
Composition of Partially Observable Services Exporting their Behaviour

Giuseppe De Giacomo, Riccardo De Masellis, Fabio Patrizi
Dipartimento di Informatica e Sistemistica

SAPIENZA - Università di Roma
Via Ariosto 25 - 00185 Roma, Italy

{degiacomo,demasellis,patrizi}@dis.uniroma1.it

Abstract

In this paper we look at the problem of composing services
that export their behavior in terms of a transition system,
characterizing the choices of actions given to a client at each
point in time. The composition consists of synthesizing an
orchestrator that coordinates the available services so as to
mimic the desired target service asked by the client. Specif-
ically, in this paper we study the “conformant form” of the
problem, where available services are partially controllable
and partially observable, and hence, the orchestrator has to
make its decisions exploiting the observations made so far
only. We give a sound and complete procedure to synthesize
the orchestrator in such case, and characterize the computa-
tional complexity of the problem. The procedure is based on
working with belief (or knowledge) states, a standard tech-
nique to tackle conformant planning. Moreover we show that,
although in general unavoidable, the powerset construction at
the base of the belief state approach can be delegated to the
symbolic manipulations of the game-structure model check-
ing tool (TLV), which can be used to efficiently implement the
orchestrator synthesis procedure.

Introduction

Planning, in its classical formulation, is probably the most
long standing and successful example of automated pro-
gram synthesis in CS and AI. However, several other forms
of automated program synthesis are increasingly attract-
ing the scientific community. These include automated
synthesis of reactive systems from logical specifications,
e.g., expressed in LTL, which is quickly becoming one of
the main new frontiers for model checking (Vardi 2008).
Also, logics such as ATL (Alur, Henzinger, and Kupfer-
man 2002), where checking a property amounts to check
for the possibility of synthesizing a strategy (which is a
sort of program/plan), are considered an important founda-
tion of the multi-agent system formal specification (van der
Hoek, Roberts, and Wooldridge 2007). Moreover, sev-
eral variants of automated service composition synthesis
are being investigated in the CS and AI literature, some
of which considering services as atomic and using off-the-
shelf Planning technology, e.g., (Klusch and Gerber 2006;
Hatzi et al. 2008), but also considering services character-
ized by a complex behaviours modelling agents, devices,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

components and modules, e.g., (McIlraith and Son 2002;
Berardi et al. 2005; Pistore, Traverso, and Bertoli 2005;
Hull 2005; Sardiña, De Giacomo, and Patrizi 2008; Lustig
and Vardi 2009). While Planning results cannot be directly
applied in the latter cases, the vast literature on Planning can
shed some light on issues typically faced in this form of au-
tomated program synthesis as well, and suggest applicable
techniques and solutions (as in the case of the present work).

In this paper, we look at the problem of composing ser-
vices that export their behavior in terms of a (finite-state)
transition system, characterizing the choices of actions given
to the client at each point in time. Services can be thought
of as reactive components that, step by step, can be asked
for executing one action among those available in their cur-
rent state and that, as a result of action execution, change
their current state, thus making available a new set of ex-
ecutable actions. Notice that, services are not necessar-
ily meant to terminate, since may describe (interactive) be-
haviors that are supposed to run forever. So, while transi-
tion systems are finite, the behaviours they describe is in-
finite, i.e. they contain loops. The composition task we
are interested in consists of synthesizing an orchestrator
that coordinates the available services and repurposes them
by extracting suitable fragments, so as to mimic a desired
target service asked by a client, as long as asked by the
client (possibly forever) (De Giacomo and Sardiña 2007;
Sardiña, De Giacomo, and Patrizi 2008).

Interesting connections exist between such a form of com-
position and Planning, in particular wrt the basic notions
of operators, goal, and plan. Operators, instead of being
atomic actions as typical in Planning, are full fledged ser-
vices represented as transition systems. The goal, instead
of being a state of affair to reach, is, again, a full fledged
service, called target service, describing the behavior that
the client desires to interact with. A plan, instead of being
a controlled sequential composition of available operators,
is a controlled concurrent composition of available services,
called orchestrator. Solving the planning problem amounts
to synthesize a orchestrator which is able to maintain over
time the client’s ability of choosing the desired action, in-
stead of synthesize a sequence of actions able to reach a de-
sired state of affair as typical in Planning.

Planning comes in several fundamental forms, namely,
“classical”, “conditional”, and “conformant” (Ghallab, Nau,
and Traverso 2004). We start our work by observing that,
such distinctions can be applied also to our problem. In

90

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

the classical form –the simplest case– available service is
deterministic and hence fully controllable by the orchestra-
tor. This form was first studied in the context of service
composition (Berardi et al. 2005). In the conditional form,
available services are nondeterministic and hence only par-
tially controllable. As a consequence, the orchestrator has
to sense/observe the resulting services’ states before decid-
ing what to do next. This form of composition has been
studied mainly in the AI literature, in the context of agents’
and devices’ composition (De Giacomo and Sardiña 2007;
Sardiña, De Giacomo, and Patrizi 2008; Stroeder and Pag-
nucco 2009). Finally, in the conformant form, available ser-
vices are not only partially controllable, but also partially
observable, hence the orchestrator has to make its decisions
based on the observations made so far only.

In this paper we give two main contribution. The first
contribution is a sound and complete procedure to synthe-
size an orchestrator in the conformant case, and characterize
the computational complexity of the problem. Our proce-
dure is based on working with belief (or knowledge) states, a
standard technique to tackle conformant planning (Goldman
and Boddy 1996), which however is typically sound but in-
complete when dealing with infinite/unbounded behaviors,
as in our case (Sardiña, De Giacomo, and Patrizi 2008) (cf.
Conclusions). Here, instead, we show that the technique is
indeed complete for the problem at hand and in fact optimal
wrt the computational complexity. The second contribution
has a more practical flavor, we show that, although in gen-
eral unavoidable, the powerset construction at the base of
the belief state approach can, in our case, be delegated to the
symbolic manipulations of the game-structure model check-
ing tool (TLV) (Piterman, Pnueli, and Sa’ar 2006), which is
used for efficiently implement the orchestrator synthesis.

