
Navigation Planning in Probabilistic Roadmaps with Uncertainty

Michael Kneebone and Richard Dearden
School of Computer Science
University of Birmingham
Birmingham, B15 2TT, UK

mlk,rwd@cs.bham.ac.uk

Abstract

Probabilistic Roadmaps (PRM) are a commonly used class
of algorithms for robot navigation tasks where obstacles are
present in the environment. We examine the situation where
the obstacle positions are not precisely known. A subset of
the edges in the PRM graph may possibly intersect the obsta-
cles, and as the robot traverses the graph it can make noisy
observations of these uncertain edges to determine if it can
traverse them or not. The problem is to traverse the graph
from an initial vertex to a goal without taking a blocked edge,
and to do this optimally the robot needs to consider the ob-
servations it can make as well as the structure of the graph.
In this paper we show how this problem can be represented
as a POMDP. We show that while too large to be solved with
exact methods, approximate point based methods can provide
a good quality solution. While feasible for smaller examples,
this approach isn’t scalable. By exploiting the structure in the
belief space, we can construct an approximate belief-space
MDP that can be solved efficiently. We demonstrate that this
gives near optimal results in most cases while achieving an
order of magnitude speed-up in policy generation time.

Introduction
This paper examines the problem of path planning in the face
of obstacles whose positions are not known with certainty.
The approach we take is to extend Probabilistic Roadmap
(PRM) planning to handle uncertainty and observations.

Probabilistic Roadmaps (Kavraki and Latombe 1998) are
a popular technique for path planning in high dimensional
spaces. They are applicable in many situations including
robot arm motion planning and path planning for mobile
agents. PRMs generate a random graph with vertices repre-
senting reachable robot poses and edges representing motion
from one pose to another. This graph is then searched for a
path from the initial state to the goal. Their success is due to
the fact that they reduce search in a large continuous space
into a graph search. However, most PRM approaches rely
on the assumption that the planner knows the locations of all
obstacles in the environment prior to building the roadmap
graph or plotting a route. There are many instances where
this is not the case, for example when moving over longer
distances than the sensors can measure, or when obstacles
are obscured by others in front of them.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our approach assumes the agent is initially uncertain
about obstacle locations and hence about which graph edges
are blocked. The system builds a plan to reach the goal that
makes observations of these uncertain edges to determine
which are blocked and which it can use. The planned route
is then based on both the agent’s belief about which edges
are usable and on the value of being able to make better ob-
servations about the obstacle locations. This contrasts with
previous approaches because we explicitly reason about the
information we receive while executing the plan.

We will assume that most edges in the graph can be tra-
versed with certainty, and that there are only a relatively
small number of uncertain edges. We can think of this as a
decision-theoretic model identification problem where there
are m uncertain edges, hence 2m possible models. By rep-
resenting this as a POMDP and then applying a number of
techniques to exploit model structure, we show that the prob-
lem can be made tractable without significantly compromis-
ing plan quality. We provide a variety of approximations that
trade off solution time and computation time.

Probabilistic Roadmaps

Probabilistic Roadmap (Kavraki and Latombe 1998) plan-
ners find paths for robotic agents by searching over a graph
of possible configurations of that agent. By sampling ran-
dom values for each degree of freedom of the agent to create
a complete configuration (pose), a PRM planner is capable
of “exploring” the entire configuration space (C-space) for a
given agent. Not all configurations in the space will be us-
able due to obstacles or self-collisions, so the n-dimensional
space is conceptually divided into two non-contiguous ar-
eas named Cfree and Cobst for free and obstructed con-
figurations respectively. A PRM graph is built in the pre-
processing phase of the planner by using a sampling algo-
rithm which randomly generates configurations for the agent
and then either accepts or rejects the generated poses. The
simplest strategy is to reject all poses that intersect Cobst.

The graph is completed by taking each sampled vertex
and attempting to create k edges to neighbouring vertices by
checking for a collision-free route between the two vertices.
In the query phase of PRM, a completed graph can then be
searched rapidly for paths between two arbitrary poses using
standard graph search algorithms.

To model uncertain obstacles we assume we have proba-

209

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

bility distributions over the positions of the obstacle vertices.
We generate a PRM graph in advance in which some edges
may intersect the uncertain obstacles. We then build a path
plan that traverses the graph optimally, given the fact that ob-
servations will be made as we get closer to the obstacles that
will allow us to determine which edges are obstacle-free.
In real world domains we can determine edge dependencies
and observation probabilities by sampling obstacle positions
from their distributions.

Model Formulation

To formulate this uncertain PRM in a tractable way, we rep-
resent the obstacle locations only in terms of their effect on
the uncertain edges, and consider the problem as one of ef-
ficiently traversing the PRM graph.

Let G = {V,E} be a graph where the vertices V =
{v1, ..., vn} represent robot poses, and the edges E =
{e1, ...ek}, where ei = 〈v, v′〉, represent paths between
poses (we assume that if there is a path 〈v, v′〉, then there
is a corresponding path 〈v′, v〉). We also identify locations
vS and vG, the start and goal poses. Each edge e has a cost
ce of traversing it.

