
Continuous Orchestration of Web Services Via Planning
Piergiorgio Bertoli1 Raman Kazhamiakin1 Massimo Paolucci2

Marco Pistore1 Heorhi Raik1 Matthias Wagner2

1: FBK-Irst, via Sommarive 18, 38050, Trento, Italy
[bertoli,raman,pistore,raik]@fbk.eu

2: DoCoMo Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany
[paolucci,wagner]@docomolab-euro.com

Abstract

The service-oriented paradigm is rapidly emerging as the key
approach to develop distributed business applications. Its en-
actment requires the ability to automatically coordinate exist-
ing services to realize novel and powerful desired functional-
ities, and planning-based solutions have proved to be strong
candidates for this hard task. However, no current approach
can satisfactorily coordinate stateful services that evolve con-
tinuously and inde�nitely in an asynchronous way, such as
e.g. noti�cation services made increasingly available by busi-
ness entities. This severely limits the practical applicability
of current solutions. In this paper, we provide for the �rst
time a full-�edged planning-based solution to the problem
of continuously orchestrating stateful asynchronous services.
To do so, we adopt a simple yet expressive requirement lan-
guage, and we devise a novel planning algorithm that solves
preference-ordered maintenability goals in the presence of
exogenous events. Our approach is correct and complete, and
our tests on a symbolic BDD-based implementation witness
its ability and effectiveness in dealing with signi�cant and re-
alistic scenarios which no other current approach can tackle.

1. Introduction
By envisaging standards to publish and access services over
the Web, the Service-Oriented Computing (SOC) paradigm
promises a novel degree of interoperability between dis-
tributed applications that realize business processes. One
cornerstone of SOC stands in the provision of novel and
more complex business logics by the coordination of ex-
isting services. Due to the complexity of manually real-
izing such coordinations, automatedly supporting the syn-
thesis of service orchestrations is crucial to the actual en-
actment of SOC. This problem is extremely hard since,
in the vast majority of cases, business processes consist
of complex protocols; even when they expose simply sets
of atomic operations, these need to be exploited having
clearly in mind their aggregate stateful behavior as a busi-
ness process. As such, works focusing purely on com-
posing stateless atomic services (Wu et al. 2003; Shesha-
giri, des Jardins, and Finin 2003; Aggarwal et al. 2004;
Narayanan and McIlraith 2002) have very limited applica-
bility, and we need to devise composition techniques for

Copyright c© 2009, Association for the Advancement of Arti�cial
Intelligence (www.aaai.org). All rights reserved.

stateful protocols, such as those that can be speci�ed using
the BPEL (Andrews et al. 2003) standard language. This
task is extremely complex, as it involves the ability to ex-
press preference-based requirements to account for the vari-
ous possible reactions of orchestrated services, and to obtain
compositions that embed arbitrary branching and cycling
structures. In fact, so far only very few approaches, recasting
the composition problem in terms of planning, are capable
to build executable coordinations for stateful asynchronous
services. Unfortunately, even those approaches take a funda-
mental simplifying assumption, namely that all the services
being orchestrated admit some �nal ’stable’ con�gurations
which are used as goal targets for the orchestration. In gen-
eral such assumption does not hold and is strongly limiting.
One key usage of services is to faithfully represent the dy-
namic and uncontrollable evolution of the world (e.g. stan-
dard noti�cation services report of travel delays and cancel-
lations, overbookings, and so on); as such, a continuous and
strenuous realignment of the orchestration is in order. That
is, since in general ’satisfactory’ situations are not �nal and
stable, allowing the synthesis of continuous coordinations is
essential to enact service composition in real settings.
In this paper we realize the synthesis of continuous co-

ordinations based on the conceptual framework of (Pistore,
Traverso, and Bertoli 2005), which recasts the composition
problem in terms of planning; namely, we act at its core
by adopting a very simple, yet expressive requirements lan-
guage, and devising a novel planning algorithm. In partic-
ular, the requirement language expresses coordination con-
straints that are transformed into preference-ordered main-
tenability goals, and the algorithm deals with such goals in
the presence of exogenous events (which encode indepen-
dent asynchronous evolutions of services).
The paper is organized as follows. First, we introduce a

motivating reference example. Then, we provide a formal
background to the approach, we describe our requirements
language and we discuss the encoding of service composi-
tion into planning. We then detail the planning algorithms,
and present an empirical evaluation of a prototype imple-
mentation. Finally, we discuss related and future work.

2. Reference example
Our reference example is a variant of a well-known travel
domain scenario, where the goal is to provide a composed

18

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

(a) Customer Interface (CI) (b) Flight Reservation (FR) (c) Flight Cancellation (FC)

(d) Flight Status Notification (FSN)

(e)Hotel Reservation Management Service (HR)