Preliminaries

Here we briefly summarize the framework proposed in
(De Giacomo and Sardiña 2007; Sardiña, De Giacomo, and
Patrizi 2008).
Services. A service, at each step, offers to its clients a choice
of actions, based on its state; the client chooses one of them,
and the service executes it, moving to a new service state.
Formally, a service is a tuple S = 〈A, S, s0, S

f , �〉, where:
• A is a set of actions;
• S is the finite set of service’s states;
• s0 ∈ S is the initial state;
• Sf ⊆ S is the set of final states, i.e., those where the

execution can be legally stopped (if desired by the client);
• � ⊆ S ×A× S is the service’s transition relation.

When 〈s, a, s′〉 ∈ �, we say that transition s
a−→ s′ is in S.

Given a state s ∈ S, if there exists a transition s
a−→ s′ in S

(for some s′) then action a is said to be executable in s. A
transition s

a−→ s′ in S denotes that s′ is a possible succes-
sor state of s, when action a is executed in s. If an action a
is not executable in s, we write s � a→. Available services are,
in general, nondeterministic, that is, they allow many tran-
sitions to take place under execution of a same action. So,
when choosing the action to execute next, the client of the
service cannot be certain of which choices will be available
later on, this depending on which transition actually takes

place. In other words, nondeterministic behaviors are only
partially controllable.

We say that a service S is deterministic iff there not exist,
in S, two distinct transitions s

a−→ s′ and s
a−→ s′′ such

that s′ �= s′′. Notice that given a deterministic service’s
state and an executable action in that state, the unique next
service state is always known. That is, deterministic services
are indeed fully controllable by selecting actions.

Obviously, deterministic services are client-friendly, be-
ing fully controllable by client’s actions, while this is not
the case for nondeterministic ones. The need for dealing
with nondeterministic services comes from abstraction: the
actual state resulting from a transition may depend on de-
tails that, for various reasons, are kept hidden to the client,
which, as a result, sees the service as nondeterministic.
Composition. The composition problem is the following:
given a target service, which is a deterministic service re-
quired by the client, and given a set SC = {S1, . . . ,Sn},
called community, of possibly nondeterministic available
services (which share the same actions as the target), re-
alize the target services, by properly delegating the action
requested to the target to the available services.

Figure 1 shows an example of a target service and a com-
munity formed by two available services (dotted lines will
become relevant later).

The device that is in charge of the delegation is the
orchestrator, which is a component that able to activate, stop
and resume each of the available services, and select one to
perform an executable action. At every point in time, the
orchestrator intercepts the action requested by the client (ac-
cording to the target service), selects one of the available
services, and delegates to it the action requested.

In order to formally define orchestrator and composi-
tion, we need to introduce the notion of traces and histo-
ries. Given a service S = 〈A, S, s0, S

f , �〉, a trace for S is
a possibly infinite sequence, alternating configurations and

actions, of the form 〈s0〉 a1

−→ 〈s1〉 a2

−→ · · · , such that (i)

〈s0〉 = 〈s0〉, and (ii) for all j > 0, we have that sj aj+1

−→ sj+1

is in S. Similarly, let SC = {S1, . . . ,Sn} be a commu-
nity, where Si = 〈A, Si, si,0, S

f
i , �i〉 (i = 1, . . . , n). A

community trace for SC is a possibly infinite sequence of

the form 〈s0
1, . . . , s

0
n〉 a1,v1

−→ 〈s1
1, . . . , s

1
n〉 a2,v2

−→ · · · , such that
(i) 〈s0

1, . . . , s
0
n〉 = 〈s1,0, . . . , sn,0〉, and (ii) for all j > 0,

if 〈sj
1, . . . , s

j
n〉 aj+1,vj+1

−→ 〈sj+1
1 , . . . , sj+1

n 〉, then sj
vj+1

aj+1

−→
sj+1

vj+1 in Svj+1 with sj+1
i = sj

i for i �= vj+1. We call (com-
munity) history every finite prefix of a (community) trace
ending with a configuration. Given a history h, we denote
by last(h) the last configuration, and by length(h) the num-
ber of alternations between configurations and actions in h.
Notice that the history of length 0 is simply the initial con-
figuration of a trace (which is the same for every trace).

Let SC = {S1, . . . ,Sn} be a community and H be the
set of its community service histories. Formally an orches-
trator for a community SC is a function P : H × A →
{1, . . . , n, u} that, given a history h ∈ H and an action
a ∈ A, selects an available service, i.e., returns its index,
to which to delegate a. Special value u is introduced for
technical convenience, to make function P total.

91

Let SC = {S1, . . . ,Sn} be a community and St a target
service, where, Si = 〈A, Si, si,0, S

f
i , �i〉 (i = t, 1 . . . , n).

Let P : H × A → {1, . . . , n, u} be an orchestrator for SC .

Given a trace τ = 〈s0〉 a1

−→ 〈s1〉 a2

−→ · · · of St, we say that
the orchestrator P realizes the trace τ if

• for all community service histories h ∈ Hτ ,
P (h, alength(h)+1) �= u, where Hτ =

⋃
�H�

τ is a set of
community service histories, inductively defined as fol-
lows: (i) H0

τ = {〈s1,0, . . . , sn,0〉}; (ii) Hj+1
τ is the set

of community histories of length j + 1 having the form

h′ = h
aj+1,vj+1

−→ 〈sj+1
1 , . . . , sj+1

n 〉 such that:

• h ∈ Hj
τ , with last(h) = 〈sj

1, . . . , s
j
n〉;

• aj+1 is the action in history of length j + 1 obtained
from τ .