When we visit a vertex of the graph, we make obser-
vations of all the uncertain edges from our new location,
and we receive information about whether the edges are
obstacle-free1. We will assume that for each edge ei we
observe either fi, meaning that we observe the edge to be
collision-free, or bi if the edge appears blocked. These
observations are uncertain, in that if the edge is collision-
free, we may still observe bi some of the time, and vice
versa. Assume there are m uncertain edges. We write
o =< o1, . . . , om > for an observation of each of the un-
certain edges, where oi is either fi or bi.

Although we can’t observe it directly, there is in fact a true
state of the world in which each edge is either collision-free
or blocked. Let W = {w1, . . . , w2m} be the set of all such
worlds. We write P(o|vi, wj) for the probability of making
observation o from location vi if the true state of the world
is wj . While we’ve abstracted away the obstacle locations
in this representation, the fact that the traversability of the
edges is based on obstacle locations is important because it
implies that for close edges, the probability that the edges are
blocked may not be independent. If the edges are indepen-
dent, then the likelihood that world w is the true state of the
world is simply the product of the likelihoods of each edge
being collision-free or blocked. If this is not true (for exam-
ple, where one obstacle is likely to intersect two edges), then
the edge probabilities are dependent, and the probability of
each world must be maintained separately in the belief state.

For the purpose of exposition, to find an optimal path in a
PRM graph with no uncertain edges we could represent the
problem as a Markov decision problem (MDP) where the
state space S = V , the action space A = {goto-v : v ∈ V }
(note that not all actions in this model are applicable in every

1If not all edges are visible, we assume we receive an observa-
tion that gives no information about those edges.

S

A

B

C

G

2

1

2
2

2 5

2

Figure 1: A small example PRM graph. This example graph
has one uncertain edge, which initially has P (blocked) =
0.5 (the dotted line indicates the uncertain edge). The state
of the edge can be observed with certainty from vertices A
and B.

state), and the reward and transition functions are given by:

R(s, goto-v) =
{ −ce if e = 〈s, v〉 and s �= vG

−∞ otherwise

where vG is a goal vertex, and

P (si, goto-sj , sj) =
{

1 if 〈si, sj〉 ∈ E
0 otherwise

Intuitively, the vertices correspond to states, edges corre-
spond to actions, all the transition probabilities are 0 except
for those that correspond to edges in the graph, and rewards
correspond to costs of traversing edges. This is a shortest
cost path problem with the goal being an absorbing state.

With uncertain graph edges present, the optimal route
may depend on observations made along it and the shortest
path may no longer be the most efficient. Figure 1 illustrates
this problem on a small PRM with only one uncertain edge.
For this example we assume that vertices A and B are close
enough to the obstacle to observe with certainty if edge AG
is blocked. If the edge is collision-free, the optimal path is
to move from S to A to G. If the edge is blocked, then S to
C to G is optimal, but if our current belief is that the edge is
blocked with p = 0.5, the optimal behaviour is to move to
B, observe the edge and then move to A or C as appropriate.
The optimal policy under uncertainty is different from the
optimal policies in either of the possible worlds.

As the agent always knows which vertex is the current lo-
cation, the choice of next vertex depends solely on the cur-
rent state, thus the model is Markovian. Each of the 2m

worlds is then a possible MDP, but we are uncertain which
MDP is the correct one, so we must take information gather-
ing actions as we traverse the graph by making observations.

POMDP Representation

We represent the model identification problem as
a partially observable MDP. A POMDP is a tuple
< S, A, O, T, H, R > where S and A are as before, O
is the set of possible observations, T = P(s, a, s′) is the
transition function that governs how an action changes the
state of the system, H = P(o|s, a, s′) is the observation
function that governs how likely each observation is given
a state, action and resulting state, and R = r(s, a) is the

210

Figure 2: The POMDP model of the graph in Figure 1. The
states and actions are shown, the rewards are as before. At
each vertex, we observe the vertex (letter) we are at. We
additionally observe A→G as free at A1 and B1 and as
blocked at A0 and B0.

reward function which specifies the immediate reward (or
cost) of doing a particular action in a state.

To translate our model identification problem into a
POMDP, the state space is the union of the state spaces for
the MDPs for each possible model, i.e. the set of all the
states in each world (giving n2m states). For Figure 1 the
ten (m = 1 and n = 5) possible states are shown in Fig-
ure 2. The action set is unchanged, consisting of one action
for each PRM vertex: five in this case. The rewards and
transition functions are the unions of the set of MDPs.

We define the function valid(v, v′, w) to represent the fact
that there is a collision-free edge in world w between v and
v′. Formally, valid(v, v′, w) is true if ∃e ∈ E : e = 〈v, v′〉
and e is collision-free in w.

We can now formally define the model identification
POMDP as follows:
• S = V ×W as described above. Each state is a combined
〈v ∈ V,w ∈W 〉 pair.