Figure 1: Component services in the travel domain scenario

service that can deliver and manage travel packages consist-
ing of �ight tickets and hotel reservations.
Our version of the scenario involves �ve services, repre-

sented in Fig. 1, whose actual implementation can be carried
out in a standard service description language such as e.g.
BPEL1. In particular, Fig. 1 (a) shows the expected customer
interface (CI), which allows the user to book a compound
travel package (if available), and then to receive information
on its modi�cations (e.g., in case of the �ight delays or can-
cellation). Figure 1 (b,c) represent the services for booking
a �ight ticket (FB) and for cancelling it (FC) respectively.
The service depicted in Fig. 1 (d) shows a �ight status no-
ti�cation service (FSN), which sends noti�cations about the
�ight delays or cancellations. Finally, Fig. 1 (e) represents
a unique protocol (HR) managing in full a hotel reservation,
i.e., able to create, modify, and delete it. Notice that some
relevant service con�gurations are annotated by labels that
identify speci�c situations, e.g. that a reservation has been
created (CR) or deleted (DEL), or lack of availability (NAV).
The problem of providing a composed service in this sce-

nario is complicated by two key factors. The �rst stands
in the fact that the involved services have a sophisticated
behavior: they are stateful and non-deterministic, their in-
ternal behavior is not directly observable, and message in-
teractions are asynchronous. The second, crucial point that
makes this case study really challenging is that, to keep the
user in the control of the travel package at all times, we need
to cover the whole process of reserving and managing the
travel package. This means not only to book the hotel and
�ight reservation, but also to align further �ight modi�ca-
tions with the modi�cation of the hotel reservation and of
the travel package. More precisely, we aim to build a com-
posed process which should satisfy the following goals:

1. It should provide a way to transactionally book a hotel
and reserve a �ight, i.e. the hotel shall not be booked if
the �ight is not available and vice versa.

2. If the �ight is noti�ed to be delayed, the composed service

1In the graphical representation, input and output operations are
prepended by “?” and “!” respectively. For space reasons, we
abstract away from details related to the data manipulated by the
services.

has to provide a way to modify the hotel reservation (and
the resulting offer) as well. If this is not possible, the
reservations should be cancelled.

3. If the �ight is noti�ed to be cancelled, the other reserva-
tions should be cancelled as well.

Crucially, such requirements cannot be expressed in terms
of �nally achieving some state or outcome. Requirement (1)
asks reaching an intermediate state where further events and
actions may still take place, while (2,3) de�ne reaction rules
that the process should perform in order to handle speci�c
uncontrollable events. Moreover, requirements (1,2) express
potential alternatives that should be considered due to non-
determinism of the services, and a preference order among
them (booking is preferred to non-booking, and modi�ca-
tion to cancellation). No current approach to service com-
position can tackle, for this kind of services, a combination
of requirements like the ones above. In order to describe our
contribution in this direction, we devote the next section to
recap some fundamental background.

�
�c

State

Systems

�Wn

�W1
W1

Wn

D

� W

S
T

S
�

2�
W

S

�
2�

S
T

S
�

C
om

po
ne

nt

g�

W
S

�
2�

S
T

S

S
T

S
�

2�
D

O
M

Transition

Services STSs Planning STSs Services

R
eq

ui
re

m
en

t

Composite
Service

S
er

vi
ce

s
C

om
po

si
tio

n

P
LA

N
N

E
R

Figure 2: The approach

3. Background
Our conceptual approach to service composition, recasting
the problem as one of planning. follows (Pistore, Traverso,
and Bertoli 2005) and is represented in Fig. 2. The start-
ing point to composition is the presence of some component
services W1, . . . , Wn, which are stateful asynchronous en-
tities expressed in languages such as e.g. BPEL, and of a
composition goal ρ that speci�es declarative and behavioral
constraints for a novel desired service. Such new composite

19

serviceW must be realized as an orchestrator for the compo-
nents, and it is the result of the composition proper. One key
idea in this approach is that both the component services and
the orchestration service are expressed as �nite state transi-
tion systems (STSs) that evolve by reacting to external in-
puts, and producing outputs. In particular, the components’
STSs can be encoded into a planning domain D whose dy-
namics represent the possible behaviors of services, while
the requirement ρ is converted into a corresponding plan-
ning goal g. That is, the (STSs of the) component services,
considered concurrently, form the overall planning domain
under exam, whereas the plan to be obtained, whose execu-
tion as an “orchestrator” of the components must realize the
composition goal, corresponds to the STS of the orchestra-
tion service.
Referring to STSs, the formal statement of the compo-

sition problem in this setting stands on three key notions:
a notion of parallel product Σ1‖Σ2 of STSs, which ex-
presses their concurrent behavior, a notion of “controlled
STS”Σc�Σwhich speci�es the behaviors of the STSΣ once
it is controlled by Σc by connecting their inputs and outputs,
and a notion Σ |= ρ which tells whether all the behaviors of
an STSΣ satisfy a given requirement ρ. In the following, we
brie�y recap formally these key notions, starting from that
of an STS.
A state transition system represents a dynamic system

that can be in one of its possible states (some of which
are marked as initial and/or as accepting) and can evolve
to new states by performing some actions. Actions are dis-
tinguished in input actions, which represent the reception of
messages, output actions, which represent messages sent to
external services, and an internal action τ , modelling inter-
nal computations and decisions.

De�nition 1 (STS) A state transition system (STS) is a tuple
〈S,S0, I,O,R,SF ,F〉, where

• S is the set of states and S0 ⊆ S are the initial states;
• I and O are sets of input and output actions respectively;
• R ⊆ S×Bool×(I∪O∪{τ})×S is a transition relation,
• SF ⊆ S is the set of accepting states.
• F : S → 2P is a labelling function that links the states

with a set of propositions P associated to the STS.

