
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

Fast Distributed Multi-Agent Plan Execution with Dynamic Task 
Assignment and Scheduling 

Julie A. Shah, Patrick R. Conrad, and Brian C. Williams  
MIT CSAIL MERS 

32 Vassar St. Room 32-D224, Cambridge, MA 02139 
julie_a_shah@csail.mit.edu, prconrad@mit.edu, williams@mit.edu 

 
Abstract  

An essential quality of a good partner is her responsiveness 
to other team members. Recent work in dynamic plan 
execution exhibits elements of this quality through the 
ability to adapt to the temporal uncertainties of others agents 
and the environment. However, a good teammate also has 
the ability to adapt on-the-fly through task assignment. We 
generalize the framework of dynamic execution to perform 
plan execution with dynamic task assignment as well as 
scheduling.  
 This paper introduces Chaski, a multi-agent executive for 
scheduling temporal plans with online task assignment. 
Chaski enables an agent to dynamically update its plan in 
response to disturbances in task assignment and the 
schedule of other agents. The agent then uses the updated 
plan to choose, schedule and execute actions that are 
guaranteed to be temporally consistent and logically valid 
within the multi-agent plan. Chaski is made efficient 
through an incremental algorithm that compactly encodes 
all scheduling policies for all possible task assignments. We 
apply Chaski to perform multi-manipulator coordination 
using two Barrett Arms within the authors' hardware 
testbed. We empirically demonstrate up to one order of 
magnitude improvements in execution latency and solution 
compactness compared to prior art.  

Introduction  
An essential quality of a good partner is her ability to 

robustly anticipate and adapt to other team members and 
the environment. Recent work in dynamic execution 
exhibits elements of this quality through an executive that 
schedules activities online, dynamically in response to 
disturbances, while guaranteeing the constraints of the plan 
will be satisfied. Many recent multi-agent systems exploit 
this type of adaptive execution, allowing agents to absorb 
some temporal disturbances online (Alami et al. 1998, 
Brenner 2003, Lemai et al. 2004, Smith et al. 2006). 
However, disturbances triggering task re-assignment still 
require re-planning or plan repair. We introduce a multi-
agent executive named Chaski, which generalizes the state-
of -the-art in dynamic plan execution by supporting just-in-
time task assignment as well as scheduling. 

  Many recent multi-agent systems perform dynamic 
plan execution by exploiting a flexible-time representation 
of the plan to absorb temporal disturbances online (ex. 
Lemai et al 2004, Smith et al. 2006). These systems 
employ a planning process that performs task assignment 
to allocate activities among the agents, and synchronization 

to introduce ordering constraints among activities so that 
concurrent execution remains logically valid (Stuart 1985, 
Kabanza 1995, Brenner 2003). The process of task 
assignment and synchronization generates temporally 
flexible plans described as Simple Temporal Networks 
(STNs) (Dechter et al. 1991). Agents dynamically execute 
STNs by scheduling plan activities online, just before the 
activity is executed (Muscettola et al. 1998, Tsamardinos et 
al. 1998). This strategy allows the agent to adapt to some 
disturbances that occur prior to the activity without 
introducing unnecessary conservatism. However, 
disturbances triggering task re-assignment or re-
synchronization still require a deliberative capability to 
generate a new plan or perform plan repair.  

The key contribution of this paper is an executive named 
Chaski that enables execution of temporally flexible plans 
with online task assignment and synchronization. Chaski 
enables an agent to dynamically update its plan in response 
to disturbances in the task assignment and schedule of 
other agents. Using the updated plan, the agent then 
chooses, schedules, and executes actions that are 
guaranteed to be temporally consistent and logically valid 
within the multi-agent plan. This capability provides agents 
maximal flexibility to choose task assignments, and 
schedule and execute activities online without the need for 
re-planning or plan repair. Chaski is especially useful for 
agents coordinating in highly uncertain environments, 
where near-continual plan repair results in execution 
delays – we see this, for example, with agents that interact 
with or adapt to humans. 