• A = {goto-v : v ∈ V } as above.
• O = P(o) an observation of all the uncertain edges, o =
〈o1, o2, . . . , om〉 where oi is an observation of uncertain
edge i.

• T is defined as follows:
P (〈v, w〉, goto-v′, 〈v′′, w′〉) ={

1 if w = w′, v′ = v′′, and valid(v, v′, w)
0 otherwise

T defines the probability of a transition from one state
to another. All transitions have probability zero except
transitions where the PRM states being moved between
are in the same world, and there is a collision-free edge in
that world between those two states.

• H is defined as follows:
P (o|〈v, w〉, goto-v′, 〈v′, w〉) ={

P(o|v′, w) if valid(v, v′, w)
0 otherwise

For brevity we have relaxed the notation compared to the
definition of T . H is the probability of an observation
given a state, action, and resulting state, and in this case
is defined solely by the resulting state. Whenever we per-
form an action in the POMDP, we get an observation of
whether each uncertain edge is collision-free or blocked.

C
0.5

G
0.5

S
0.5

B
0

A
0

B
1

A
1

S
0

S
1

C
0

C
10

G G
1

Figure 3: The optimal policy for the example graph in Figure
1. The policy shown is for starting from S with a probability
of 0.5 that the uncertain edge is blocked. The split arrow
from S indicates that the resulting state is unknown.

• R is defined as in the MDP model above by:

R(〈v, w〉, goto-v′) ={ −ce if e = 〈v, v′〉, valid(v, v′, w)
and v �= vG

−∞ otherwise

The belief state is a distribution only over the possible
worlds. If the probabilities that two edges are blocked are
not independent, this is represented in the POMDP model
by encoding the dependency in the belief state. The choice
of initial belief state is therefore crucial—it specifies any
edge dependencies to the agent in the world. We can rep-
resent the fact that two edges are always in the same state
(collision-free or blocked) by making all worlds in which
one is blocked and the other is not have prior probability
zero. The agent is then forced to believe those worlds are im-
possible. In our experiments we use the initial belief states
to set edges as being dependent or not as appropriate.

We can now solve this POMDP to find an optimal policy
under our uncertainty about which world we are in. States
reachable under any policy have non-zero probability for the
subset of the n2m POMDP states which represent the cur-
rent vertex, and zero for all others. Figure 3 shows the opti-
mal policy for Figure 1. Each circle contains the PRM graph
vertex and the belief that edge AG is collision-free.

A Continuous MDP Model

Solving even very small POMDPs is computationally hard.
In our case, there is a lot of structure in the POMDP belief
space. There are a number of general POMDP solvers that
exploit structure, for example point-based solvers (Pineau,
Gordon, and Thrun 2003; Spaan and Vlassis 2005), or belief
compression (Roy, Gordon, and Thrun 2005). General algo-
rithms don’t specialise towards one problem domain, so we
should be able to do significantly better by using algorithms
specific to the type of structure present.

In the case of our domain, the only belief states that are
possible are ones that are certain about which graph vertex
they are in, but have uncertainty over the which of the 2m

possible worlds is the true one. We now develop an approx-
imate MDP model that explicitly represents this structure.

211

Consider a problem such as the one in Figures 1 and 2
in which there is only a single uncertain edge. In this case,
every possible belief state consists of an underlying MDP
state plus a single probability of being in the obstacle-free
world. Thus we can solve this problem using an MDP solver
for continuous states (or approximately by discretising the
continuous variable). When we generalise this approach to
higher numbers of uncertain edges, the m uncertain edges
produce 2m possible worlds, since the edge probabilities
could be dependent on one another, leading to an MDP with
a state space containing 2m − 1 continuous variables.

To formulate this model as a discrete MDP, we discretise
the belief space over each continuous variable (the proba-
bility of each model). Since zero and one are important to
distinguish in these problems as they lead to smaller branch-
ing factors in the MDP, we discretise into d + 1 values
as follows: D = {0, 1/d, 2/d, . . . , (d − 1)/d, 1} where
every value in the range [i/d − 1/(2d), i/d + 1/(2d)) is
discretised to i/d, and 0 and 1 correspond to the ranges
[0, 1/(2d)) and [1 − 1/(2d), 1] respectively. Given such a
discretisation, and a set of 2m possible worlds, let P̃(wi)
be the probability of world i, discretised according to D.
Let P̃W = {P̃(w1), . . . , P̃(w2m)} such that

∑
i P̃(wi) = 1

be a discretised assignment of probability to every possible
world. Let P̃ = P(P̃W) be the set of all such assignments.

We can now define the discretised MDP formulation of
the problem as follows:

• S = V × P̃ is the set of states. It is the cross product of
the set of vertices in the PRM graph and the set of possible
discretised beliefs about which world is the true one.

• A = {goto-v : v ∈ V } as before.

• R, the reward function, is defined as follows:

R(〈v, P̃W 〉, goto-v′) =
∑
w

P̃(w)R(〈v, w〉, goto-v′) (1)

where R(〈v, w〉, goto-v′) is defined as in the POMDP for-
mulation above.