Notice that the transitions of STS are guarded: a transi-
tion 〈s, b, a, s′〉 is possible in the state s only if the guard
b, a boolean expression over propositions in P , holds in that
state, i.e., s,F |= b according to the labelling function F :
• s,F |= �;
• s,F |= p, iff p ∈ F(s);
• s,F |= ¬b, iff s,F
|= b;
• s,F |= b1 ∨ b2, iff s,F |= b1 or s,F |= b2.

The concurrent evolution of two STSs Σ1 and Σ2 is mod-
eled by a notion of parallel product, stating that Σ1 and
Σ2 evolve simultaneously on common actions and indepen-
dently on actions belonging to a single system:

De�nition 2 (Parallel product)
Let Σ1 = 〈S1,S0

1 , I1,O1,R1,F1〉 and Σ2 =
〈S2,S0

2 , I2,O2,R2,F2〉 be two STSs with (I1∪O1)∩(I2∪

O2) = ∅. Their parallel product Σ1 ‖ Σ2 is de�ned as:

Σ1‖Σ2 = 〈S1×S2,S0
1×S0

2 , I1∪I2,O1∪O2,R1‖R2,F1‖F2〉
where:
• 〈(s1, s2), a, (s′1, s2)〉 ∈ (R1‖R2) if 〈s1, a, s′1〉 ∈ R1;
• 〈(s1, s2), a, (s1, s

′
2)〉 ∈ (R1‖R2) if 〈s2, a, s′2〉 ∈ R2;

and (F1‖F2)(s1, s2) = F1(s1) ∪ F2(s2).

Finally, the interactions of the STS Σc of the composed
service with the domainΣ, that it controls by exchanging in-
puts and outputs, are modelled by the notion of a controlled
system.

De�nition 3 (Controlled System)
Let Σ = 〈S,S0, I,O,R,SF ,F〉 and Σc =
〈Sc,S0

c , I,O,Rc,SF
c ,Fc〉 be two state transition sys-

tems. STS Σc � Σ, describing the behaviors of system Σ
when controlled by Σc, is de�ned as follows:

Σc �Σ = 〈Sc×S,S0
c ×S0, I,O,Rc �R,SF

c ×SF ,Fc∪F〉
where:

〈(sc, s), (bc ∧ b), a, (s′c, s
′)〉 ∈ (Rc � R), if

〈sc, bc, a, s′c〉 ∈ Rc and 〈s, b, a, s′〉 ∈ R
In this setting, service composition is stated as:

“given the services W1, . . . ,Wn, represented by the STSs
ΣW1 , . . . ,ΣWn

, and a composition goal ρ, identify a com-
posed service Σc such that Σc � (ΣW1‖ . . . ‖ΣWn

) |= ρ.”
As shown in (Pistore, Traverso, and Bertoli 2005), this can
be solved by planning for a domainD which suitably repre-
sents Σ = ΣW1‖ . . . ‖ΣWn

and for a suitable interpretation
of ρ as a planning goal. Speci�cally, to make use of effective
planning techniques for fully observable domains, the partial
observability of services, modeled by the τ action, is com-
piled away from Σ, building a so-called belief-level system
ΣB , an STS whose states correspond to beliefs of Σ - that
is, to sets of states of Σ which are equally plausible for an
external observer sensing the STS’s inputs and outputs. ΣB

can then be encoded into a planning domain D, and, under
mild assumptions, one can prove that the composition prob-
lem is solved by identifying (the STS corresponding to) a
plan π that satis�es the composition goal ρ for the planning
domain D.
Of course, this approach can be instantiated in several

ways, using different languages and semantics for the com-
position requirements. In particular, since services expose
conditional and non-controllable behaviors, it is often nec-
essary to distinguish alternate admissible situations which
are ranked differently under the perspective of the composite
service. For this reason, preferences play an important role
and have been accounted for in approaches such as (Pistore,
Traverso, and Bertoli 2005; Marconi, Pistore, and Traverso
2006). Furthermore, data exchanges play a crucial role in
service coordination, and cannot be captured by speaking
exclusively of state con�gurations. For this reason, (Mar-
coni, Pistore, and Traverso 2006) also embeds a modular
language to express data-�ow orchestration constraints.
In spite of the technical complexity of the solutions men-

tioned above, none of them captures the crucial fact that ser-
vices may require a continuous coordination, since they may

20

represent the everlasting and uncontrollable evolution of ac-
tual real-world agents. In fact, none of the approaches can
deal with our reference scenario of Sec. 2. This calls for
devising a different requirement language and planning al-
gorithm, as shown in the next sections.

4. The requirement language
We now present a simple requirement language that allows
ful�lling our desiderata to model in an easy-to-specify, com-
positional way coordination requirements which express (i)
in which situations we intend to get, and continuously main-
tain, the orchestrated components, possibly ordered accord-
ing certain preferences; (ii) linking the dynamics of dif-
ferent services; and (iii) reaction rules, which de�ne how
the composed service shall react, in different situations, to
actions asynchronously performed by some component ser-
vice. We remark that not only (ii) and (iii) are not con-
sidered in solutions such as (Pistore, Traverso, and Bertoli
2005; Marconi, Pistore, and Traverso 2006), but also for (i)
we give a different interpretation of “stable” con�gurations:
here, the idea is that a con�guration can be always affected
even once reached, and it is the task of the orchestrator to
take recovery actions to bring the domain back to admissi-
ble con�gurations, while obeying at all times the constraints
expressed in (ii) and (iii).

