
Incremental Policy Generation for Finite-Horizon DEC-POMDPs

Chistopher Amato
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

camato@cs.umass.edu

Jilles Steeve Dibangoye
Laval University

Greyc-CNRS UMR 6072
University of Caen Basse-Normandie

gdibango@info.unicaen.fr

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

shlomo@cs.umass.edu

Abstract

Solving multiagent planning problems modeled as DEC-
POMDPs is an important challenge. These models are often
solved by using dynamic programming, but the high resource
usage of current approaches results in limited scalability. To
improve the efficiency of dynamic programming algorithms,
we propose a new backup algorithm that is based on a reach-
ability analysis of the state space. This method, which we
call incremental policy generation, can be used to produce an
optimal solution for any possible initial state or further scal-
ability can be achieved by making use of a known start state.
When incorporated into the optimal dynamic programming
algorithm, our experiments show that planning horizon can be
increased due to a marked reduction in resource consumption.
This approach also fits nicely with approximate dynamic pro-
gramming algorithms. To demonstrate this, we incorporate
it into the state-of-the-art PBIP algorithm and show signifi-
cant performance gains. The results suggest that the perfor-
mance of other dynamic programming algorithms for DEC-
POMDPs could be similarly improved by integrating the in-
cremental policy generation approach.

Introduction
Planning under uncertainty is an important and growing area
of AI. In these problems, agents must choose a plan of action
based on partial or uncertain information about the world.
Due to stochastic actions and noisy sensors, agents must
reason about many possible outcomes and the uncertainty
surrounding them. A common model used to deal with this
type of uncertainty is the partially observable Markov deci-
sion process (POMDP). When multiple cooperative agents
are present, each agent must also reason about the choices of
the others and how they may affect the environment. These
team planning problems where each agent must choose ac-
tions based solely on local information can be modeled as
decentralized POMDPs (DEC-POMDPs).

While several algorithms have been developed for DEC-
POMDPs, both optimal and approximate algorithms suffer
from a lack of scalability. Many of these algorithms use dy-
namic programming to build up a set of possible policies
from the last step until the first. This is accomplished by
“backing up” the possible policies at each step and prun-
ing those that have lower value for all states of the domain

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and all possible policies of the other agents. Unlike the
POMDP case, the current dynamic programming used for
DEC-POMDPs exhaustively generates all t+1 step policies
given the set of t step policies. This is very inefficient, of-
ten leading to a majority of policies being pruned after they
are generated. Because many unnecessary policies are gen-
erated, resources are quickly exhausted, causing only small
problems and planning horizons to be solved optimally.

To combat this lack of scalability, we propose a method to
perform more efficient dynamic programming by generating
policies based on a state space reachability analysis. This
method generates policies for each agent based on those that
are useful for each given action and observation. The ac-
tion taken and observation seen may limit the possible next
states of the system no matter what actions the other agents
choose, allowing only policies that are useful for these possi-
ble states to be retained. This approach may allow a smaller
number of policies to be generated, while maintaining op-
timality. Because solutions are built up for each action and
observation, we call our method incremental policy genera-
tion. The incremental nature of our algorithm allows a larger
number of dynamic programming steps to be completed and
thus, can handle larger plan horizons.

Incremental policy generation is a general approach that
can be applied to any DEC-POMDP algorithm that performs
dynamic programming backups. These include optimal al-
gorithms for finite (Hansen, Bernstein, and Zilberstein 2004;
Boularias and Chaib-draa 2008) and infinite-horizon (Bern-
stein et al. 2009) DEC-POMDPs as well as many approxi-
mate algorithms such as PBDP (Szer and Charpillet 2006),
indefinite-horizon dynamic programming (Amato and Zil-
berstein 2009) and all algorithms based on MBDP (Seuken
and Zilberstein 2007b) (e.g. IMBDP (Seuken and Zilber-
stein 2007a), MBDP-OC (Carlin and Zilberstein 2008) and
PBIP (Dibangoye, Mouaddib, and Chaib-draa 2009)). All of
these algorithms can be made more efficient by incorporat-
ing incremental policy generation.

The remainder of the paper is organized as follows. We
begin with background on the DEC-POMDP model and rel-
evant previous work. We then describe incremental policy
generation and prove that it allows an optimal finite-horizon
solution to be produced with and without start state infor-
mation. We also show that the approach can be used in an
approximate context, specifically with the leading algorithm

2

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

Figure 1: Example of horizon 3 policy trees for two agents.

PBIP. Lastly, we examine the performance of these algo-
rithms on a set of test problems. These experiments show
that much better scalability can be achieved with incremen-
tal policy generation, allowing larger horizons to be solved
than the current optimal and approximate dynamic program-
ming algorithms. When compared with the leading optimal
approaches that do not use dynamic programming, increased
scalability is also demonstrated for several test cases.

Background

We first describe the DEC-POMDP model and discuss mod-
eling solutions for finite-horizon problems as policy trees.