• P (h, aj+1)=v, that is, the orchestrator states that action
aj+1 in the trace τ after community history h should be
executed by available service Sv;

• sj
v

aj+1

−→ sj+1
v in Sv that is, the available service Sv can

evolve according to the history h′.
• sj+1

i = sj
i for each i �= v

• if a configuration 〈s�
t〉 of τ is such that s�

t ∈ Sf
t , then every

configuration 〈s�
1, . . . , s

�
n〉 = last(h), with h ∈ H�

τ , is
such that s�

i ∈ Sf
i , for i = 1, . . . , n.

We observe that eachHj
τ contains all and only those com-

munity service histories of length j that the orchestrator P
may potentially generate when instructing available services
so as to execute/realize a prefix of trace τ of length j. The
set Hτ is the union of all such Hj

τ . Also we observe that,
in order for an orchestrator P to realize τ , it must be able
to instruct one of the available services to execute each ac-
tion in τ whatsoever is the corresponding history of the en-
acted community service. Finally we note that, in the defi-
nition above target service states are never mentioned. This
is unsurprising being the target service deterministic, and,
consequently, its states fully determined by the sequence of
actions performed in the trace.

An orchestrator P for SC is a composition for the target
service St iff it realizes all traces of St. For simplicity, and
w.l.o.g., we further require here that P (h, a) = u for all
histories h �∈ Hτ for any trace τ of St, and for all actions a
not executable in St after the sequence of actions in h.

Intuitively, the orchestrator realizes a target service if for
all target service traces, at every step, it returns the index of
an available service that can actually perform the requested
action. Observe that since available services are nondeter-
ministic, the orchestrator must be always able to execute the
next action, no matter how the activated service happen to
evolve after each step.

Checking the existence of a composition is an EXPTIME-
complete problem, where the exponentially depends on the
number of available services in the community (not on the
number of their states) (Sardiña, De Giacomo, and Patrizi
2008). Several techniques have been proposed to actually
compute the composition, i.e., to synthesize an orchestrator
that is a composition, originally based on reduction to PDL
satisfiability (Berardi et al. 2005), more recently based on a

t
1

t
2

b

c

d
c

a
t
0

(a) St

s
1

s
2

a

c

d
c

a

o
1

o
0

s
0

(b) P1

s
0

s
1

s
2

b

c

b,c,d c

a

o
0

(c) P2

Figure 1: POS Community.

variant of the classical notion of simulation (Sardiña, De Gi-
acomo, and Patrizi 2008) and on direct algorithms (Stroeder
and Pagnucco 2009). Here (see Section Implementation)
we use a technique based on the reduction to symbolic
model checking of a game structure (Patrizi 2009), which
is strongly related to the solutions based on simulation men-
tioned above.

Partial Observability

We now drop the assumption of full observability of the
states of the available services in the community and as-
sume that the orchestrator cannot access the available ser-
vice states but can only access what is explicitly observable,
thus it has to deal with partial observability of the available
service state. A partially observable service, still represented
as a transition system, with the addition of an observability
function σ, defined over the set of a service’s states. Notice
that, two states may have the same value of observation, and
if they do, they are indistinguishable through direct observa-
tion (though, they may still be distinguishable by the history
if observation so far).

Formally, a partially observable service (POS) is a tuple
P = 〈A,O, S, s0, S

f , �, σ〉 where:

• A, S, s0, �, are as above;
• O is the set of observation values;
• σ : S → O is a function that returns the observation of a

state. If this function is injective, we say that the service
is fully observable.

In Figure 1 a POS community is shown. Dotted lines
group states with same observation.
POS composition. An observed trace for a POS com-
munity PC is the result obtained, after applying the σ-
observation function at every community state, of a stan-

dard trace τst,PC = 〈s0
1, . . . , s

0
n〉 a1,v1

−→ 〈s1
1, . . . , s

1
n〉 a2,v2

−→
. . . , so a possibly infinite sequence of the form τobs,PC =

〈o0
1, . . . , o

0
n〉 a1,v1

−→ 〈o1
1, . . . , o

1
n〉 a2,v2

−→ . . . , where
〈oi

1, . . . , o
i
n〉 = 〈σ(si

1), . . . , σ(si
n)〉. An observed history a

finite prefix of an observed trace.
Given a standard history hst, we can obtain the associ-

ated observed history by simply applying the σ function
to each state of the community. We denote the resulting
observable history by obs(hst). Vice versa, given an ob-
served history hobs representing the evolution of a POS
community PC , we denote the set std(hobs) of all standard
histories that represents all possible evolutions of PC with
the same observed history hobs. Such a set is defined as
std(hobs) = {hst ∈ Hst | obs(hst) = hobs}.

92

Let PC be a POS community, Hobs the set of its
observed histories, and A the shared operation alpha-
bet. An partially observable services orchestrator (or
POS orchestrator for short) for PC is a function Pobs :
Hobs ×A → {1, . . . , n, u}.

Given a POS orchestrator Pobs we can define a standard
orchestrator P̄st associated to Pobs, called generated stan-
dard orchestrator, as P̄st(hst, a) .= Pobs(obs(hst), a).

A POS orchestrator Pobs of PC is an
partially observable services composition (or
POS composition) for the target service St iff its gen-
erated standard orchestrator P̄st is a composition for the
target service St.

Notice that we have defined POS compositions exploiting
directly the definition of the standard one, through the use of
generated standard orchestrator. Obviously the generated
standard orchestrator P̄st, even if it is a standard orchestra-
tor, behaves in a specific way, i.e., as a POS orchestrator,
returning the same index for all standard histories that have
the same observation.

