence of actions to achieve the probe goal in the shortest
time possible, starting from any reasonable initial configu-
ration. For sake of brevity, here we do not show the PDDL+
problem domain, which can be read in (Fox and Long 2006).
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5.1 Model Generation

The mapping from PDDL+ was performed using the default
approximations described in Sec. 4.1.

The start state cloud (see Sec. 3.) for the universal plan-
ning algorithm was selected by taking into account a set
of reasonable configurations of the state variables soc and
daytime. Note that it is realistic to consider only these pa-
rameters, since they define the environmental conditions to
which the lander will be subject at the beginning of its mis-
sion. All the other domain parameters were fixed to the val-
ues inferred by looking at (Blake and others 2004).

In particular, we suppose that the rover landing hour may
be between 0 and 8, that corresponds to the central day-
light hours in Martian time (the rover is supposed to land
in this range of hours, since they offer the best possible
starting conditions). On the other hand, since the battery
is not used before landing, and its self-discharge rate is min-
imal, we can safely suppose that the initial battery state of
charge will be between 90% and 100% with steps of 1%.
Therefore, the start state cloud will be defined as the set
{(s, d)|s ∈ [90%, 100%]∧ d ∈ [0, 8]}.

The complete case study details, including the UPMurphi
code generated from the PDDL+ source, can be found on the
UPMurphi web site (UPMurphi web page 2009), together
with more complete experiment results.

5.2 Universal Planning

Given the domain variables and their ranges, we can easily
calculate the state space size of the system, which is about
of 1024 states. Thanks to the reachability analysis, UPMur-
phi generated an optimal solution for the universal planning
problem, starting from the given start state cloud, and visit-
ing only 31 million reachable states, in less than 40 minutes
on a 2.2GHz CPU with 2 GB of RAM.

State space size 1024

Search depth limit 200 BFS levels

First goal reached after 174 BFS levels

Reachable states 31, 965, 220
Start states to goal 100%

States to goal (generated plans) 5, 309, 514
Forward analysis time 1, 969.3 seconds

Plan generation time 296.51 seconds

Total synthesis time 2, 265.81 seconds

Peak memory requirements 1800MB

Universal plan size 28,6MB

Table 2: Universal Plan generation statistics

The synthesis statistics are in Table 2. Note that the first
goal was found after 174 steps, but the synthesis was per-
formed up to the fixed horizon of 200 steps, which is a rea-
sonable upper bound for the lander activity completion (it
represents about two Martian days).

The generated solution, which requires less than 30 MB
of memory to be stored and used, contains more than 5 mil-
lion plans, and thus it is able to bring to the goal more than
16% of the reachable states. Due to the exhaustive search

performed by the tool, we can safely assert that, in the re-
maining 84% of the states, the lander could not complete its
tasks and should therefore quit its mission or delay its initi-
ation.

Min Max Avg

soc 0 % 0.625,392 % 0.179,329 %

supply 0 % 2.060,061 % 0.742,575 %

Table 3: Normalized root mean squared error for variables
soc and supply

In order to ensure the correctness of the solution, UP-
Murphi was instructed to check the validity of the generated
plans using the VAL plan validator (Howey, Long, and Fox
2004).

In addition, to estimate the precision of the plans (and
thus the error introduced by the model discretization), the
tool compared the variable values computed by VAL during
the validation process with the corresponding values output
by its plan synthesis procedure, by computing the normal-
ized root mean square error (NRMSE), as shown in Table 3.
The NRMSE is at most 2% in all the generated plans for the
nonlinear variable soc, at most 0.6% for nonlinear variable
supply and always zero for the linear variable daytime (not
shown in the table). Nevertheless, the average NRMSE is
small: 0.179% for soc and 0.742% for supply, respectively.

Therefore, the discretization process, that is part of the
model checking based universal planning process, produces
an acceptable approximation error in the plans generated by
UPMurphi. In particular, the error is small enough to not
influence the correct plan execution, as proved by the plan
validation performed by VAL.

6. Conclusions

The UPMurphi tool presented in this paper uses a model
checking based algorithm to perform universal planning on
domains that are completely out of reach for all the current
universal planning tools. These domains include many re-
alistic systems, like hybrid or nonlinear systems. Indeed,
the presented case study shows that UPMurphi can be an ef-
fective and valuable universal planner. Moreover, the tool
is able to directly read specifications written using the full
power of PDDL+, thus being very friendly to the planning
community.

UPMurphi is being actually refined and will be shortly
released in a beta version. Further development will be
mainly addressed to increase the precision of the tool cal-
culations, either through the automatic selection of a suit-
able discretization for each given domain, or by embedding
in the tool an enhanced equation solver that would allow a
very fine discretization to be used on all systems.
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