The DEC-POMDP model

A DEC-POMDP is a general multi-agent decision-theoretic
model for planning in partially observable environments. It
is defined as: 〈I, S, {Ai}, P, R, {Ωi}, O〉 with: I , a finite
set of agents, S, a finite set of states with designated initial
state distribution b0, Ai, a finite set of actions for each agent,
i, P , a set of state transition probabilities: P (s′|s,�a), the
probability of transitioning from state s to s′ when the set
of actions �a = (a1, a2, · · · , a|I|) are taken by the agents, R,
a reward function: R(s,�a), the immediate reward for being
in state s and taking the set of actions �a, Ωi, a finite set
of observations for each agent, i, O, a set of observation
probabilities: O(�o|s′,�a), the probability of seeing the set of
observations �o = (o1, o2, · · · , o|I|) given the set of actions
�a was taken, which results in state s′, and T , a horizon or
finite number of steps after which the problem terminates.

A problem unfolds over a series of steps. At each step,
every agent chooses an action based on their local observa-
tions, resulting in an immediate reward and an observation
for each agent. Note that because the state is not directly
observed, it may be beneficial for an agent to remember its
observation history. A local policy for an agent is a map-
ping from local observation histories to actions while a joint
policy is a set of local policies, one for each agent in the
problem. The goal is to maximize the total cumulative re-
ward until the horizon is reached, beginning at the given ini-
tial state distribution. Seuken and Zilberstein 2008 provide
a more thorough introduction to DEC-POMDPs.

Policy trees

To represent policies for finite-horizon DEC-POMDPs, con-
ditional plans represented as a set of local policy trees can
be used. These trees are the same as those employed for
POMDPs except there is now a policy tree for each agent.
An agent’s policy tree can be defined recursively. The tree
begins with an action at the root and a subtree is defined
for each observation. This continues until the horizon of

For agent i’s given tree qi and variables ε and x(q−i, s)
Maximizes ε, given: ∀ q̂iX
q−i,s

x(q−i, s)V (q̂i, q−i, s) + ε ≤
X

q−i,s

x(q−i, s)V (qi, q−i, s)X
q−i,s

x(q−i, s) = 1 and ∀q−i, s x(q−i, s) ≥ 0

Table 1: The linear program that determines if agent i tree, qi

is dominated by comparing its value to other trees for that agent,
q̂i. The variable x(q−i, s) is a distribution over trees of the other
agents and system states.

the problem is achieved at the leaf nodes. Thus, the agent’s
choice of actions is defined by a path through the tree that
depends on the observations that it sees. An example of local
policy trees for two agents is given in Figure 1.

The joint policy tree is defined by a set of local policy
trees, one for each agent, and can be evaluated by summing
the rewards at each step weighted by the likelihood of
transitioning to a given state and observing a given set of
observations. That is, for two agents, the value of trees q1

and q2 while starting at state s is given recursively by:
V (q1, q2, s) = R(aq1 , aq2 , s) +

X
s′

P (s′|aq1 , aq2 , s)X
o1,o2

P (o1, o2|aq1 , aq2 , s′)V (qo1
1 , qo2

2 , s′)

where aq1 and aq2 are the actions defined at the root of trees
q1 and q2, while qo1

1 and qo2
2 are the subtrees of q1 and q2

that are visited after o1 and o2 respectively, have been seen.

Related Work

A number of algorithms have been proposed to build either
optimal or approximate joint policy trees. We first discuss
the optimal dynamic programming algorithm. We then de-
scribe some approximate dynamic programming algorithms
and some methods that do not use dynamic programming.

Optimal dynamic programming

Hansen et al. (Hansen, Bernstein, and Zilberstein 2004)
developed a dynamic programming algorithm to opti-
mally solve a finite-horizon DEC-POMDP. While this al-
gorithm solves partially observable stochastic games, DEC-
POMDPs are a subclass in which the agents share a common
payoff function. In this algorithm, a set of T -step policy
trees, one for each agent, is generated from the bottom up.

That is, on the T th (and last) step of the problem, each
agent will perform just a single action, which can be repre-
sented as a 1-step policy tree. All possible actions for each
agent are considered and each combination of these 1-step
trees is evaluated at each state of the problem. Any action
that has lower value than some other action for all states
and possible actions of the other agents is then removed, or
pruned. The linear program used to determine whether a tree
can be pruned is shown in Table 1. Because there is always
an alternative with at least equal value, regardless of system
state and other agent policies, a tree qi can be pruned if ε is
nonpositive. This pruning can be done for all agents until
trees are no longer be pruned.

3

On the next step, all 2-step policy trees are generated.
This is done for each agent by an exhaustive backup of the
current trees. That is, for each action and each resulting ob-
servation some 1-step tree is chosen. If an agent has |Qi|
1-step trees, |Ai| actions, and |Ωi| observations, there will
be |Ai||Qi||Ωi| 2-step trees. After this exhaustive genera-
tion of next step trees is completed for each agent, pruning
is again used to reduce their number. This generation and
pruning continues until the given horizon is reached.

Approximate dynamic programming

The major limitation of dynamic programming approaches
is the explosion of memory and time requirements as the
horizon grows. This occurs because each step requires gen-
erating and evaluating all joint policy trees before perform-
ing the pruning step. Approximate dynamic programming
techniques somewhat mitigate this problem by keeping a
fixed number of local policy trees, MAXTREES, for each
agent at each step (Seuken and Zilberstein 2007b). This re-
sults in a suboptimal, but much more scalable algorithm.