Belief State Composition

Next, we show how to synthesize a composition in the par-
tially observable case. We do so by transforming a com-
munity of partially observable services into a new fully ob-
servable one. We show that this transformation preserves
the soundness and the completeness of the search for a com-
position. Using such transformation we can directly exploit
the compositions techniques that assume full observability,
mentioned in Section Preliminaries.
KS. The idea that’s behind the transformation of a POS
into a fully observable service is to keep track of the
belief states (cf. (Goldman and Boddy 1996)) the orchestra-
tor goes through while executing a POS. The resulting (be-
lief state) service or KS, is obtained by applying two main
concepts: (i) every time we don’t know in which state the
original service is, we model our incomplete knowledge by
creating a new belief state containing all states in which the
service could be, and (ii) all information we can infer about
the new belief state is only what can be confirmed in all
states belonging to the belief state. Obviously, belief states
are composed of states sharing the same observation.

In order to define formally define KS, we need the follow-
ing preliminary definitions. Let P = 〈A,O, S, s0, S

f , �, σ〉
be a POS, then ∀k ∈ 2S ,∀a ∈ A we define:

img(k, a) =

{
∅, if ∃s ∈ k such that s � a→
{s′ ∈ S | ∃s ∈ k ∧ s

a−→ s′}, otherwise

obs(k) = {o | ∃s ∈ k ∧ σ(s) = o}
Intuitively, img(k, a) (image of k wrt a) is the set of states
that can be reached by performing the action a starting from
one of the states in k. This set is empty if there is at least
one state in which a cannot be performed. Set obs(k) (ob-
servations of k) is the set resulting from the application of
function σ to all states in k.

Given a POS P = 〈A,O, S, s0, S
f , �, σ〉 we define

the associated KS as the fully observable service K =
〈A,K, k0, K

f , �k〉 where:

{s
1
,s

2
}

c

a
s

0

(a) K1

s
0

s
1

{s
0
,s

2
}

b

c

d c

a

(b) K2

Figure 2: KS Community associated with that of Figure 1.

s
1
 s

2

s
3

c,g

b,e

b,e,f b,f

a

o
0

s
0

a

a

c,e

c,e,g

d,f

d,g

d,f,g

(a) Original POS

{s
1
,s

2
,s

3
} {s

1
,s

2
}

{s
1
,s

3
}

{s
2
,s

3
}

s
3

s
1

s
0

s
2

a

b
c d

e

f
g

(b) Transformed exponential
KTS

Figure 3: Example of Worst Case Transformation.

• the set of states K ⊆ 2S is built inductively as follows:

• {s0} ∈ K;
• if k ∈ K and ko = {s ∈ img(k, a) | σ(s) = o} then

ko ∈ K;

• the transition relation �k ⊆ K×A×K is built as follows:
k

a−→ k′
o if and only if: k′

o = {s ∈ img(k, a) | σ(s) =
o} for some o ∈ obs(img(k, a));

• k0 = {s0};
• Kf = {k ∈ K | ∀si ∈ k we have si ∈ Sf}.

For technical convenience we also define an observation
function σk : K → O for KS K: where σk(k) = o is
the observability value of all s ∈ k, indeed, notice that by
construction σ(s) = o for all s ∈ k.

Theorem 1. In the worst case, the KS associated with a
POS can have a number of states that is exponential in the
number of states of the POS.

Proof (Sketch). Figure 3 shows an example where the size
of the set K is 2S − 1 (the empty set is not generated). �

Belief state composition. Let PC = {P1, . . . ,Pn} be a
POS community, we call KS community, the community
KC = {K1, . . . ,Kn} of KSs, where each Ki is the KS asso-
ciated with Pi. We call belief state trace for the POS com-
munity PC the trace of the associated KS community KC .
Similarly we define belief state histories. We now analyze
the relationship between PC’s observed history and belief
state history. Given a belief state history, we can trivially
obtain the observed one by simply applying the σk function
to all states. Actually, also the vice versa is true: given an
observed history, i.e. a sequence of actions and observations,
there is only one corresponding belief state history. Indeed,
we can define a bijective function g : Hobs → Hks, from

93

the set of observable histories to the set of belief state his-
tories of PC . In other words, let PC be a POS community
and KC the respective KS community. Observing the evo-
lution of PC , we can reconstruct the (belief) state in which
every service Ki would be if the same actions are delegated
to corresponding services in KC .

Function g(hobs) = hks can be defined inductively:
• Base case: h0

ks = 〈k1,0, . . . , kn,0〉 =
〈{s1,0}, . . . , {sn,0}〉, the KS community initial state;

• Recursive case: let hj+1
obs = hj

obs

aj+1,vj+1

−→
〈oj+1

1 , . . . , oj+1
n 〉, let last(hj

obs) = 〈oj
1, . . . , o

j
n〉,

and let last(hj
ks) = 〈kj

1, . . . , k
j
n〉 then:

hj+1
ks = hj

ks

aj+1,vj+1

−→ 〈kj+1
1 , . . . , kj+1

n 〉 where:
k j+1

vj+1 = {s ∈ img(k j
vj+1 , a) | σ(s) = oj+1

vj+1} and
k j+1

i = k j
i for each i �= vj+1.

Notice that the function g−1(hks) = hobs is simply ob-
tained by applying the function σk to each service’s state.
POS orchestrator synthesis. Now we can introduce our
main result. We show that if we have a composition Pk of a
KS community KC for a target service St, then Pk directly
corresponds (through function g) to a POS composition for
St wrt POS community PC , and that notably also the vice
versa holds. Hence, since we have techniques to synthesize
compositions in the case of full observability (recall that KS
community is fully observable), we can exploit them in order
to solve the synthesis in the partially observable case.