The key innovation of Chaski is a fast execution 
algorithm that operates on a compact encoding of the 
scheduling policies for all possible task assignments. The 
compact encoding is computed by applying a set of 
incremental update rules to exploit the causal structure of 
the plan, as with previous algorithms for incremental 
compilation of Simple and Disjunctive Temporal 
Constraint Networks (Shah et al. 2007, 2008).  We 
generalize this work to multi-agent plan execution by 
identifying and compactly recording the logical 
consequences that a particular task allocation and 
synchronization imply for future scheduling policies. We 
empirically demonstrate that this compact encoding 
reduces space to encode the solution set and execution 
latency by up to one order of magnitude compared to prior 
art.  
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This paper presents the incremental algorithm for 
compiling this compact encoding and the algorithm for 
distributed execution of plans based on the compact 
encoding. We empirically demonstrate Chaski through 
multi-manipulator coordination of two Barrett Whole Arm 
Manipulators. We show that performing execution on the 
compact representation yields low execution latency and 
scales well with the size of the multi-agent plan.  

Practical Scenario: Multi-robot Coordination  
We have successfully applied Chaski to perform multi-

manipulator coordination using two Barrett Arms. In this 
section, we present the multi-manipulator coordination 
scenario as a motivating example for the rest of the paper.  
Fig. 1 shows the two manipulator robots and their 
workspace.  The robots must coordinate to remove one ball 
from each of the four locations in their communal 
workspace. Each robot also has one striped ball located in 
its own private workspace and must give the striped ball to 
the other robot using a hand-to-hand exchange. The 
scenario includes temporal constraints specifying the task 
must be completed within sixty seconds.  

 
  Figure 1: Multi-manipulator coordination scenario 
 

 

This scenario is interesting because it contains both 
loosely and tightly coupled interaction, and a temporal 
constraint on the completion of the task. Also, some 
activities are not a-priori allocated to a particular robot. For 
example, "Remove one ball from Loc #1" can be 
performed by either robot. Finally, the robots have 
heterogeneous temporal capabilities. For example, the left 
robot has a shorter reach distance to Loc. #1 than the right 
robot. As a result, removing a ball from Loc. #1 takes the 
left robot 8-10 seconds and takes the right robot 11-13 
seconds. We discuss how to perform fast, distributed 
execution of multi-agent plans such as this one. 

Background 
Multi-agent systems typically employ a planning process 

that performs task assignment to allocate activities among 
the agents, and synchronization to introduce ordering 
constraints among activities so that concurrent execution 
remains logically valid. For example consider the 
following task allocation in the practical scenario 
described previously: the left robot performs both the 
activities: (1) Remove one ball from Loc. #1, and (2) 
Remove one ball from Loc. #2. Any synchronization of    

this task allocation would introduce ordering constraints to 
exclude concurrent execution of these two activities. The 
process of task assignment and synchronization generates 
temporally flexible plans described as Simple Temporal 
Networks (STNs). Agents exploit this flexible-time 
representation of the plan to adapt to some temporal 
disturbances online.  

Simple Temporal Networks  
A Simple Temporal Problem (STN) is composed of a set of 
variables X1,…Xn, representing executable events. Events 
have real-valued domains and are related through binary 
temporal constraints. Binary constraints are of the form: 
 

� � � �., ikikik baXX ��  
 

A solution to an STN is a schedule that assigns a time to 
each event such that all constraints are satisfied. An STN is 
said to be consistent if at least one solution exists. 
Checking an STN for consistency can be cast as an all-
pairs shortest path problem. The STN is consistent iff there 
are no negative cycles in the all-pairs distance graph. This 
check can be performed in O(n3) time (Dechter et al. 1991). 

The all-pairs shortest path graph of a consistent STN is 
also a dispatchable form of the STN, enabling real-time 
scheduling. A network is dispatchable if for each variable 
XA it is possible to arbitrarily pick a time t within its 
timebounds and find feasible execution times in the future 
for other variables through one-step propagation of timing 
information. The constraints in the dispatchable form may 
then be pruned to remove all redundant information 
(Muscettola et al.  1998). The resulting network is a 
minimal dispatchable network, which is the most compact 
representation of the STN constraints that still contains all 
solutions present in the original network.  

In the remainder of this paper we present Chaski, a 
multi-agent executive that extends recent work in fast 
execution of Disjunctive Temporal Constraint Networks to 
perform online task assignment and synchronization.  