• T , the transition function, is somewhat complex to de-
fine as we have to specify both the transition probabilities
and the states that result. When we make a transition in
the POMDP formulation the actual transition is determin-
istic in the underlying states, but the observation (which
is stochastic) moves us from one belief state to another.
In the MDP formulation, the transitions with non-zero
probability correspond to all the observations that could
be made and the resulting states are the discretised be-
lief states that would result from making each observa-
tion. Let the transition probability be defined as follows:

p = P(〈v, P̃W 〉, goto-v′, 〈v′, P̃
′
W 〉)

We first consider the cases where p is non-zero. For this
to be true, 〈v, v′〉 ∈ E. Suppose we make an observation
o, then the belief state we move to is:

P̃ ′
W = {Pv′(w1|o, P̃W), . . . , Pv′(w2m |o, P̃W)}

where Pv′(wi|o, P̃W) is the new probability of being in
model i after observing o, which is:

Pv′(wi|o, P̃W) = P(o|v′,wi)P(wi)

P(o|v′,ePW)

= P(o|v′,wi)P(wi)P
j P(o|v′,wj)P(wj)

(2)

Where P(o|v, w) is defined in the PRM graph (it is the
probability of seeing observation o from vertex v if the
true world is w), and P(w) given by the prior world prob-
abilities from P̃W . We now discretise Pv′(wi|o, P̃W) to
produce the new belief state after the action.
It only remains to compute p, the probability of reaching
these belief states, and this is given by:

p = P(o|v′, P̃W)
=

∑
j P̃(wj)P(o|v′, wj)

(3)

For all states other than those identified above, p = 0.

As before, if two uncertain edges are correlated, this is re-
flected in the belief state over the possible worlds, so affects
only the initial state in the MDP.

Having defined the MDP, we can now solve it to get an
optimal (modulo the discretisation) policy for the POMDP,
and hence for the original PRM problem. We will refer to
this MDP formulation as the dependent MDP as it allows us
to represent belief states where there are arbitrary dependen-
cies between the probabilities that edges are collision-free.
The dependent MDP formulation is significantly quicker to
solve than the POMDP formulation of the problem.

LAO*

The starting state specifies the agent’s prior belief over
which world is the correct one, yet standard MDP planners
compute a policy for all states. Particularly in this domain,
many MDP states are never visited under any sensible pol-
icy. An obvious improvement therefore is to only consider
the value of states reachable from the start state.

Many modern methods take this approach in both MDP
(such as RTDP (Barto, Bradtke, and Singh 1993), envelope
methods (Dean et al. 1995)) and POMDP planning (Ross
et al. 2008). Since the MDPs we are solving are stochas-
tic shortest path problems, LAO* (Hansen and Zilberstein
2001) is a natural choice of solution algorithm. LAO* is
a heuristic search algorithm which builds a graph forwards
from the start state and expands leaf nodes according to a
heuristic akin to how A* explores a graph. Value iteration
updates (backups) are applied to those states in the current
best solution graph (BSG). LAO* terminates when there are
no remaining unexpanded nodes in the BSG and all node
values in it have converged values under value iteration.

Our problem domain allows admissible heuristics to be
easily devised for the algorithm. We use the shortest-path
cost to the goal assuming all edges are free as the heuristic.
This is efficiently computed using Dijkstra’s algorithm on
the PRM graph. LAO* exhibits large gains in performance
compared to a standard MDP solver that uses value iteration
over the full state space.

212

For small problems we can compare value iteration to
LAO* directly. On a graph of 6 vertices with 3 uncertain
edges and a discretisation of d=0.1 the resulting MDP con-
tains 7,986 states. The MDP solver took 205.8 seconds to
generate the optimal policy while LAO* produced a solu-
tion in 1.5 seconds from a start state where all three uncer-
tain edges were independently blocked with probability 0.5.
The BSG contained just 376 nodes. To evaluate the policies
LAO* finds, we implemented a simulator which randomly
samples ‘true’ world states according to the initial belief
distribution and executes the policy in each one. The total
incurred cost is recorded when the goal is reached. Trials
terminate with failure if a preset maximum number of steps
is exceeded or the policy tries to traverse a blocked edge.

Approximate LAO*

A disadvantage for LAO* in this domain is the large number
of MDP states (nodes) it has to expand and evaluate due to
the branching factor. Even small graphs can lead to large
numbers of reachable belief states and all nodes that may be
optimal must be evaluated. When LAO* expands a leaf and
an observation is made, the successor nodes’ belief states re-
flect this new information. Many observational vertices will
be reached under different belief states so many thousands
of new nodes get created. Many of these have a low prob-
ability of occurring, but have similar belief states (i.e. are
close in the belief space) and often share the same action.
We devised an extension to LAO* which takes advantage of
this with by weakening the definition of equality to allow
two nodes for the same graph vertex to be equal if the belief
states are similar. The Kullback-Leibler (KL) divergence is
a common measure of the difference between two probabil-
ity distributions, although not a true distance measure due to
its asymmetry. We therefore use an adapted, symmetrised
(Seghouane and Amari 2007) KL-divergence to measure the
distance between belief states:

KLsym(b, b′) =
1
2

∑
i

bi log2(
bi

b′i
) +

1
2

∑
i

b′i log2(
b′i
bi

)

Two belief states must have a KL divergence lower than a
preset maximum, maxKL, to be considered equal. On node
expansion, if a node with a belief state within maxKLalready
exists an edge is created to it instead of creating a new node.