Let PC be a POS community, KC the associated KS com-
munity, let Hobs and Hks be the set of PC’s observed his-
tories and belief state histories, respectively, and let St be a
target service.
Theorem 2. If Pk is a composition of KC for St, then
the POS orchestrator Pobs defined as: ∀a ∈ A,∀hks ∈
Hks, Pobs(g−1(hks), a) = Pk(hks, a), is an POS compo-
sition for St wrt PC .
Proof (Sketch). We consider the traces τ of St individually,
and show that if Pk for KC realizes τ , then Pobs(g−1(·), ·)
for PC realizes τ as well. We show the claim by induction
on the length � of the histories hks ∈ H�

ks, exploiting the
mapping given by the function g−1. �
Theorem 3. If Pobs is a POS composition of PC for St,
then the orchestrator Pk defined as: ∀a ∈ A,∀hobs ∈
Hobs, Pk(g(hobs), a) = Pobs(hobs, a) is a composition for
St wrt KC .
Proof (Sketch). We consider again the traces τ of St individ-
ually. We show that if Pobs forPC realizes τ , then Pk(g(·), ·)
for KC realizes τ as well. We show the claim by induction
on the length � of the histories hobs ∈ H�

obs, this time ex-
ploiting the mapping given by the function g. �

We observe that it is quite natural that a composition for
the KS community is a POS composition for the associated
POS community, indeed the orchestrator for the KS commu-
nity appears to have less information to work on wrt a POS
orchestrator, and hence to be more constrained in its choice
of the service to select. The vice versa is more surprising,
indeed even if the POS orchestrator is working on the con-
crete system, its limited ability of observing the system does

not give it more information to work on, than what captured
by the belief states. Notice that this is not always the case in
presence of infinite behavior (cf., Conclusions).

Using the technique above, we can characterize the com-
putational complexity of POS composition synthesis.
Theorem 4. Checking whether there exists a POS composi-
tion (of a POS community) for a target service is EXPTIME-
complete. Synthesizing a POS composition is exponential
in the number of services in the POS community and in the
number of states in each of such services.
Proof (Sketch). The upper bound is given by the belief state
construction described above and the results on the compo-
sition of full observable services in (Sardiña, De Giacomo,
and Patrizi 2008). The exponential lowerbound in the num-
ber of services is a consequence of the EXPTIME-hardness
in (Muscholl and Walukiewicz 2008) and the exponential
lowerbound in the number of states of each service is a di-
rect consequence of Theorem 1. �
Observe that exponentiality of the belief state construction
and that of the basic composition technique do not combine,
this is different from the case of conformant planning with
partial observability, where the belief state construction does
combine with basic planning (Rintanen 2004).

Implementation
Next to tame the exponential cost due to the partial observ-
ability, we adopt a synthesis procedure based on symbolic
model checking over a game-structure (Patrizi 2009), that
delegates the belief state construction for the KS services to
the symbolic manipulation of the model checker. We intro-
duce game structures (Piterman, Pnueli, and Sa’ar 2006) and
show: (i) how they can be used for composition under partial
observability and (ii) how winning strategies for such games
can be computed and exploited to get (all) compositions.1

Game structures. We specialize game structures proposed
in (Piterman, Pnueli, and Sa’ar 2006) to deal with synthe-
sis problems for invariant properties. These structures de-
scribe games between two adversaries: the environment and
the system. We can control the system but not the environ-
ment. Following (Piterman, Pnueli, and Sa’ar 2006), we de-
fine a safety-game structure (or �-game structure or �-GS,
for short) as a tuple G = 〈V,X ,Y, Θ, ρe, ρs,�ϕ〉, where:
• V = {v1, . . . , vn} is the set of state variables, respec-

tively ranging over finite domains V1, . . . , Vn. Wlog, let
X = {V1, . . . , Vm} and Y = V \ X . Full valuations, or
game states, of X ’s and Y’s variables are represented as
〈�x, �y〉 ∈ V = (V1 × . . .× Vn);

• X ⊆ V is the set of environment variables. X is the set of
all X variables valuations and each �x ∈ X is an environ-
ment state;

• Y = V/X is the set of system variables. Y is the set of all
Y variables valuations and �y ∈ Y is a system state;

• Θ is a boolean combination of (atomic) expressions (vk =
v̄k) (with vk ∈ V and v̄k ∈ Vk) representing game’s ini-
tial states. Given a (game) state 〈�x, �y〉 ∈ V , we write
1Throughout the rest of the paper, we assume to deal with

infinite-run TSs, possibly obtained by introducing fake loops on
final states, as customary in LTL verification/synthesis.

94

〈�x, �y〉 |= Θ iff state 〈�x, �y〉 satisfies all Θ assignments.
Vθ = {〈�x, �y〉 ∈ V | 〈�x, �y〉 |= Θ} is the set of (game)
initial states;

• ρe ⊆ X × Y × X is the environment transition relation
which relates a current game state to a possible next envi-
ronment state;

• ρs ⊆ X × Y × X × Y is the system transition relation,
which relates a game state plus a next environment state
to a next system state;

• �ϕ is a formula representing the invariant property to be
guaranteed, where ϕ has the same form as Θ.
A game state 〈�x′, �y′〉 is a successor of 〈�x, �y〉,

〈�x, �y〉 → 〈�x′, �y′〉 for short, if ρe(�x, �y, �x′) and
ρs(�x, �y, �x′, �y′). A play of G is a maximal sequence of
states η : 〈�x0, �y0〉〈�x1, �y1〉 · · · such that (i) 〈�x0, �y0〉 |= Θ
and (ii) 〈�xj , �yj〉 → 〈�xj+1, �yj+1〉 for each j ≥ 0.