De�nition 4 (Composition Requirement) A composition
requirement is de�ned with the following generic constraint
template

clause ⇒ (clause1 � . . . � clausen),

where clause ≡ � | S.s | S ↑ a | cl1 ∨ cl2 | cl1 ∧ cl2.

Here cl1 and cl2 are clauses, S.s is used to de�ne the fact
that the service S is in the state s, and S ↑ a de�nes that the
service S has performed the action a.
The left side of the constraint de�nes the “premise” of the

requirement. When different from �, it de�nes a “reaction
rule”: whenever the corresponding situation or actions take
place, the composite service should try to “recover” from it
by achieving what is de�ned by the right side. Otherwise,
the requirement expresses the need to unconditionally reach
what is de�ned by the right side. In both cases, the right side
of the constraint de�nes the expected results. Each of them
logically groups simpler results, which may either require to
reach a con�guration, or require that an action takes place.
These results are ranked according to the order of preference
denoted by the � symbol, from the most preferred to the
least preferred. The following example clari�es the usage of
both unconditional and reaction-rule requirements.

Example 1 The composition requirements identi�ed in
Sec. 2 may be represented as follows:

1. � ⇒ (CI.CR ∧ FB.CR ∧ HR.CR ∧ FC.ST ∧ FSN.ST) �
((CI.NAV ∧ FB.NAV ∧ HR.ST ∧ FC.ST ∧ FSN.ST)∨
(CI.NAV ∧ FB.ST ∧ HR.NAV ∧ FC.ST ∧ FSN.ST)∨
(CI.REF ∧ FB.REF ∧ HR.REF ∧ FC.ST ∧ FSN.ST)∨
(CI.DEL ∧ FB.CR ∧ HR.DEL ∧ FC.DEL ∧ FSN.DEL))

That is, the composition should try to get and keep the
customer, �ight and hotel services in their “created” state

CR(and the deletion services not started); should this not
be possible, then either they all should be deleted (if they
were started), or they should be in a consistent situation
where unavailabilities have been properly noti�ed to the
user.

2. FSN ↑ flDelayed ⇒ (CI ↑ changed ∧ HR ↑ change)
Here as a reaction to the noti�cation of �ight delay, we
require the corresponding request of modi�cation of the
hotel and of the user offer.

3. FSN ↑ flCancelled ⇒ (HR ↑ delete ∧ CI ↑ deleted).
In other words, if the �ight is noti�ed to be cancelled, the
composed service should cancel also the hotel reservation
and the offer.

Notice that an orchestration satisfying these requirements
must react as soon as the conditions in the right-hand side
of (1) are not satis�ed, as well as to the noti�cations in the
left-hand sides of (2) and (3).

5. Encoding as planning problem
Given a set of requirements speci�ed as above, and a set
of component services, we aim to build a composed service
that aims to satisfy all of them simultaneously, according
to their above-mentioned “unconditional” and “reactive” se-
mantics, and following the preference orders speci�ed for
right side clauses.
Our �rst step for this is to de�ne, for each requirementCi,

a corresponding STS ΣCi
, and an associated propositional

formula ρCi
that holds when the requirement is satis�ed.

Then, we embed such STSs as part of the planning domain,
and we consider the formulae ρCi

to build the overall plan-
ning goal. Speci�cally, given a clause cl, we de�ne a cor-
responding STS that contains a single output action acl rep-
resenting the completion of the clause. The diagrams corre-
sponding to the different clauses, to their combinations, and
to the representing diagram itself are represented in Fig. 3.
Intuitively, they have the following meaning:

• The STS for the � clause (Fig. 3(a)) is completed imme-
diately.

• The STS for S.s (Fig. 3(b)) is blocked until the service is
not in the required state: the transition is guarded with the
corresponding proposition.

• The STS for S ↑ a (Fig. 3(c)) waits for the corresponding
service action. When it happens, a completion is reported.

• The STS for cl1 ∨ cl2 (Fig. 3(d)) waits for any of the
sub-clauses to complete, while the STS of the cl1 ∧ cl2
(Fig. 3(e)) waits for both of them to be completed.

The STS that represents the evolution of a composition
requirement is represented in Fig. 3(f). The STS is ini-
tially in an accepting state (s0). If the premise takes place
(acl is reported), then it moves to a non-accepting state,
from which it may be satis�ed by completing one of the
clauses acl1 , . . . , acln (moving to states s1, . . . , sn respec-
tively). The corresponding goal with preferences will have
the following form:

ρc = (s0, s1, . . . , sn). (1)

That is, we require that whenever the premise takes place,

21

!ecl

(a) Σ(�)

!ecl
[S.s]

(b) Σ(S.s)

S a !ecl

(c) Σ(S ↑ a)

?ecl1 ?ecl2
!ecl

(d) Σ(cl1 ∨ cl2)

!ecl

?ecl1 ?ecl2

?ecl2 ?ecl1

(e) Σ(cl1 ∧ cl2)