A number of approaches are based on this idea. The first
of which, memory bounded dynamic programming (MBDP),
has linear space complexity, but still requires an exhaustive
backup of policies at each step. To combat this drawback,
(Seuken and Zilberstein 2007a; Carlin and Zilberstein 2008)
suggested reducing the exponential role of local observa-
tions. This is accomplished by performing the exhaustive
backup only over a small number of local observations. Un-
fortunately, the set of policy trees generated before the prun-
ing step is still exponential in the number of local observa-
tions retained and the solution quality often decreases.

The leading algorithm of this family of memory bounded
approaches is point-based incremental pruning (PBIP) al-
gorithm. This approach replaces the exhaustive backup
with a branch-and-bound search in the space of joint policy
trees (Dibangoye, Mouaddib, and Chaib-draa 2009). Like
all MBDP-based approaches, the search technique builds
(t+1)-step joint policy trees for a small set of selected belief
states, one joint policy tree for each belief state. Unlike the
previous approaches, it computes upper and lower bounds of
the partial (t+1)-step joint policy trees. With these bounds,
it prunes dominated (t + 1)-step trees at earlier construction
stages. Finally, the best T -step joint policy tree with respect
to the initial belief state b0 is returned. Because each subtree
generated after taking a joint action and perceiving a joint
observation can be any of the t-step joint policy trees from
the last iteration, PBIP does not exploit the state reachability.

Other algorithms

Instead of computing the policy trees from the bottom up
as is done by dynamic programming methods, they can also
be built from the top down. This is the approach of MAA∗,
which is an optimal algorithm built on heuristic search tech-
niques (Szer, Charpillet, and Zilberstein 2005). More scal-
able methods of MAA∗ have also been proposed using the
framework of Bayesian games to provide improved heuris-
tics(Oliehoek, Spaan, and Vlassis 2008; Oliehoek, White-
son, and Spaan 2009). The recent work on using a general-
ized version of MAA∗ with clustering (Oliehoek, Whiteson,

and Spaan 2009) improves scalability by representing other
agent policies more concisely without losing value. As our
focus in on bottom-up dynamic programming methods, we
do not discuss these approaches further.

Incremental Policy Generation

As mentioned, one of the major bottlenecks of dynamic pro-
gramming for DEC-POMDPs is the large resource usage of
exhaustive backups. If policies for each agent can be gener-
ated without first exhaustively generating all next step pos-
sibilities, the algorithm would become more scalable. Incre-
mental policy generation provides a method to accomplish
this, while maintaining optimality.

Difference with POMDP methods To improve the ef-
ficiency of dynamic programming for POMDPs, methods
have been developed such as incremental pruning (Cassan-
dra, Littman, and Zhang 1997), which incrementally gen-
erates and prunes an agent’s polices rather than using ex-
haustive backups. Unfortunately, these methods cannot be
directly extended to DEC-POMDPs. This is because in the
decentralized case, the state of the problem and the value of
an agent’s policy depend on the policies of all agents. Thus,
pruning any agent’s (t + 1)-step policy requires knowing all
(t + 1)-step policies for the other agents.

DEC-POMDP approach To solve this problem, we build
up the policies for each agent by using a one-step reachabil-
ity analysis. This allows all other agent policies to be con-
sidered, but without actually constructing them exhaustively
and only evaluating them at reachable states. After an agent
chooses an action and sees an observation, the agent may
not know the state of the world, but it can determine which
states are possible. For instance, assume an agent has an ob-
servation in which a wall is perfectly observed when it is to
the left or right. If the agent sees the wall on the right, it may
not know the exact state it is in, but it can limit the possibil-
ities to those states with walls on the right. Likewise, in the
commonly used two agent tiger domain (Nair et al. 2003),
after an agent opens a door, the problem transitions back to
the start state. Thus, after an open action is performed, the
agent knows the exact state of the world.

So, how can we use this information? One way is to limit
the policies generated during dynamic programming. We
can first determine which states are possible after an agent
chooses an action and sees an observation. Only subtrees
that are useful for the resulting states need to be consid-
ered after that observation is seen when constructing trees
that begin with the given action. To maintain optimality, we
consider any first action for the other agents and then prune
using the known possible subtrees for the other agents.

Limiting the state

Any agent can calculate the possible states that result from
taking an action and seeing an observation. To determine the
next state exactly, the agent would generally need to know
the probability that the system is currently in any given state
and that the other agents will choose each action. Since we
do not assume the agents possess this information, the exact

4

Algorithm 1: Incremental policy generation
input : A set of t-step policy trees for all agents, Q, and an

action a
output: A set of (t + 1)-step policy trees for a given agent, Q̂i

begin
for each action, a do

for each observation, o do

S′ ← possibleStates(a, o)
Qa,o

i ← usefulTrees(S′, Q)

Q̂a
i ← ⊕oQ

a,o
i

Q̂i ← ∪aQa
i

return Q̂i

end

state can only be known in some circumstances, but the set
of possible next states can often be limited.