Disjunctive Temporal Constraint Networks 
  A Disjunctive Temporal Constraint Network, 
otherwise known as a Temporal Constraint Satisfaction 
Problem (TCSP), extends an STN by allowing multiple 
intervals in constraints, given by the power set of all 
intervals: 
 

� � � �� 	� �.|, ikikikikik babaPXX 
��    
 

Determining consistency for a TCSP is NP-hard (Dechter 
et al. 1991). In previous work, a TCSP is viewed as a 
collection of component STNs, where each component 
STN is defined by selecting one STN constraint (i.e. one 
interval) from each TCSP constraint. Checking the 
consistency of the TCSP involves searching for a 
consistent component STN (Dechter et al. 1991). This 
approach is the basis of most modern approaches for 
solving temporal problems with disjunctive constraints 
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(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos 
and Pollack 2003).  
 Recent work in dispatchable execution of Disjunctive 
Temporal Constraint Networks (Shah et al. 2008) increases 
efficiency of execution by reasoning on a compact 
encoding of all consistent component STNs. The compact 
encoding is generated by an incremental algorithm in the 
spirit of other incremental algorithms for truth maintenance 
(Doyle 1979, Williams et al. 1998), informed search 
(Koenig et al. 2001), and temporal reasoning (Shu et al. 
2005). The incremental compilation algorithm exploits the 
dependency structure of the network to identify and record 
the logical consequences that a particular simple interval 
constraint (or set of constraints) implies on the other 
constraints in the network.  The compilation process first 
relaxes the TCSP to an STN and then compiles the STN to 
dispatchable form. Next, the algorithm applies Dynamic 
Back-Propagation (DBP) rules introduced in (Shah et al. 
2007) to recursively propagate the logical consequences of 
a constraint change throughout the network. The 
incremental compilation algorithm results in a compiled 
plan that compactly represents the solution set in terms of 
the differences among viable component STNs. 

Problem Statement 
Chaski takes as its input a multi-agent plan composed of 

P=(A,V,C,L), where A is a set of agents, V is a set of 
activities, A→V is an function describing the set of 
feasible activities and temporal capabilities of each agent, 
C is a set of temporal constraints over activities, and L is a 
set of logical constraints (for example, resource or agent 
occupancy constraints). The output of Chaski is a dynamic 
execution policy that guarantees temporally consistent and 
logically valid task assignments.  

In this section, we reformulate a multi-agent plan as a 
Disjunctive Temporal Constraint Network, and provide 
insight into the challenges that arise in extending recent 
work in dynamic plan execution to perform online task 
assignment and synchronization.  
 Consider two robots that must coordinate to perform the 
following four activities in the practical scenario: Remove 
one ball each from Loc. #1 (RB1), Loc. #2 (RB2), Loc. #3 
(RB3), and Loc. #4 (RB4). The robots have heterogeneous 
temporal capabilities. For example, removing a ball from 
Loc. #1 or #2 takes the left robot takes 8-10 seconds and 
takes the right robot 11-13 seconds. We also impose the 
temporal constraint that all four activities must be 
completed within twenty seconds. Fig. 2 presents this plan 
described as a Disjunctive Temporal Constraint Network. 

Each activity is composed of a begin event and end 
event. For example, "a" and "b" represent the begin and 
end events, respectively, for activity RB1. The amount of 
time each agent takes to perform the activity is represented 
as a disjunctive binary constraint. For example, the 
disjunctive constraint L[8,10] V R[11,13] between events 
"a" and "b" specifies that the left robot "L" takes 8-10s to  

 

 
 
 
 
 
 
 
 
 
 
Figure 2: Multi-robot plan described as a Disjunctive 

Temporal Constraint Network 
 

perform activity RB1, while the right robot "R" takes 11-
13s. The execution order of the four activities is initially 
unspecified. The network includes ordering constraints of 
the form [0, inf] to specify that the activities must be 
executed after the epoch start event "s" and must be 
completed before the plan's end event "e". The temporal 
constraint [0,20] between events "s" and "e" constrains the 
time available to accomplish all four activities. Note that 
agents do not "own" the execution of particular activity 
events because the plan does not specify task assignments.  

Dispatching this network using the method described in 
(Shah et al. 2008) will ensure temporally consistent task 
assignments at execution. However, this method does not 
perform synchronization of the task assignments and 
therefore, the execution may not be logically valid. For 
example, this plan contains implied agent occupancy 
constraints, meaning that each agent may only perform one 
activity at a time. We must introduce ordering constraints 
among activities to ensure that concurrent execution does 
not violate these occupancy constraints. We would like to 
compactly compile all feasible synchronizations for 
dynamic execution, just as we compile the feasible task 
assignments. However, the synchronization problem 
requires reasoning on a more general type of disjunctive 
constraint: disjuncts in intervals over three or more events. 
As a result, the synchronization problem cannot be framed 
as a Disjunctive Temporal Constraint Network and solved 
using the method presented in (Shah et al. 2008). In the 
next section, we address the challenge of compactly 
compiling the scheduling policies for all possible task 
assignments and their synchronizations.  