?ecl

?ecl1

?ecl?ecl

?ecln
…

l0

l1 ln

(f) Σ(cl ⇒ (cl1 . . . cln))

Figure 3: STS diagrams of composition requirements

the composition tries to move the STS to one of the accept-
ing states, respecting the ordering of preferences.
To model composition in the presence of multiple con-

straints, we will combine requirements of this form by a
straightforward “�attening” operator ⊕ such that ρ1 ⊕ ρ2

is a list of boolean formulae over the elements of ρ1 and ρ2,
whose order represents the combined preferences of ρ1 and
ρ2. A �attening procedure realizing this operator is de�ned
in (Shaparau 2008).
At this stage, we are ready to state the composition prob-

lem for our requirement language: “Let W1, . . . , Wn be
n services, and let C1, . . . , Ck be k composition require-
ments. Let ΣW1 , . . . ,ΣWn

be the STSs corresponding to
the services, and let ΣC1 , . . . ,ΣCk

be the STSs correspond-
ing to the requirements. Let ρ = ⊕k

i=1ρCi
, where each

ρCi
is constructed from ΣCi

according to formula (1). Let
Σ = ΣW1 ‖ . . . ‖ ΣWn

‖ ΣC1 ‖ . . . ‖ ΣCk
. The com-

position problem consists of identifying an STS Σc such that
Σc � Σ |= ρ.

To solve this by planning for full observability, so to lever-
age on effective symbolic techniques and tools for realiz-
ing our planning algorithms, we proceed similarly to (Pis-
tore, Traverso, and Bertoli 2005) and �rst build the belief-
level system ΣB for Σ. Then, different from (Pistore,
Traverso, and Bertoli 2005), we directly interpret the belief-
level system ΣB as a fully observable planning domain
D = 〈SB ,S0

B ,A, E ,RB ,PB〉 which comprises both stan-
dard actions A and exogenous events E (see also (Andre
A. Cire and Adi Botea 2008)). This allows a one-to-one
mapping of the elements of ΣB into those of D: states
are mapped into states, for which the labelling and transi-
tion relation are preserved; inputs of ΣB are mapped into
the planning actions A, while outputs correspond to exoge-
nous events E . Also in this setting, under mild assumptions,
one can prove that the correspondence between the planning
and the composition problems, following arguments similar
to (Pistore, Traverso, and Bertoli 2005).
We remark that, while our STS-based encoding of re-

quirements moves a part of their speci�cation into the plan-
ning domainD, leaving us with a goal that consists of a lay-
ering of propositional formulae, the interpretation of such
formulae must be that of maintenability goals; that is, the
orchestrator should continuously strive to have all needed
requirements in their accepting states. In the next section,
we discuss our algorithm solving this kind of problem.

6. Planning algorithm
We now describe a planning algorithm that, given a fully ob-
servable planning domain including exogenous events, �nds
a plan for a composition requirement ρ = (ρ1, . . . , ρm)
consisting of a list of preference-ordered propositional for-
mulae, each corresponding to a set of con�gurations to be
reached and then continuously maintained. A solution to
such problem must consist of a plan whose possible execu-
tions on the domain can be either �nite and terminating in
ρ, or in�nite and traversing ρ in�nitely often. Furthermore,
it must enforce optimality, identifying at all times the action
that directs towards the best currently achievable goal. To
�nd such a solution, our planning algorithm performs two
key steps:

1. �rst, we restrict the domainD to those con�gurations that
are ’recoverable’, that is for which it is possible, by exe-
cuting a suitable course of action, to come back to ρ in the
face of the domain’s autonomous evolution caused by un-
controllable events. We call such restricted domainDR.

2. then, for each state in DR, we identify which is the
best action that must be performed to achieve the goals
ρ1, . . . , ρn according to their preference order.

Step (1) is realized by the computeRecoverable algo-
rithm in Fig. 4. We assume, from now on, that the domain
D = 〈S,S0,A, E ,R,P〉 is globally available, while we ex-
plicitly communicate the list of goals gList. The routine im-
plements a greatest-�xpoint that starts from the whole set of
states in D, and iteratively shrinks to only those for which
there is a guarantee to reach

⋃
i ρi. This is realized by the

pruneUnconnected routine, by computing a least �xpoint
of regression steps that starts from the goal states in the set,
and increasingly adds states in the set for which a strong
plan exists to such goals. In particular, this routine makes
use of the StatesOf routine to extract states from a state-
action table, and of a StgPreImg primitive that, given a set
of states, returns all the state-action pairs guaranteed to reach
S in one step. The de�nition of such primitive takes into ac-
count the essential difference between controllable actions
and exogenous events: events are uncontrollable, thus once
we consider one event from a state, we need to consider all
events from that state.
Step (2) is rather complex. The key idea is to consider

each of the goals ρi in turn, and to build for each of them
a state-action table that tells, for the states of DR, which
action leads towards ρi. Once this is done, it is fairly easy

22

f unc t i on S t a t e sO f (SA)
re turn {s : 〈s, a〉 ∈ SA}

f unc t i on StgPreImg (s t)
s tAc := {〈s, a〉 : a ∈ A ∧ ∀s′ : 〈s, a, s′〉 ∈ R → s′ ∈ s t }
s tEv := {〈s, e〉 : e ∈ E ∧ ∃s′ : 〈s, e, s′〉 ∈ R → (s′ ∈ s t∧