Given a �-GS G, in a given state 〈�x, �y〉 of a play, the
environment chooses an assignment �x′ ∈ X such that
ρe(�x, �y, �x′) holds and the system chooses assignment �y′ ∈
Y such that ρs(�x, �y, �x′, �y′) holds. A play is said to be win-
ning (for the system) if it is infinite and satisfies the winning
condition �ϕ, i.e., ϕ holds in every play state.

A strategy for the system is a partial function f : X+ →
Y such that for every sequence λ : �x0 · · · �xn and for every
�yn ∈ Y , �x ∈ X , if ρe(�xn, �yn, �x) then ρs(�xn, �yn, �x, f(λ, �x))
holds. A play η : 〈�x0, �y0〉〈�x1, �y1〉 · · · is compliant with a
strategy f if for all i ≥ 0, f(�x0 · · · �xi) = �yi.

A strategy f is winning (for the system) from a given state
〈�x, �y〉 if all plays starting from 〈�x, �y〉 and compliant with f
are so. When such a strategy exists, 〈�x, �y〉 is a winning state
for the system. The winning set W is the set of all system’s
winning states. A �-GS is winning (for the system) if all
initial states are in W .

Given a set Q ⊆ V of game states 〈�x, �y〉, we call the set
of Q’s controllable predecessors the following:

π(Q) .= {〈�x, �y〉 ∈ V | ∀ �x′.ρe(�x, �y, �x′) →
∃ �y′ρs(�x, �y, �x′, �y′) ∧ 〈�x, �y〉 ∈ Q}

Intuitively, π(Q) is the set of states from which the system
can force the play to reach a state in Q, no matter how the
environment evolves. In other words, for each π(Q) state
there exists a one-step strategy able to reach a state in Q.

Algorithm 1 WIN – Computes system’s maximal set of
winning states in a �-GS

1: W := {〈�x, �y〉 ∈ V | 〈�x, �y〉 |= ϕ}
2: repeat
3: W ′ := W ;
4: W := W ∩ π(W);
5: until (W ′ = W)
6: return W

Based on such a notion, Algorithm 1 computes the set of
all system’s winning states of a �-GS, through a fixpoint
computation consisting of iterative applications of π. Theo-
rem 5 shows its correctness.
Theorem 5 (Piterman, Pnueli, and Sa’ar 2006). Let G =
〈V,X ,Y, Θ, ρe, ρs,�ϕ〉 be a �-GS as above and W be ob-
tained as in Algorithm 1. Given a state 〈�x, �y〉 ∈ V , a

Java

Parser
TLV

Standard

Encoding

POTS

 >

KTS

XML OG

(a) Naı̈f Implementation

Java

Parser
TLV

Smart

Encoding XML OG

(b) Smart Implementation

Figure 4: Implementations

system’s winning strategy f starting from 〈�x, �y〉 exists iff
〈�x, �y〉 ∈ W . Consequently, G is winning for the system
iff VΘ ⊆W .

In practice, from W , one can inductively define a sys-
tem’s winning strategy f by requiring that (i) f(�x0) =
�y0 for each 〈�x0, �y0〉 ∈ VΘ and (ii) for each play
η : 〈�x0, �y0〉 · · · 〈�xn, �yn〉 compliant with f and environment
state �xn+1 ∈ X such that ρe(�xn, f(�x0, . . . , �xn), �xn+1),
〈�xn+1, f(�x0, . . . , �xn, �xn+1)〉 ∈W .

This approach to synthesis based on model checking
game structures is implemented in TLV (Piterman, Pnueli,
and Sa’ar 2006): a software for verification and synthesis
of LTL specifications, based on symbolic manipulation of
states, which uses Binary Decision Diagrams (BDDs). In
particular TLV is able to take as input specification that en-
codes the environment and the system in SMV and the in-
variance property in LTL and derives the system’s maximal
winning set for the corresponding �-GS.
POS composition synthesis using safety games. Next, we
show an encoding a composition problem instance into a
game structure so that for each system’s winning strategies
there exists a composition and viceversa. The procedure is
inspired by the one proposed in (Patrizi 2009), based on a
reduction of the composition problem instance to a game
structure and a subsequent winning set computation, per-
formed by the synthesis system TLV. However, in (Patrizi
2009), the composition problem was faced under full ob-
servability assumption. Here, we propose a generalization
able to deal with partial observability.

Before giving details, observe that, with a sound and com-
plete procedure available under full observability, one can
immediately devise a naı̈f implementation for POS compo-
sition. depicted in Figure 4(a) where, first, each POS, e.g.,
represented as an XML file, is transformed, by, e.g., an ad-
hoc Java program, into its respective KS and, hence, the
procedure of (Patrizi 2009) is executed, i.e., the resulting
(fully observable) composition problem is first encoded into
a game structure and then the winning set is computed by
TLV. While clearly correct, such an implementation is com-
putationally challenging since the generated KSs can have
an exponential size wrt their respective POS’s and their ma-
nipulation is done explicitly by the Java program.

Our actual implementation is shown in Figure 4(b). The
main point is that we delegate the construction of the KSs
to TLV, taking advantage of its built in symbolic, OBDD-
based, manipulation of transition systems. For each POS,
we provide TLV a compact description of the respective KS,
which is polynomial wrt to original POS’ size.

Conceptually, our goal is to refine an automaton, the or-

95

chestrator, capable of selecting, at each step, one among all
the available services, so to make it a composition. In other
words the orchestrator is the object of the synthesis which,
in a game structure, plays as the system. On the other side
the combination of the target and the available services play
as the environment.