For instance, the probability of a resulting state s′ after
agent i chooses action ai and observes oi is determined by:

P (s′|ai, oi) =

P
�a−i,�o−i,s P (�o|s,�a, s′)P (s′|s,�a)P (�a−i, s|ai)

P (oi|ai)
(1)

with P (�a−i, s|ai) the probability of the current state and that
other agents choose actions �a−i. The normalizing factor is:

P (oi|ai) =
∑

�a−i,�o−i,s,s′
P (�o|s,�a, s′)P (s′|s,�a)P (�a−i, s|ai).

To determine all possible next states for a given action and
observation, we can assume P (�a−i, s|ai) is a uniform distri-
bution and retain any state s′ that has a positive probability.
We will call the set of possible successor states S′.

Knowing the exact state When P (oi|s,�a, s′)P (s′|�a, s)
is constant for the given ai and oi, then it does not
depend on the state or other agents’ actions. Thus,∑

�a−i,s
P (�a−i, s|ai) = 1 and the exact state is known by:

P (s′|ai, oi) =
P (oi|s,�a, s′)P (s′|s,�a)∑
s′ P (oi|s,�a, s′)P (s′|s,�a)

Algorithm

Our approach is summarized in Algorithm 1. We describe it
from a finite-horizon perspective, but the same approach can
be used in infinite-horizon policy iteration (Bernstein et al.
2009). For each agent, i, assume we have a set of horizon
t trees Qi. We can create a set of horizon t + 1 trees that
has each action from the domain as a first action. Assuming
we start with action a, we need to decide which subtrees to
choose after seeing each observation. Rather than adding all
possibilities from Qi as is done in the exhaustive approach,
we only add trees from Qi that are useful for some possible
successor state s′ and set of trees of the other agents. That
is, agent i’s tree qi is retained if the value of choosing qi is
higher than choosing any other tree for some distribution of
other agent trees, q−i and next states of the system s′. This
is formulated as: ∀ q̂i∑

q−i,s′
x(q−i, s

′)V (qi, q−i, s
′) >

∑

q−i,s′
x(q−i, s

′)V (q̂i, q−i, s
′)

Figure 2: Example of (a) limiting states after actions are chosen
and observations seen and (b) pruning with a reduced state set, S′.

Where x(q−i, s
′) is a distribution over trees of the other

agent and successor states, qi, q̂i ∈ Qi, q−i ∈ Q−i and
s′ ∈ S′ as described in the previous section.

The solution to this formulation can be found by using the
linear program in Table 1, but the new linear program has
fewer variables and constraints, therefore making it faster to
solve. This is because it uses the smaller set of trees from
step t rather than step t + 1 and S′ ⊆ S. The method limits
the possible subtrees after taking action a and seeing obser-
vation o to those that are useful for some distribution over
successor states and other agent subtrees. The set of trees
that we retain for the given action and observation are t-step
trees for agent i, which we will call Qa,o

i , leaving off the i
for the action and observation to simplify the notation.

After generating all possible sets of trees for each obser-
vation with a fixed action, we then build the horizon t + 1
trees for that action. This is accomplished by creating all
possible trees that begin with the fixed action, a, followed
by choosing any tree from the set Qa,o

i after o has been ob-
served. The resulting number of trees for agent i at this step
is given by

∏
o |Qa,o

i |. In contrast, exhaustive generation of
trees would produce |Qi||Ωi| trees. Once all trees for each
action have been generated, we take the union of the sets for
each action to produce the set of horizon t + 1 trees for the
agent. When we have the (t+1)-step trees for all the agents,
we are then able to evaluate them and prune those that have
lesser value for all initial states and trees of the other agents.
This pruning step is exactly the same as that used in Hansen
et al.’s dynamic programming algorithm and may further re-
duce the number of trees retained.

Example An illustration of the incremental policy gener-
ation approach is given in Figure 2. The algorithm (a) first
determines which states are possible after a given action has
been taken and each observation has been seen. After action
a1 is taken and o1 is seen, states s1 and s2 are both possible,
but after o2 is seen, only s1 is possible. Then, (b) the val-
ues of the trees from the previous step (t) are determined for
each resulting state and each set of trees of the other agents.

The dimension of the value vectors of the trees is the same
as the number of possible policies for the other agents times
the number of states in the system, or Q−i×S. To clarify the
illustration, we assume there is only one possible policy for
the other agents and two states in the domain. As seen in the
figure, when both states are considered, all trees for agent
i are useful (not dominated) for some possible distribution.

5

When only state 1 is possible, only q1
i is useful. This allows

both q2
i and q3

i to be pruned for this combination of a1 and
o2, reducing the number of possibilities to 1. Because there
are still 3 useful subtrees for the combination of a1 and o1,
the total number of possible trees starting with action a1 is
3. This can be contrasted with the 9 trees that are possible
using exhaustive generation.

Analysis

We first show that the incremental policy generation ap-
proach does not prune any t-step subtree of Qi that would
be part of an undominated (t + 1)-step policy tree.

Lemma 1. Any t-step that is not added by incremental pol-
icy generation is part of a dominated (t + 1)-step tree.