∀s′′ ∈S, e ∈ E : 〈s, e, s′′〉 ∈ R → s′′ ∈ s t)}
re turn s tAc ∪ s tEv

f unc t i on pruneUnconnec ted (s t a t e s , go a l)
s t := s t a t e s∩goa l
do
o l dS t := s t
pre Image := StgPreImg (s t)
newSA := {〈s, a〉 ∈ preImage : s ∈ s t a t e s)}
s t := s t∪S t a t e sO f (newSA)
whi le (s t �=o l dS t)

re turn s t

f unc t i on compu teRecove rab l e (fGoa l)
s t := S
do
o l dS t := s t
s t := p runeUnconnec ted (o ldS t , fGoa l)
whi le (s t �=o l dS t)

re turn s t

Figure 4: The domain restriction algorithm.

to �nally merge state-action tables into an overall plan, by
layering them according to the respective preferences.
In particular, as also discussed in (Shaparau, Pistore, and

Traverso 2006), to correctly consider preferences so that the
resulting overall plan is preference-optimal, one has to build
state-action tables starting from the less preferred goals and
going to the most preferred one: only in this way, the state-
action table built for ρi can be used as a “recovery” basis for
the one referring to the more preferrable ρi−1.
The core of this algorithm is the computeSATables rou-

tine in Fig. 5. For each goal ρi, starting from the least pre-
ferred, the algorithm �rst computes all the state-action pairs
for which a “strong” solution exists to get to ρi, and then
it iteratively enriches such table by considering the already
found state-action tables for ρj with j = i+1, . . . , n. In par-
ticular, the table is enriched with state-action pairs that guar-
antee both (in a strong way) to satisfy ρj , and, in a weak way,
ρi. In case new state-action pairs are added, a new analysis
of “strong solutions” is in order; otherwise, the “enriching”
steps to consider lower-preference goals by incrementing j.
We remark that, while the structure of the algorithm is

inspired by the work in (Shaparau, Pistore, and Traverso
2006), it bears signi�cant technical differences. First, since
we consider maintenability goals, we need to build looping
plans. This leads us to adopt a StgLFP routine with a struc-
ture similar to that of Pruneunconnected, that enforces a
full �xpoint search and returns a state-action table where
goals may appear as intermediate states. This also explains
why, here, we do not add goals during weakening. Second,
since our planning domain includes exogenous events, the

f unc t i on computeSATables (g L i s t)
f o r (i : = | gL i s t | ; i >0; i−−) do

SA := StgLFP (gL i s t [i])
oldSA := SA
wSt := S t a t e sO f (SA)
j := i +1
whi le (j≤| gL i s t |)
wSt := wSt ∪ S t a t e sO f (pL i s t [j])
s t := S t a t e sO f (SA)
pImg := StgPreImg (wSt) ∩ WkPreImg (s t)
SA := SA∪{〈s, a〉 ∈pImg: s �∈ s t }
i f (oldSA �= SA) then
SA := SA ∪ StgLFP (S t a t e sO f (SA))
oldSA := SA
wSt := S t a t e sO f (SA)
j := i +1

e l s e
j ++

pL i s t [i] := SA
re turn pL i s t

f unc t i on mergeTab les (p L i s t)
π := ∅
f o r (i : = 0 ; i <| pL i s t | ; i ++)
foreach (〈s, a〉 : 〈s, a〉 ∈ pL i s t [i])
i f (s �∈ S t a t e sO f (π))

π := π ∪ 〈s, a〉
re turn π

Figure 5: The algorithms for identifying and merging state-
action tables.

pre-image primitives (including WkPreImg, which is anal-
ogous to StgPreImg, but acts existentially on outcomes and
events) are signi�cantly different from the ones used in (Sha-
parau, Pistore, and Traverso 2006).
Once the state-action tables for the goals are ready, they

are easily merged, following preferences, by the mergeTa-
bles routine, also reported in Fig. 5.
Finally, the key steps (1) and (2) are glued together by

the main planning routine in Fig. 6, which essentially in-
vokes them in turn. Notice that, as demonstrated by the
correctness and completeness statements below, for the sec-
ond step it is enough to simply restrict the goal states to the

f unc t i on P l ann i ng (gL i s t)
fGoa l :=

S

1≤i≤|gList|
gL i s t [i]

r e c := compu teRecove rab l e (fGoa l)
f o r (i : = 0 ; i <| gL i s t | ; i ++)
gL i s t [i] := gL i s t [i]∩ r e c

pL i s t := computeSATables (g L i s t)
i f S0 ⊆ S

1≤i≤|gList|
S t a t e sO f (pL i s t [i])

re turn mergeTab les (p L i s t)
e l s e
re turn ⊥

Figure 6: The main routine.

23

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

of services

time

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

of goals

time

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

of preferences

time

Figure 7: Results for the scalable scenarios.

recoverable ones, since then the search never reaches un-
recoverable states.

Theorem 1 Function Planning(I,gList) always terminates
on a planning domain D with exogenous events. If Plan-
ning(I,gList) = π
= ⊥, then π is a solution to the prob-
lem of achieving and maintaining in a strong way the goal⋃
gList[i]. If Planning(I,gList) = ⊥, then no solution to that

problem exists.