During simulation of a policy, the belief state is main-
tained along with the agent’s current node in the LAO*
graph. When an observation is made the simulator computes
the new belief state. The agent’s next node is chosen from
the current node’s successors by selecting the node with the
lowest KL divergence from the new belief state.

Approximate Models

Although the MDP approach is faster than the POMDP
solver applied to the same problem, the MDPs it produces
may be too large to be practically solved. We propose two
approaches for reducing the state space and hence the com-
putational requirements at a cost in terms of optimality.

State Space Reduction

For a PRM graph with n vertices, m uncertain edges, and
a discretisation into d discrete values, the total number of
valid (belief distributions summing to one) MDP states is:

n
(d + 2m − 2)!

(d− 1)!(2m − 1)!
(4)

For a problem with 20 vertices in the graph, four uncertain
edges, and a discretisation of only 0.1 (11 values), this re-
sults in around 65 million states.

Examining Equation 4, we see that the major contributors
to the number of states are the discretisation and the num-
ber of worlds. We can reduce the discretisation to make the
MDP smaller, but this produces insufficient discretisation to
represent the probabilities accurately. A better approach is to
reduce the number of continuous variables needed to repre-
sent the belief state. The easiest way to do this is to assume
that the likelihood of each edge being blocked is indepen-
dent of all others. With this assumption, we don’t need to
maintain a belief distribution over all the possible worlds,
but instead we keep independent distributions for each edge.
This reduces the number of states from that given in Equa-
tion 4 to ndm, so our example above can be represented us-
ing under 300 thousand discrete states.

The changes that need to be made to the MDP formulation
for this independent model are to redefine the set of discre-
tised belief states, P̃. Rather than being the set of possible
probability distributions over all possible worlds, this is now
the set of products of individual distributions for each edge,
so P̃ = P(P̃E) where P̃E = {P̃(e1), . . . , P̃(em)} where
{e1, . . . em} is the set of uncertain edges. This then changes
the definition of the states space S, the reward function R,
and the transition function.

For the transition function, the change that needs to be
made is in the definition of P̃(w) for a world w. This is now
defined (by a slight abuse of notation) as:

P̃(w) =
∏
e∈w

P̃(e)
∏
e�∈w

(1− P̃(e)) (5)

where by e ∈ w we mean all the uncertain edges that are
collision-free in w. The rest of the MDP definition remains
the same, with Equation 5 substituted into Equations 1 to 3.

While the independent MDP formulation has a very sig-
nificant advantage in terms of the number of states and hence
the size of problems that can be solved, the policies it pro-
duces can be much worse than the dependent MDP formu-
lation. If two edges are perfectly correlated and the agent
observed one of them to be blocked, in the dependent case it
would know the other was too. In the independent case this
correlation can’t be represented, so the agent might travel to
the second edge on the assumption it is collision free.

Clustering Edges

In the PRM formulation of the problem, the obstacles cause
the edges to be blocked. This means that if two edges are
very close to one another in the PRM graph and are close to
the same obstacle, it is very likely that their probabilities of

213

being blocked are dependent. On the other hand, two edges
that are far apart in the PRM graph are almost certainly in-
dependent. This observation leads us a second state reduc-
tion technique that lies between the extremes of complete
dependence and independence. We want to retain the bene-
fit of representing edge dependencies where they exist, but
reduce the complexity of the belief space by not represent-
ing dependencies between independent edges. The idea is
to cluster together edges that are close to one another, while
leaving far away edges independent. Intuitively this makes
the space of possible worlds the cross product of a set of
smaller clusters of edges.

The clustered formulation allows the agent to infer infor-
mation about edges it hasn’t directly received an observation
about via dependence in the belief state, but still to benefit
from the computational advantages of ignoring dependen-
cies for independent edges. With clustering, the quality of
the policy doesn’t suffer to the same extent as with an as-
sumption of total independence between edges.

For brevity, we omit the definition of the clustered MDP
here, but intuitively, it is analogous with the independent
case above. For each cluster of n uncertain edges, there is a
continuous variable for each of the 2n worlds, but these are
independent of the other clusters.
Theorem 1. The optimal policy for the dependent MDP is
no worse than the optimal policy for the clustered and inde-
pendent MDPs (neglecting the effects of discretisation).