Proof. We will prove this for two agents, but this proof can
easily be generalized to any number of agents. We show
from agent 1’s perspective that if tree q1 has a subtree which
is not included by our incremental policy generation algo-
rithm, then q1 must be dominated by some distribution of
trees q̂1. This is determined by

V (q1, q2, s) ≤
∑

q̂1

x(q̂1)V (q̂1, q2, s) ∀q2, s

This proof is based on the fact that in incremental policy
generation, all reachable next states and all possible next
step policies for the other agents are considered before re-
moving a policy.

Consider the set of trees generated for agent 1 by starting

with action a. If observation oj
1 was seen, where q

oj
1

1 was not

included in set Q
aq1 ,oj

1
1 , then we show that q1 must be domi-

nated by the set of trees that are identical to q1 except instead

of choosing q
oj
1

1 , some distribution over trees in Q
aq1 ,oj

1
1 is

chosen. We abbreviate q
oj
1

1 by q′1 to simplify notation.

Because q′1 was not included in Q
aq1 ,oj

1
1 we know there

is some distribution of subtrees that dominates it for all
subtrees of the other agent and at the subset of states that
are possible after choosing action aq1 and observing o1.

V (q′1, q
′
2, s

′) ≤
∑

q̂′1

x(q̂′1)V (q̂′1, q
′
2, s

′) ∀ q′2, s
′ (2)

Given this distribution x(q̂′1) we can create a probability
distribution over subtrees that chooses the trees of q̂′1 when
oj
1 is seen, but otherwise chooses the same subtrees that are

used by q1. The value of this tree is given by
R(aq1 , aq2 , s) +

X
s′

P (s′|aq1 , aq2 , s)X
o1,o2

P (o1, o2|aq1 , aq2 , s′)
X
q̂′1

x(q̂′1, o1)V (qo1
1 , qo2

2 , s′)

Because the trees are otherwise the same, from the in-
equality in Equation 2, we know that
R(aq1 , aq2 , s) +

X
s′

P (s′|aq1 , aq2 , s)

X
o1,o2

P (o1, o2|aq1 , aq2 , s′)V (qo1
1 , qo2

2 , s′) ≥

R(aq1 , aq2 , s) +
X
s′

P (s′|aq1 , aq2 , s)

X
o1,o2

P (o1, o2|aq1 , aq2 , s′)
X
q̂′1

x(q̂′1, o1)V (qo1
1 , qo2

2 , s′)

This holds for any s and q2 because Equation 2 holds for any
initial state or possible policy tree of the other agent.

This can also be viewed as a distribution of trees, x(q̂1),
one for each different subtree with positive probability in
x(q̂′1). Thus, the value of the original tree q1 is less than or
equal to the value of the distribution of trees for all q2 and s.

R(aq1 , aq2 , s) +
X
s′

P (s′|aq1 , aq2 , s)X
o1,o2

P (o1, o2|aq1 , aq2 , s′)V (qo1
1 , qo2

2 , s′)

≤
X
q̂1

x(q̂1)

"
R(aq̂1 , aq2 , s) +

X
s′

P (s′|aq̂1 , aq2 , s)

X
o1,o2

P (o1, o2|aq̂1 , aq2 , s′)V (q̂o1
1 , qo2

2 , s′)

#

or V (q1, q2, s) ≤
∑

q̂1

x(q̂1)V (q̂1, q2, s) ∀q2, s

Theorem 1. Incremental policy generation returns an opti-
mal solution for any initial state.

Proof. This proof follows from Hansen et al.’s proof and
Lemma 1. Dynamic programming with pruning generates
and retains all optimal policies for any given horizon and
initial state. Since Lemma 1 shows that incremental pol-
icy generation will not remove any policies that would not
be pruned, our approach also retains all optimal policies.
Thus, by choosing the highest valued policy for any horizon
and initial state, our incremental policy generation algorithm
provides the optimal finite-horizon solution.

Incorporating Start State Information

Dynamic programming creates a set of trees for each agent
that contains an optimal tuple of trees for any initial state
distribution. This results in many trees being generated that
are suboptimal for a known initial distribution. To combat
this, start state information can be incorporated into the al-
gorithm. We discuss an optimal and an approximate method
of including this information.

Optimal algorithm

As already mentioned, any agent i can determine its next
possible states P (s′|ai, oi) after taking an action ai and per-
ceiving an observation oi. This allows the agent to focus its
policy generation for the next step over those states only. Al-
though this approach is more scalable than previous dynamic
programming methods, further scalability can be achieved
by incorporating information from a known start state.

It is well known that the reachable part of the state space
can be limited by considering actual agent action sequences
(histories) and the initial state information at hand (Szer
and Charpillet 2006). However, the only attempt, suggested
by Szer and Charpillet that exploits reachability by taking
into account the other agents’ histories leads to a worst-case
complexity that is doubly exponential. We take a different
approach, as we only want to determine the possible next
states for each agent rather than constructing all possible

6

trees of the desired horizon, T . Our approach generates pos-
sible states for any number of steps, T −t, without explicitly
generating all horizon T policy trees.

Consider the case when we have already generated the
policy trees of height T − 1 for all agents. We can then
use the start state as the only state in S to better limit S′
in our incremental policy generation approach. That is, we
know that we will begin in b0, transition to some state s′,
and choose some height T − 1 tree. Thus, in Equation 1,
P (�a−i, s|ai) becomes b0(s)P (�a−i, |ai) and requires using
only the known initial state b0 in addition to the unknown
probability of action for the other agents. Then, by consid-
ering each initial action of the other agents, we can generate
a smaller set of possible next states.