Proof sketch: Concerning termination, it is easy to see
that computeRecoverable implements a terminating great-
est �x-point computation, since the function pruneUncon-
nected incrementally computes a set of states but never ex-
ceeds the set of states it takes as input. To see that compute-
SATables terminates, it is immediate to see that its outer
loop performs a �nite number of iterations. But also its in-
ner while loop iterates a �nite number of times, since the
size of SA increases monotonically and is bounded.
To see that the plan found by the algorithm is a solution,

notice �rst that it contains all the initial states. According to
the de�nition of computeSATables, the table will contain
states from which all executions are guaranteed to lead to
some goal states. According to the function Planning, the
goal states are restricted to recoverable goal states. Accord-
ing to the function computeRecoverable, actions from the
recoverable states also always lead to goal states, and thus
are also contained in the resulting table. Therefore, the pro-
posed plan is a solution.
To see that the algorithm always returns a solution if any

exists, we observe the following properties. First, the algo-
rithm returns a plan containing all the states for which there
exists a strong plan to reach any goal state. Second, the plan
includes all the recoverable goal states. According to the
de�nition, the solution to the problem always leads to one
of the goal states and therefore will be discovered by the
algorithm.

Theorem 2 Let ≺s be a partial ordering relation between
plans as de�ned in (Shaparau, Pistore, and Traverso 2006).
If Planning(I,gList) = π
= ⊥, then π is an optimal solution
for the problem of achieving and maintaining in a strong
way the goals gList[1], . . . ,gList[n] according to the pref-
erences.

Proof sketch: Say 0 ≤ i ≤ j. If, according to the de�-
nition of ≺s, an optimal plan provides a weak solution for

gList[i] and a strong solution for gList[j] from state s, then
according to the computeSATables function, s ∈ State-
sOf(pList[i]) and s
∈ StatesOf(pList[k]),0 ≤ k < i. More-
over, all the states reachable from s are included into some
StatesOf(pList[l]), i < l ≤ j. Then, from the mergeTa-
bles procedure it is clear that the extracted plan π is a strong
solution for glist[j] and a weak solution for glist[i] from s,
i.e. it is optimal.

7. Experiments
To empirically evaluate our approach, we implemented the
algorithms of Sec. 6 based on symbolic BDD libraries to ef-
fectively represent and manipulate planning domains. We
also realized the conversion of requirements as STSs ex-
plained in Sec. 5, and integrated these contributions within
the architecture of Fig. 2. We tested our algorithm and ap-
proach �rst on the reference scenario, and then on a set
of scenarios designed to evaluate the scalability of the ap-
proach over different dimensions. All tests have been run on
a 2.6GHz, 4Gb Dual Core machine running Linux.
Our test on the reference scenario uses the requirements

given in Example 1, and also includes data �ow require-
ments to appropriately route data, de�ned with the data-net
approach of (Marconi, Pistore, and Traverso 2006). Our pro-
totype generated a plan corresponding to an orchestration
service that fully realizes the above requirements. Speci�-
cally, the composed process tries to perform the �ight book-
ing and hotel reservation, correctly taking into account pos-
sible non-deterministic outcomes of the component services,
and creates a travel offer upon successful reservations. Then
the process continuously handles the delays or cancellations
from the �ight status noti�cation service. In the �rst case, it
tries to modify the hotel reservation: if the hotel agrees and
the user accepts the new offer, the process is ready to han-
dle new modi�cations. Otherwise, the process deletes the
reservations and terminates. In the second case, the process
cancels the hotel reservation and informs the user. This com-
plex plan includes several branching points and two different
loops, and realizing such an orchestration would be far from
trivial even for a skilled analyst. The composed service was
generated in about 35 seconds; given the complexity of the
task, this experiment is a �rst important witness of the prac-
tical applicability of our approach.
We then proceeded to analyze three sets of scalable sce-

24

narios. In the �rst, we evaluate the scalability of coordinat-
ing an increasing number of services. The scenario involves
an ’inviter’ service I and n ’guests’ services Gi. The inviter
sends a invitation, and then keeps listening for responses;
vice versa, a guest is activated by an invitation, and then
can continuously send updates on his decision. Our goal is
to propagate I’s invitation to all guests, and then to keep I
continuously updated on the responses of each guest. Our
results are shown in Fig. 7, left. The performance scales up
with a polynomial behavior, and is capable to tackle a fairly
large number of services in a reasonable time. In the second
scenario, we evaluate the scalability w.r.t. the number of
coordination constraints. For this purpose, we take a mas-
ter and a slave service, the master continuously producing a
command out of a set of n possible ones, and the slave await-
ing for commands to be executed. To keep the two services
continuously aligned, we use a set of n coordination con-
straints. Our results are shown in Fig. 7, center. Also in this
case, performance is very good, and scales up polynomially
in the number of constraints. Essentially, these two scalable
tests consistently show that a linear growth in the size of the
planning domain maps into a polynomial behavior.
Finally, we evaluate the scalability w.r.t. the number of

preferences in the goal. We do so by running the example
on a set of services simulating a robot scenario where each
’robot’ service can be commanded to guard a door, but may
then break down or autonomously decide it needs recharg-
ing, becoming (temporarily or �nally) unavailable. Consid-
ering 20 robots and 20 doors, we consider goals that use
n = 1, . . . , 20 preferences to express we intend to keep n
doors guarded, but whenever this cannot be granted, as many
as possible. As we see from Fig. 7, right, the performance
is essentially linear in the number of preferences. This says
that, thanks to the implementation being based on BDD rep-
resentations of state sets, the search for a preference-speci�c
subgoal ρi does not strongly depend on the size of ρi: then,
the behavior maps the linear number of preference-speci�c
sub-searches in the algorithm.