Let PC = {P1, . . . ,Pn} be a community and St a tar-
get service, where, Pi = 〈A,O, Si, si,0, S

f
i , �i, σi〉 (i =

1 . . . , n) and St = 〈A, St, st,0, S
f
t , �t〉. We derive a �-GS

G = 〈V,X ,Y, Θ, ρe, ρc,�ϕ〉, as follows:

• V = {st,�k1, . . . ,�kn, a, ind}, where:
– st ranges over St ∪ {init};
– each �ki is a variable array of |Si| components tak-

ing values from {0, 1} whose valuations stand for
characteristic functions which represent, in turn, ele-
ments from 2Si . The empty set (represented by �0 =
〈0, . . . , 0〉) stands for a special initial value introduced
for convenience;

– a ranges over A ∪ {init};
– ind ranges over {1, . . . , n} ∪ {init};
with the following intuitive meaning: each complete val-
uation of V represents (i) current target’s (st) and commu-
nity services’ (variables �k1, . . . ,�kn) states, (ii) the opera-
tion to be performed next (a) and (iii) the available service
selected to perform it (ind). Special value init and array
�0 are used so as to have a fixed initial state;

• X = {st,�k1, . . . ,�kn, a} is the set of environment vari-
ables;

• Y = {ind} is the (singleton) set of system variables;

• Θ(st,�k1, . . . ,�kn, a, ind) = ((st = init) ∧
(
∧

i=0,...,n(�ki = �0))) ∧ (a = init) ∧ (ind = init);

• in order to define ρe(X ,Y,X ′), first let us introduce the
following abbreviations

(i) op possiblei(�ki, a) .=
∧

s∈�ki

(
∨

s′∈Si

(s a−→ s′ in Pi))

which denotes whether i-th service can perform requested
action a, and

(ii)
−−−−−−−→
imm ossi,j(�ki, a) .=

{
∅, if ¬op possiblei(�ki, a)−−→
Σi,j(�ki, a), otherwise

where
−−→
Σi,j(�ki, a) .= {s′ ∈ Si | σ(s′) = j∧∃s ∈ �ki.s

a−→
s′ in Pi}, is an array of the same form as all �ki’s, repre-
senting the set of all i-th service states, with same ob-
servation j, reachable from belief state �ki, by performing
operation a.

Then, 〈〈init,�0, . . . ,�0, init〉, init, 〈st,�k1, . . . ,�kn, a〉〉 ∈
ρe iff �ki = ki,0, for i = 1, . . . , n, st = st,0;

if �ki �= �0, with i = 1, . . . , n, st �=
init, a �= init and ind �= init then
〈〈st,�k1, . . . ,�kn, a〉, ind, 〈s′t, �k′

1, . . . , �k′
n, a′〉〉 ∈ ρe

iff the followings hold in conjunction:

1. there exists a transition st
a−→ s′t in St;

2. either
|O|∨
j=0

�k′
ind =

−−−−−−−−−→
imm ossind,j(�kind, a)) or �k′

ind =

�kind (service wrongly makes no move, and the error
violates the safety condition ϕ, see below);

3. �ki = �k′
i, for all i = 1, . . . , n such that i �= ind;

4. there exists a transition s′t
a′
−→ s′′t in St for some s′′t ;

• 〈〈st,�k1, . . . ,�kn, a〉, ind, 〈s′t, �k′
1, . . . , �k′

n, a′〉, ind′〉 ∈ ρs

iff ind′ ∈ {1, . . . , n};
• Formula �ϕ where ϕ is:

ϕ(st,�k1, . . . ,�kn, a, ind) .=
Θ(st,�k1, . . . ,�kn, a, ind) ∨ (

∧n
i=1 ¬faili(�ki, a, ind)) ∧

(finalt(st) →
∧n

i=1 finali(�ki)), with:

– faili(�ki, a, ind) .= (ind = i) ∧ ¬op possiblei(�ki, a),
encodes the fact that service i has been selected but,
in its current state, no transition can take place which
executes the requested operation;

– finalt(st)
.=

∨
s∈Sf

t
st = s, encodes the fact that the

target service is currently in one of its final states;
– finali(�ki)

.=
∧

s∈�ki
s ∈ Sf

i , encodes the fact that ser-
vice i = 1, . . . , n is currently in one of its final states.

Notably all formulas above require only the current KS
community state, target state, operation and service selec-
tion, and can all be computed on-the-fly. This is exactly
what our encoding leads TLV to do.

Next, we show the correctness of the above construction.
Theorem 6. Let PC = {P1, . . . ,Pn} be a POS
community and St a target service, where Pi =
〈A,Oi, Si, si,0, S

f
i , �i, σi〉 (i = 1 . . . , n) and St =

〈A, St, st,0, S
f
t , �t〉. From PC and St derive: a �-GS

G = 〈V,X ,Y, Θ, ρe, ρs,�ϕ〉 as shown above. Let W ⊆ V
be the maximal set of system’s winning states for G. Then
〈init,�0, . . . ,�0, init, init〉 ∈ W if and only if there exists an
POS orchestrator for PC that is an POS composition of St.
Proof (Sketch). Consequence of Theorems 2 and 3, of above
encoding ability to actually generate the KS community, and
correctness of the approach for fully observable services (cf.
(Sardiña, De Giacomo, and Patrizi 2008; Patrizi 2009)). �

Interestingly, W at hand allows for computing all POS
compositions in one shot. This is tightly related to the no-
tion of orchestrator generator, and shows that one can con-
struct so called “just-in-time” compositions even in the case
of partial observability, cf. (Sardiña, De Giacomo, and Pa-
trizi 2008).
Theorem 7. For PC , St and G as above, let W be the sys-
tem’s winning set for G with 〈init,�0, . . . ,�0, init, init〉 ∈
W , and let

ω(〈st,�k1, . . . ,�kn〉, a) =
{i ∈ {1, . . . , n} | 〈st,�k1, . . . ,�kn, a, i〉 ∈W}

Then a POS orchestrator Pobs is an POS composition iff
it is built from W as follows: ∀a ∈ A and ∀hst ∈ H we

96

MODULE Main

VAR

env: system Env(sys.index);

sys: system Sys;