This idea can be extended to any step of dynamic
programming. When we have trees of height t, with
t < T − 1 then we must consider all possible action
sequences, or histories, of the agents rather than just
single actions. We define a k-step history for agent i as
hk

i = (a1
i , o

1
i , · · · , ok

i , ak
i). The probability of state sk+1

resulting after k steps of agent i’s history can be defined
recursively as: P (sk+1|hk

i) ∝X
�a−i,�o−i,sk

P (ok
i , �o−i|sk, ak

i ,�a−i, s
k+1)P (sk+1|sk,�a)P (sk|hk−1

i)

where ak
i and ok

i are the action taken and observation seen
by agent i at the kth step of history hk

i . The value can be nor-
malized to give the true probability of each state after k steps
and for k = 0, P (s) = b0(s), the initial state probability.

This approach limits the set of reachable states, S′, for
agent i given both the initial state information and agent his-
tory. This is done for all possible histories of the agent and
for all agents. Each agent’s policy generation process then
follows as described for incremental policy generation. Be-
cause the set of all possible histories of any agent is expo-
nential with respect to the length of the histories, this method
becomes impractical when T − t is large. To combat this,
start state information could be used only when T−t is small
and repeated state distributions can be ignored at each level.

Corollary 2. Our incremental policy generation algorithm
with start state information returns an optimal finite-horizon
solution for the given initial state distribution.

Proof. Because we generate all possible next states for each
agent using all possible histories for all agents and the given
initial state information, this corollary follows from Theo-
rem 1 and Theorem 1 of (Szer and Charpillet 2006).

Approximate algorithm

To improve the worst-case complexity of our algorithm, it
can be incorporated into a memory bounded (MBDP-based)
algorithm. MBDP-based approaches (Seuken and Zilber-
stein 2007b) make use of additional assumptions: (1) the
joint state information, i.e. joint belief state, is accessible at
planning time, although this information is not available to
the agents at execution time; (2) only a small number of joint
belief states are considered at each decision step. Because
all current memory bounded algorithms use a form of ex-
haustive backup, incremental policy generation can be used

to make the backup step more efficient. This can be accom-
plished by using assumption (1) to provide a set of known
states for our incremental policy generation algorithm. That
is, given a joint belief state, one can find all the possible
next states that are reachable. This can be viewed as a spe-
cial case of the optimal version described above, with the
simplifying assumption that the system state is revealed af-
ter T − t steps. Thereafter, one can select the subtrees after
step t for agent i, Qa,o

i , to generate set Qi for each agent.

Integrating with PBIP While incremental policy gener-
ation could be incorporated into any memory bounded ap-
proach, in this paper we chose the point-based incremental
pruning (PBIP) algorithm. To do so, we provide PBIP with
the set Q�a,�o ← ⊗iQ

a,o
i of t-step joint policies that can be

executed if we took joint action �a one step before and any
possible joint observation �o is seen. With this, PBIP is now
able to distinguish between subtrees executed after taking a
given action and perceiving a given observation. Indeed, it is
likely that subtrees that are good candidates for joint action
joint observation pairs are useless for another pair.

Experiments

We first provide results comparing incremental policy gen-
eration with optimal algorithms and then give results for our
approach incorporated into the approximate PBIP algorithm.

Optimal approaches

We first compare incremental policy generation with other
state-of-the-art finite-horizon algorithms. These are dy-
namic programming for POSGs (Hansen, Bernstein, and
Zilberstein 2004) and the leading top-down approaches
GMAA∗ (Oliehoek, Spaan, and Vlassis 2008) and cluster-
ing GMAA∗ (Oliehoek, Whiteson, and Spaan 2009), ab-
breviated as C-GMAA∗. These algorithms were tested on
the common Box Pushing problem (Seuken and Zilberstein
2007a), the Stochastic Mars Rover problem (Amato and Zil-
berstein 2009) and a new version of the Meeting in a Grid
problem (Bernstein, Hansen, and Zilberstein 2005). This
version has a grid that is 3 by 3 rather than 2 by 2, the agents
can observe walls in four directions rather than two and they
must meet in the top left or bottom right corner rather than
in any square. The resulting problem has 81 states, 5 actions
and 9 observations. We chose these domains to explore the
ability of the algorithms to solve large problems.

The dynamic programming algorithms were run with up
to 2GB of memory and 2 hours. We record the number of
trees generated by the backup before and after pruning as
well as the running time of the algorithm. When the avail-
able resources were exhausted during the pruning step, this
is denoted with *. The incremental policy generation (IPG)
approach using start state information only used the start
state for steps when T − t ≤ T/2 for current tree height
t and horizon T . The top-down algorithm results for the
Box Pushing domain are taken from (Oliehoek, Whiteson,
and Spaan 2009) and the other results are provided courtesy
of Matthijs Spaan. Because search is used rather than gener-
ating multiple trees, the average size of the Bayesian game
used to calculate the heuristic on the final step is provided