8. Related Work and Conclusions
Our work is mainly related to two areas: SOC and planning.
In SOC, service composition has received considerable at-
tention, and attempts at composing stateful services have
been proposed in (Berardi et al. 2005; Pistore, Traverso,
and Bertoli 2005; Marconi, Pistore, and Traverso 2006;
Hull 2005). None of these, however, are capable to capture
the coordination constraints we describe here, nor to gener-
ate executable orchestrations that satisfy such requirements.
We regard ours as an important step toward the practical ap-
plicability of planning-based approaches to service compo-
sition. Also clearly related is the companion paper (Bertoli
et al. 2009), whose focus is however mainly methodolog-
ical. This work clearly differs in focus and technical con-
tent, detailing the core algorithms, showing them correct,
and evaluating the scalability of the approach.
In planning, several works have considered expressive

goals that can capture maintenability, e.g. using temporal
logics ((Bacchus and Kabanza 1998; Kvarnstrm and Do-
herty 2001; Pereira and Barros 2008)), while other works

have considered user preferences, see e.g. (Brafman and
Chernyavsky 2005; Shaparau, Pistore, and Traverso 2008).
As well, there is increasing interest in planning formalisms
that consider the presence of exogenous events (Andre A.
Cire and Adi Botea 2008), often recurring to modelings that
embed them as nondeterministic outcomes. However, to the
best of our knowledge, no approach has been presented so
far that integrates these three aspects together. Our approach
is the �rst achieving this, and empirical tests witness its ef-
fectiveness and scalability.
In the future, we plan to thoroughly validate our approach

on complex scenarios, and to consider the adoption and inte-
gration of HTN techniques within our requirement language,
as this can signi�cantly strengthen the practical applicabil-
ity of our approach by allowing end-users to easily specify
complex composition strategies.

References
Aggarwal, R.; Verma, K.; Miller, J. A.; and Milnor, W. 2004. Constraint Driven

Web Service Composition in METEOR-S. In Proc. of SCC’04, 23–30.

Andre A. Cire and Adi Botea. 2008. Learning in Planning with Temporally Extended

Goals and Uncontrollable Events. In Proceedings of ECAI’08.

Andrews, T.; Curbera, F.; Dolakia, H.; Goland, J.; Klein, J.; Leymann, F.; Liu, K.;

Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; and Weeravarana, S. 2003. Business

Process Execution Language for Web Services (version 1.1).

Bacchus, F., and Kabanza, F. 1998. Planning for temporally extended goals. Ann.

Math. Artif. Intell 1-2(22):5–27.

Berardi, D.; Calvanese, D.; Giacomo, G. D.; and Mecella, M. 2005. Composition

of Services with Nondeterministic Observable Behaviour. In Proc. ICSOC’05.

Bertoli, P.; Kazhamiakin, R.; Paolucci, M.; Pistore, M.; Raik, H.; and Wagner, M.

2009. Control Flow Requirements for Automated Service Composition. In Proc. of

ICWS’09.

Brafman, R., and Chernyavsky, Y. 2005. Planning with Goal Preferences and Cos-

ntraints. In Proceedings of ICAPS’05.

Hull, R. 2005. Web Services Composition: A Story of Models, Automata, and

Logics. In Proc. of ICWS’05.

Kvarnstrm, J., and Doherty, P. 2001. Talplanner: A temporal logic based forward

chaining planner. Annals of Mathematics and Arti�cial Intelligence 30:2001.

Marconi, A.; Pistore, M.; and Traverso, P. 2006. Specifying Data-Flow Require-

ments for the Automated Composition of Web Services. In Proc. SEFM’06.

Narayanan, S., and McIlraith, S. 2002. Simulation, Veri�cation and Automated

Composition of Web Services. In Proc. WWW’02.

Pereira, S., and Barros, L. 2008. Using alpha-CTL to Specify Complex Planning

Goals. In Proc. of the 15th international workshop on Logic, Language, Information

and Computation.

Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Automated Composition of Web

Services by Planning in Asynchronous Domains. In Proc. ICAPS’05.

Shaparau, D.; Pistore, M.; and Traverso, P. 2006. Contingent planning with goal

preferences. In Proc. AAAI’06.

Shaparau, D.; Pistore, M.; and Traverso, P. 2008. Fusing procedural and declarative

planning goals for nondeterministic domains. In Proc. of AAAI’08.

Shaparau, D. 2008. Complex Goals for Planning in Nondeterministic Domains:

Preferences and Strategies. Ph.D. Dissertation, University of Trento.

Sheshagiri, M.; des Jardins, M.; and Finin, T. 2003. A Planner for Composing

Services Described in DAML-S. In Proc. AAMAS’03.

Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D. 2003. Automating DAML-S

Web Services Composition using SHOP2. In Proc. ISWC’03.

25

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