DEFINE

good := (sys.initial & env.initial)|!(env.failure);

Figure 5: TLV main module

have:

Pobs(obs(hst), a) =
{

i ∈ ω(last(g(obs(hst), a) �= ∅
u otherwise

Proof (Sketch). Consequence of Theorem 6, and of the fact
that the maximal winning set maintains all possible indexes
that lead to a composition. See (Sardiña, De Giacomo, and
Patrizi 2008; Patrizi 2009) for more details. �

Figure 5 shows the basic blocks of a sample encoding
for a composition problem with 3 available services. Mod-
ule Main wraps up all other modules and represents the
whole game. It consists of two submodules (here declared
as system), sys and env, which encode, respectively, the
environment and the system in the game structure. Goal for-
mula good (i.e., the invariant property) is a combination
of subformulae initial and failure of modules sys
and env, directly obtained from the goal formula in the �-
GS representation. Observe that env and sys evolve syn-
chronously, the former choosing the operation and the latter
selecting the service for its execution. The transition relation
in module Sys encodes an unconstrained controller, able to
output, at each step, any available service index in the in-
terval [1, n]. The synthesis’ objective is to restrict such a
relation so to obtain a winning strategy.

Conclusion

In this paper, we devised techniques and results for compos-
ing services that are partially controllable and partially ob-
servable, which corresponds, using Planning terminology, to
the conformant form of the composition proposed in (De Gi-
acomo and Sardiña 2007; Sardiña, De Giacomo, and Patrizi
2008). Our procedure works with belief states, which is a
standard approach when dealing with conformant planning,
and has already been used in the context of behavior-based
service composition (Pistore, Traverso, and Bertoli 2005;
Pistore et al. 2005). Observe we often give for discounted
that such a construction is sound and complete, but in gen-
eral it is only sound (Sardiña et al. 2006). It becomes
complete when plans do not need include loop. Here we
do include loops, so completeness is not a priori granted.
We do get completeness here, without contradicting the re-
sults in (Sardiña et al. 2006), because our “plans” are not
based on reachability, but on a sort of maintenance prop-
erty (maintaining the simulation). We close the work by
mentioning that it would be interesting to compare our ap-
proach to partial observability, based on belief states, to the
one in (Balbiani, Cheikh, and Feuillade 2008), inherited by
discrete event control (Arnold, Vincent, and Walukiewicz
2003), where partial observability comes in the form of ac-
tions from the available services that cannot be observed by
the orchestrator. This would be of interest also in other (con-
formant) planning settings.

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. JACM 49(5):672–713.
Arnold, A.; Vincent, A.; and Walukiewicz, I. 2003. Games for
synthesis of controllers with partial observation. Th. Comp. Sc.
1(303):7–34.
Balbiani, P.; Cheikh, F.; and Feuillade, G. 2008. Composition of
interactive web services based on controller synthesis. In Proc. of
IEEE SERVICES’08, 521–528.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and
Mecella, M. 2005. Automatic service composition based on be-
havioural descriptions. IJCIS 14(4):333–376.
De Giacomo, G., and Sardiña, S. 2007. Automatic Synthesis of
New Behaviors from a Library of Available Behaviors. In Proc.
of IJCAI 2007, 1866–1871.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kauffman.
Goldman, R. P., and Boddy, M. S. 1996. Expressive planning and
explicit knowledge. In Proc. of AIPS’96, 110–117.
Hatzi, O.; Meditskos, G.; Vrakas, D.; Bassiliades, N.; Anagnos-
topoulos, D.; and Vlahavas, I. P. 2008. A synergy of planning and
ontology concept ranking for semantic web service composition.
In Proc. of IBERAMIA’08, 42–51.
Hull, R. 2005. Web Services Composition: A Story of Models,
Automata, and Logics. In Proc. of SCC’05.
Klusch, M., and Gerber, A. 2006. Fast composition planning of
owl-s services and application. In Proc. of ECOWS’06, 181–190.
Lustig, Y., and Vardi, M. Y. 2009. Synthesis from Component
Libraries. In Proc. of FOSSACS’09.
McIlraith, S. A., and Son, T. C. 2002. Adapting Golog for Com-
position of Semantic Web Services. In In Proc. of KR’02, 482–
496.
Muscholl, A., and Walukiewicz, I. 2008. A Lower Bound On
Web Services Composition. LMCS 4(2).
Patrizi, F. 2009. Simulation-Based Techniques for Automated
Service Composition. Ph.D. Dissertation, SAPIENZA Univ. Roma.
Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005. Au-
tomated Composition of Web Services by Planning at the Knowl-
edge Level. In Proc. of IJCAI 2005.
Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated Com-
position of Web Services by Planning in Asynchronous Domains.
In Proc. of ICAPS 2005, 2–11.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of Reac-
tive(1) Designs. In VMCAI’06, 364–380.
Rintanen, J. 2004. Complexity of Planning with Partial Observ-
ability. In Proc. of ICAPS’04, 345–354.
Sardiña, S.; De Giacomo, G.; Lespérance, Y.; and Levesque, H. J.
2006. On the Limits of Planning over Belief States under Strict
Uncertainty. In Proc. of KR ’06, 463–471.
Sardiña, S.; De Giacomo, G.; and Patrizi, F. 2008. Behavior
Composition in the Presence of Failure. In Proc. of KR’08.
Stroeder, T., and Pagnucco, M. 2009. Realising Deterministic
Behaviour from Multiple Non-Deterministic Behaviours. In Proc.
of IJCAI’09.
van der Hoek, W.; Roberts, M.; and Wooldridge, M. 2007. Social
laws in alternating time: effectiveness, feasibility, and synthesis.
Synthese 156(1):1–19.
Vardi, M. Y. 2008. From Church and Prior to PSL. In 25 Years of
Model Checking, 150–171.

97

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