7

Horizon DP for POSGs Incremental Generation (IPG) IPG with Start State GMAA∗MDP C-GMAA∗MDP Value
Meeting in a 3x3 Grid, |S| = 81, |Ai| = 5, |Ωi| = 9

2 (5) 5 in 5s 5 in <1s 5 in 5s x 9 <1s 0.000
3 x 5 in 16s 5 in 17s x 121 <1s 0.133
4 x 40 in 42s 10 in 53s x x 0.433
5 x (25960)* in 2555s (148) 148,145 in 600s x x 0.896

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
2 (128) 8 in 14s 8 in 2s (4) 2,3 in 1s 25 in < 1s 4 in < 1s 17.60
3 x (320,256) 256 in 1159s (6) 5,6 in 6s x 25 in 5s 66.08
4 x x (233,239) 233 in 1138s x x 98.59

Stochastic Mars Rover, |S| = 256, |Ai| = 6, |Ωi| = 8
2 x (150, 672)* in 72s (16,20) 12,15 in 83s x 1 <1s 5.80
3 x x (396, 534)* in 389s x 4 <1s 9.38
4 x x x x 11.11 in 103s 10.18

Table 2: Size, running time and value produced for each horizon on the test domains. For dynamic programming algorithms the size is given
as the number of of policy trees before and after pruning (if different) and only one number is shown if both agent trees are the same size. For
top-down approaches the size of the final Bayesian game is provided.

along with the running time. Running times may vary as
these algorithms were run on a different computer, but we
expect the trends to remain consistent.

The results in Table 2 show that on these problems, in-
cremental policy generation is always more scalable than
the previous dynamic programming approach and gener-
ally more scalable than the leading top-down approach,
C-GMAA∗. Dynamic programming (DP) for POSGs can
only provide a solution of horizon two for the first two
problems and horizon one for the larger Mars Rover prob-
lem. GMAA∗ is similarly limited because the search space
quickly becomes intractable as the horizon grows. Because
the structure of these problems permits clustering of agent
policies, C-GMAA∗ runs very quickly and is able to im-
prove scalability over GMAA∗, especially in the Mars Rover
problem. In the other domains, IPG with start state infor-
mation can reach larger horizons than the other approaches.
There is a small overhead of using start state information,
but this approach is generally faster and more scalable than
the other dynamic programming methods because fewer
trees are retained at each step. IPG without start state infor-
mation is similarly faster and more scalable than the previ-
ous dynamic programming algorithm because it is also able
to retain fewer trees. These results show that incorporating
incremental policy generation greatly improves the perfor-
mance of dynamic programming, allowing it outperform the
leading top-down approach on two of the tree test problems.

Approximate approaches

We now examine the performance increase achieved by in-
corporating the incremental policy generation approach into
the leading approximate algorithm, PBIP. Only PBIP is used
because it always produces values at least as high as IMBDP
(Seuken and Zilberstein 2007a) and MBDP-OC (Carlin and
Zilberstein 2008) and is more scalable than MBDP (Seuken
and Zilberstein 2007b). It is worth noting that IPG can also
be incorporated into each of these algorithms to improve
their efficiency. The same domains as above are used with a
choice for MAXTREES fixed at 3 for each algorithm. Due to
the stochastic nature of PBIP, each method was run 10 times
and the mean values and running times are reported.

Experimental results are shown in Table 3 with PBIP
and PBIP with the incremental policy generation approach
(termed PBIP-IPG). It can be seen that PBIP is unable to
solve the Meeting in a 3 by 3 Grid or Mars Rover problems
for many horizons in the allotted time (12 hours). Incorpo-
rating IPG allows PBIP to solve these problems for much
larger horizons. On the Box Pushing domain, PBIP is able
to solve the problem on each horizon tested, but PBIP-IPG
can do so in at most half the running time. These results
show that while the branch and bound search used by PBIP
allows it to be more scalable than MBDP, it still cannot solve
problems with a larger number of observations. Incorporat-
ing IPG allows these problems to be solved because it uses
action and observation information to reduce the number of
trees considered at each step. Thus, the exponential affect of
the number of observations is reduced by the IPG approach.

Figure 3 shows the running time for different choices of
MAXTREES (the number of trees retained at each step of dy-
namic programming) on the Box Pushing domain with hori-
zon 10. While the running time increases with the number
of MAXTREES for both approaches, the time increases more
slowly with the IPG approach. As a result, a larger number
of MAXTREES can be used by PBIP-IPG. This is due to
more efficient backups, which produce fewer horizon t + 1
trees for each horizon t tree. These results, together with

Horizon PBIP PBIP-IPG Value
Meeting in a 3x3 Grid, |S| = 81, |Ai| = 5, |Ωi| = 9

10 x 352s 3.85
100 x 3084s 92.12
200 x 13875s 193.39

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
100 536s 181s 598.40

1000 5068s 2147s 5707.59
2000 10107s 4437s 11392.03

Stochastic Mars Rover, |S| = 256, |Ai| = 6, |Ωi| = 8
2 106s 19s 5.80

10 x 976s 21.18
20 x 14947s 37.81

Table 3: Running time and value produced for each horizon using
PBIP with and without incremental policy generation (IPG).