We prove this by observing that since every state in the
independent (or clustered) MDP is also represented in the
dependent MDP, and since the action space is the same, if
a state in the independent MDP has a better action than the
corresponding state in the dependent MDP, that action would
also be available in the dependent MDP. For it to be better
in the independent MDP, it must have higher value, but then
it would have a higher value in the dependent MDP than the
optimal action, which is a contradiction.
Corollary 1. The optimal policy for the clustered MDP is
no worse than the optimal policy for the independent MDP.

Related Work

Approximate POMDP solving To improve the scalability
of POMDP planners many approximate solution algorithms
have been devised. These algorithms commonly differ from
exact solvers by only computing the value function over a
subset of belief space. Modern point-based techniques use
the starting belief state to explore only those belief points
that are reachable by the agent and perform value function
updates only at those points. A recent efficient point-based
solver is PERSEUS (Spaan and Vlassis 2005). PERSEUS dif-
fers from earlier point-based techniques (Pineau, Gordon,
and Thrun 2003) by maintaining a fixed set of belief states,
B, to plan for, as opposed to interleaving expanding the set
of belief points with performing value backups on them. The
set B is created by letting the agent perform random walks
through the environment from the start state and recording
the belief states visited. The value function is then updated
by repeatedly selecting a random sub-set of the points in B,
computing a new vector over those belief points and adding

this vector to the new value function if it is better than the
current value function’s estimate. As each new vector im-
proves the value estimate for some subset of B, this sub-
set can be ignored for the rest of the current iteration. New
value vectors are added until all b ∈ B have been improved.
PERSEUS has been shown to achieve results comparable to
other optimal solvers, often in a much quicker time. We use
a Matlab implementation of PERSEUS2 (all other implemen-
tations are in Java) in our experiments to compare a point-
based POMDP algorithm to the MDP models.

Static Route Planning Substantial research into uncertain
motion planning exists, but we restrict ourselves to domains
with deterministic actions but unknown obstacles since this
has received less attention in the literature. Standard nav-
igation approaches operate directly on the PRM graph and
use uncertainty about the obstacle positions to compute a
static route offline, so don’t account for future information
gains. An example is Burns and Brock (2006), who explore
map uncertainty by using a lazy approach to roadmap con-
struction which builds roadmaps as queries are evaluated.
Roadmap refinement techniques are employed that increase
the detail of sensing in tricky areas if a generated route falls
below a preset confidence threshold. The idea of associating
a “success probability” with edges is used by several imple-
mentations and is similar to the first stage of processing used
in (Nielsen and Kavraki 2000).

The Minimum Collision Cost (MCC) planner (Missiuro
and Roy 2006) plots a static route over a PRM graph (us-
ing A*) by considering the cost of a collision on each edge.
Instead of minimising total path cost the algorithm seeks to
minimise the expected collision cost over the graph. The
following equation is used instead of the standard ce:

cMCC
e = Pcol(e) ∗ Cconst + (1− Pcol(e)) ∗ ce

where Pcol(e) is the independent prior collision probability
of traversing edge e and Cconst is a fixed cost of collision.
Higher values for Cconst make the MCC planner more con-
servative about including uncertain edges in its route.

To allow for a fairer comparison in our experiments, we
allow the agent to replan using MCC if it reaches a vertex
connected to an uncertain edge and finds that edge blocked.
Before the MCC planner is invoked, Pcol(e) for each uncer-
tain edge is set to the same collision probability as in the
POMDP start state, ensuring both approaches receive the
same initial knowledge.

Experiments

To investigate the effectiveness of the three MDP models
and approximate LAO*, we generated six random PRM
graphs with 40 vertices and a maximum of four edges per
vertex (maxce = 200) using the standard PRM algorithm.
These produce POMDP that are too large to solve exactly
to find the optimal policy. Each graph had five uncertain
edges, and since all edges were generated to be outside the
mean positions of the obstacles, the prior probabilities that

2Available from http://staff.science.uva.nl/
˜mtjspaan/pomdp/index_en.html

214

the uncertain edges were traversable were always at least
0.5. Starting belief states were handcrafted to ensure some
edges were dependent on each other while others were inde-
pendent. Unlike many other applications, random graphs are
good indicators of real world performance here because the
PRM algorithm works with random graphs. Unfortunately,
the randomness (in this case mostly due to the random po-
sitioning of obstacles) leads to widely varying performance,
making a statistical analysis of performance difficult.

Since vertices that don’t provide observations have no ef-
fect on the policy we perform a pre-processing stage on each
PRM graph to remove these inconsequential vertices (except
vS and vG) and add edges between observational vertices
with ce equal to the shortest route cost between them. This
reduces |S| for the POMDP by h2m for h removed vertices.

We ran standard and approximate LAO* with the indepen-
dent, clustered and dependent models as well as the MCC
planner and PERSEUS. Each graph had a number of uncer-
tain edges where the probabilities were correlated and the
clustered model was constructed so that only some of the
correlated edges were clustered while others were treated as
independent (otherwise the clustered and dependent MDPs
would have produced the same policy). Table 1 compares
the algorithms on each graph, showing the average and max-
imum cost to reach the goal and policy generation times.

We can’t compare policies directly by their value func-
tions because these don’t reflect the true, dependent model.
The independent (and clustered) MDPs compute their pol-
icy on the assumption that edges are independent so will
obtain different values which may not be correct. All poli-
cies were evaluated using 50,000 simulations in the full de-
pendent model. All experiments were run on a 2.33Ghz
Xeon E5345 with 500MB of process memory, and with
d=1 × 10−5 and discount factor γ =0.999 for LAO*. For
the POMDP, a value function tolerance of ε=1× 10−3 was
used with γ = 0.95 to ensure convergence in feasible time.
The MCC planner treats each edge independently ignoring
any dependencies—observing an edge never gives the agent
any information about any other edge.

As the results show, there is considerable difference be-
tween the graphs. In all cases, the MCC planner is the fastest
by a wide margin, but policy performance never surpasses
the independent MDP. Since MCC never considers the value
of future information it can rarely find an optimal policy. In
graphs 1 and 3 it matches the independent MDP, which sug-
gests that the optimal policy under independence is to first
try the shortest route to the goal, attempting successively
longer routes if blocked edges are observed. When edge
dependencies are represented in the alternate MDP models,
lower cost policies can be found. MCC also requires select-
ing a suitable Cconst, which is highly problem dependent,
lacking a simple way to choose ‘good’ values to guarantee
performance. High values make the planner avoid most un-
certain edges, choosing safe routes with higher cost.

PERSEUS achieves good results in all but one case, but
requires orders of magnitude more computation time and is
therefore infeasible for most problems. Only in graphs 1
and 2 does it fail to match the dependent MDP in average
cost. Its variance for graph 2 was 0 showing the same route

LAO* App.LAO* MCC PRS.I C D I C D

G
rp

h
1 Avg 1057 1018 F 1055 1019 1018 1054 1045

Max 2278 1929 F 2278 1929 1929 2278 2301
T 276 47182 F 76 250 660 < 2 6h41m

G
rp

h
2 Avg 1475 1475 1470 1475 1477 1470 1523 1813

Max 2097 2097 1993 2097 2097 1993 2124 1813
T 158 220 2302 182 100 330 < 1 48m

G
rp

h
3 Avg 988 913 F 987 911 912 986 911

Max 1431 1360 F 1431 1360 1362 1430 1351
T 544 36656 F 130 234 848 < 3 2h59m

G
rp

h
4 Avg 1212 1212 1212 1211 1212 1212 1217 1210

Max 1452 1452 1452 1452 1452 1452 1451 1451
T 92 226 2020 108 130 346 < 1 1h17m

G
rp

h
5 Avg F F F 1603 1612 1613 1650 1570

Max F F F 1893 3326 3236 1891 1880
T F F F 1774 812 1784 < 3 7h53m

G
rp

h
6 Avg 1501 1426 F 1499 1425 1426 1526 1426

Max 2215 2123 F 2215 2123 2123 2062 2123
T 1422 5686 F 198 300 798 < 2 8h24m

Table 1: A comparison of algorithm performance on six ran-
dom graphs. I=independent, C=clustered, D=dependent. All
times (T) in ms unless stated, averaged over five runs. Av-
erage simulation costs taken from 50,000 trials. For approx-
imate LAO*, maxKL = 0.1. MCC Cconst = 300. PERSEUS
belief set size is 50,000.

was always followed. In this case it avoided uncertain edges,
using a safe, long path. In both cases the poorer performance
appears to be due to the point-based approximation.

Clustered and dependent MDP performance matches or
exceeds the independent model in all cases. The lower max-
imum costs attained in graphs 1,3 and 6 indicate the agent
was acting better than the independent MDP in trials where
some edges were blocked. The observations in these graphs
are better exploited by the agent when it can reason about the
edge dependencies—less cost is incurred observing uncer-
tain edges correlated to an edge already observed as blocked.

On graphs 2 and 4, the MDP solution qualities were al-
most identical for all methods (the difference between the
independent and clustered costs in approximate LAO* are
within the error margin of the simulator). This appears to be
because the optimal policies didn’t need to use the informa-
tion about edge dependencies as either the dependent edges
weren’t used, or the optimal policy visited vertices that gave
information about both uncertain edges. In most other ex-
amples we see that there is a significant advantage to being
able to reason about the correlated edges, but that the reach-
able state space of the dependent MDP is so much larger that
standard LAO* ran out of memory before finding a solution.
The geometry of graph 5 is unique in that at least one uncer-
tain edge must be traversed to reach the goal. As our model
provides no ‘give-up’ action, the optimal policy is hard to
compute from states where no goal can be reached. This is
the most likely reason why standard LAO* fails here.