8

Figure 3: Running times for different values of MAXTREES on
the Box Pushing problem with horizon 10.

those from Table 3 show that incorporating the incremental
policy generation approach allows improved scalability to
larger horizons and a larger number of MAXTREES.

Conclusion

In this paper, we introduced the incremental policy gener-
ation approach, which is a more efficient way to perform
dynamic programming backups in DEC-POMDPs. This is
achieved by using state information from each possible ac-
tion taken and observation seen to reduce the number of trees
considered at each step. We proved that this approach can
be used to provide an optimal finite-horizon solution and
showed that this results in an algorithm that is faster and
can scale to larger horizons than the current dynamic pro-
gramming approach. We also showed that in two of three
test domains, it solves problems with larger horizon than the
leading optimal top-down approach, clustering GMAA∗.

Incremental policy generation is a very general approach
that can improve the efficiency of any DEC-POMDP algo-
rithm that uses dynamic programming. To test this general-
ity, we also incorporated our approach into the leading ap-
proximate algorithm, PBIP. The results show that resource
usage is significantly reduced, allowing larger horizons to
be solved and more trees to be retained at each step.

Because incremental policy generation uses state infor-
mation from the actions and observations, it should work
well when a small number of states are possible for each ac-
tion and observation. In contrast, clustering GMAA∗ uses
the value of agent policies to cluster action and observa-
tion histories. Since these approaches use different forms
of problem structure, it may be possible to combine them ei-
ther by producing more focused histories when making use
of start state information or better heuristic policies for use
with MBDP-based approaches. Other work has also been
done to compress policies rather than agent histories, im-
proving the efficiency of the linear program used for pruning
(Boularias and Chaib-draa 2008). By also incorporating in-
cremental policy generation, this combination of techniques
could be applied to further scale up dynamic programming
algorithms. Lastly, we plan to investigate the performance
improvements achieved by incorporating incremental policy
generation into infinite-horizon DEC-POMDP algorithms.

Acknowledgments

This work was supported in part by the Air Force Office of Sci-

entific Research under Grant No. FA9550-08-1-0181 and by the
National Science Foundation under Grant No. IIS-0812149.

References
Amato, C., and Zilberstein, S. 2009. Achieving goals in de-
centralized POMDPs. In Proc. of the Eighth Int. Joint Conf. on
Autonomous Agents and Multiagent Systems.
Bernstein, D. S.; Amato, C.; Hansen, E. A.; and Zilberstein, S.
2009. Policy iteration for decentralized control of Markov deci-
sion processes. Journal of AI Research 34.
Bernstein, D. S.; Hansen, E.; and Zilberstein, S. 2005. Bounded
policy iteration for decentralized POMDPs. In Proc. of the Nine-
teenth Int. Joint Conf. on Artificial Intelligence.
Boularias, A., and Chaib-draa, B. 2008. Exact dynamic program-
ming for decentralized POMDPs with lossless policy compres-
sion. In Proc. of the Eighteenth Int. Conf. on Automated Planning
and Scheduling.
Carlin, A., and Zilberstein, S. 2008. Value-based observation
compression for DEC-POMDPs. In Proc. of the Seventh Int. Joint
Conf. on Autonomous Agents and Multiagent Systems.
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. Incremen-
tal pruning: A simple, fast, exact method for partially observable
Markov decision processes. In Proc. of the Thirteenth Conf. on
Uncertainty in Artificial Intelligence.
Dibangoye, J. S.; Mouaddib, A.; and Chaib-draa, B. 2009. Point-
based incremental pruning heuristic for solving finite-horizon
DEC-POMDPs. In Proc. of the Eighth Int. Joint Conf. on Au-
tonomous Agents and Multiagent Systems.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004. Dy-
namic programming for partially observable stochastic games. In
Proc. of the Nineteenth National Conf. on Artificial Intelligence.
Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and Marsella, S.
2003. Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. In Proc. of the Nineteenth
Int. Joint Conf. on Artificial Intelligence.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008. Optimal
and approximate Q-value functions for decentralized POMDPs.
Journal of AI Research 32.
Oliehoek, F. A.; Whiteson, S.; and Spaan, M. T. J. 2009. Loss-
less clustering of histories in decentralized POMDPs. In Proc. of
the Eighth Int. Joint Conf. on Autonomous Agents and Multiagent
Systems.
Seuken, S., and Zilberstein, S. 2007a. Improved memory-
bounded dynamic programming for decentralized POMDPs. In
Proc. of the Twenty-Third Conf. on Uncertainty in Artificial Intel-
ligence.
Seuken, S., and Zilberstein, S. 2007b. Memory-bounded dynamic
programming for DEC-POMDPs. In Proc. of the Twentieth Int.
Joint Conf. on Artificial Intelligence.
Seuken, S., and Zilberstein, S. 2008. Formal models and algo-
rithms for decentralized control of multiple agents. Journal of
Autonomous Agents and Multi-Agent Systems 17(2).
Szer, D., and Charpillet, F. 2006. Point-based dynamic program-
ming for DEC-POMDPs. In Proc. of the Twenty-First National
Conf. on Artificial Intelligence.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. MAA*: A
heuristic search algorithm for solving decentralized POMDPs. In
Proc. of the Twenty-First Conf. on Uncertainty in Artificial Intel-
ligence.

9

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