The dependent model is always closest to optimal, but as
our results show, even with five uncertain edges the reach-
able state space is too large for standard LAO* solve reliably.
Approximate LAO* retains the policy quality of standard
LAO* while solving significantly quicker. The time advan-

215

Graph 1 Graph 6
maxKL T(ms) #Nodes F T(ms) #Nodes F

S 47182 287853 0 5686 24361 0
0.05 352 1549 0 266 917 0
0.1 250 1022 0 300 918 0
0.2 94 497 5 128 515 0
0.5 62 228 8 84 193 47

Table 2: Comparison of graph sizes for approximate LAO*
with varying maxKL. S=Standard LAO*, #Nodes=nodes
created, T=time, F=% trials with goal not reached.

tage is clearly highly problem dependent, gaining an order
of magnitude speedup in extreme cases, while being slightly
slower in two. Observations in the graph strongly affect how
much state space must be explored to find the optimal policy
and is the main contributor to the variations which can also
be seen in the POMDP timings.

Table 2 shows brief results from increasing maxKLon two
of the graphs (these two show the most significant effects
from changing the approximation threshold). Higher thresh-
olds reduced the number of nodes created, since more distant
belief states are treated as equal. Planning time is reduced
as fewer node evaluations occur, but this must be traded-off
against a reduction in plan quality due to observation infor-
mation being hidden by approximation, thus hindering the
creation of optimal plans. The reduction in plan quality is
hard to show directly because as the threshold is increased
some policies do not reach the goal in every possible world,
leading to infinite policy costs. Instead we show (in the col-
umn labelled F in Table 2) the percentage of trials where the
policy found does not lead to the goal.

The clustered representation is frequently quite close in
terms of performance to the dependent MDP and are gener-
ally significantly faster to compute, and approximate repre-
sentation of the belief space allows for efficient exploration
without sacrificing policy quality. The advantages of the
clustered representation are that it can be customised to the
particular graph—if there are uncertain edges where a sig-
nificant benefit could be gained by treating them as corre-
lated, they can be clustered while the others can be left inde-
pendent. It is also more scalable than the dependent MDP to
higher numbers of uncertain edges by avoiding doubling the
number of possible worlds with each additional edge. One
area of future work is to look at how this decision could be
made automatically without having to compute the policies.

Conclusions

We have shown that the problem of planning in PRM graphs
with uncertain obstacle locations can be thought of as a
model identification problem, and can be represented as a
POMDP. The POMDP solution isn’t viable for real-world
problems. PERSEUS, like LAO* gains a computational ad-
vantage by rolling out the graph from the starting state to
reduce the plan space, however it can’t account for the low
probability of reaching some states, or for the extra structure
in these problems. Although it doesn’t suffer from the ap-
proximation introduced by discretising the belief state and

hence is closer to optimal in some of the graphs, PERSEUS
cannot exploit the problem structure as effectively as our ap-
proach, so is orders of magnitude slower.

We have shown that this POMDP has a very structured
belief space and that it can be represented and solved effi-
ciently using an MDP approximation. We developed several
approximations. The dependent MDP produces policies that
perform closest to optimal, but the state space grows expo-
nentially as uncertain edges are added, making policy com-
putation harder. A clustered approach retains the advantages
of a fully dependent model while scaling to more complex
examples by reducing the growth of the state space. When
dependencies between edges are weak, the dependent pol-
icy doesn’t gain much advantage since there is no benefit to
representing the additional states. Ignoring small variances
in the belief state allows for easier exploration of the belief
space to obtain good policies in a much quicker time. An
important area for future work will be to test the scalability
of approximate LAO* extension to larger graphs with more
uncertain edges as these are the largest contributing factor to
the state space size.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1993. Learning to
act using real-time dynamic programming. Technical Report UM-
CS-1993-002, University of Massachusetts, Amherst MA 01003.
Burns, B., and Brock, O. 2006. Sampling-based motion plan-
ning using uncertain knowledge. Technical report, University of
Massachusetts Amherst.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A. 1995.
Planning under time constraints in stochastic domains. Artificial
Intelligence 76(1–2):35–74.
Hansen, E. A., and Zilberstein, S. 2001. LAO * : A heuristic
search algorithm that finds solutions with loops. Artificial Intelli-
gence 129(1-2):35–62.
Kavraki, L. E., and Latombe, J. 1998. Probabilistic roadmaps for
robot path planning. John Wiley, West Sussex, England. 33–53.
Missiuro, P., and Roy, N. 2006. Adapting probabilistic roadmaps
to handle uncertain maps. In Proceedings 2006 IEEE Interna-
tional Conference on Robotics and Automation, 1261–1267.
Nielsen, C., and Kavraki, L. E. 2000. A two level fuzzy PRM for
manipulation planning. In The IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), volume 3, 1716–
1722. IEEE Press.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In International
Joint Conference on Artificial Intelligence (IJCAI), 1025 – 1032.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008. Online
planning algorithms for POMDPs. Journal of Artificial Intelli-
gence 32:663–704.
Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding approximate
pomdp solutions through belief compression. Journal of Artificial
Intelligence Research 23:1–40.
Seghouane, A. K., and Amari, S. I. 2007. The AIC criterion and
symmetrizing the kullback-leibler divergence. IEEE Transactions
on Neural Networks 18(1):97–106.
Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artificial
Intelligence 24:195–220.

216

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