Incremental Compilation Algorithm for 
Multi-agent Temporal Plans  

In this section we present an Incremental Compilation 
Algorithm (ICA-MAP) for compiling a multi-agent plan 
(MAP) to a compact dispatchable form. This compact 
representation is compiled by incrementally computing 
constraint modifications for task assignments and 
synchronizations, and then aggregating common 
information among synchronizations. The key idea behind 
ICA-MAP is to apply the Dynamic Back-Propagation 
(DBP) rules, described in (Shah et al. 2007), to 
systematically investigate and record the logical 
consequences that a particular task allocation and 
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RB1 L[8,10] V R[11,13] 

RB2 L[8,10] V R[11,13] 

RB3 L[11,13] V R[8,10] 

RB4 L[11,13] V R[8,10] 
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synchronization imply for future scheduling policies. As 
we empirically show in the next sections, this compact 
representation drastically reduces the number of constraints 
necessary to encode the feasible scheduling policies and 
supports fast dynamic execution. 

Pseudo-Code for the ICA-MAP 
ICA-MAP takes as input a multi-agent plan (P=A,V,C,L), 
where A, V, A→V, and C are described as a Disjunctive 
Temporal Constraint Network G (ex. Fig. 2). The pseudo-
code for ICA-MAP is presented in Figures 3-5. 

The algorithm is composed of four main steps. The first 
two steps mirror the incremental compilation algorithm for 
TCSPs (Shah et al. 2008). Step 1 relaxes the Disjunctive 
Temporal Constraint Network (G) to a Simple Temporal 
Network (S) (Line 1). This is accomplished by relaxing 
each disjunctive binary constraint to a simple interval. For 
each disjunctive constraint, a new simple temporal 
constraint is constructed using the lowerbound and 
upperbound of the union of intervals in the disjunctive 
constraint. Step 2 then compiles the resulting STN to 
dispatchable form (Line 2). If the STN representing the 
relaxed plan is inconsistent, then there is no solution to the 
multi-agent plan and ICA-MAP returns false (Line 3). If 
the STN is consistent, then Line 4  initializes a data 
structure L(T,C) to record the scheduling policies for 
feasible task allocations (T) and their synchronizations (C). 
 In Step 3, the algorithm iterates through the set of full 
task assignments (Line 5). For each full task assignment Ti, 
the constraints associated with Ti are placed on a queue Qt 
(Line 6). For example, consider the following full task 
assignment for the multi-agent plan in Fig. 2: Left Robot 
performs RB1 and RB2, and Right Robot performs RB3 
and RB4. The interval constraints associated with each of 
these assignments are placed on the queue:  Qt = 
{ab|L[8,10], cd|L[8,10], ef|R[8,10], gh|R[8,10]}.   
 Each constraint in Qt implies the tightening of a 
constraint in the relaxed, compiled network S. The function 
BACKPROPAGATE-TASK-ASSIGN propagates the 
effect of these constraint tightenings throughout S (Line 7). 
This process derives the necessary constraint modifications 
to ensure temporally consistent execution of the task 
assignment Ti.  The modified constraints associated with 
task assignment Ti are recorded in L(Ti). During this 
process, typically only a subset of the constraints in the 
relaxed network S must be modified and recorded, 
contributing to the compactness of the representation. If 
back-propagation results in an inconsistency, then the task 
assignment Ti is temporally inconsistent and the algorithm 
continues with the next full task assignment (Line 8).  

Given a consistent task assignment Ti, Step 4 collects 
the set of feasible synchronizations for Ti (Line 9), and 
then iterates through each synchronization y (Line 10). 
Each synchronization y imposes a set of ordering 
constraints on the plan activities. For example, consider the 
task assignment: Left Robot performs RB1 and RB2, and  

 

 Figure 3: Pseudo-code for ICA-MAP  

Right Robot performs RB3 and RB4. One possible 
synchronization of this task assignment is: {bc|[0,inf], 
fg|[0,inf]}.  This set of ordering constraints is added to the 
queue Qy (Line 11). (Note that our implementation of 
Chaski performs synchronization based on agent 
occupancy constraints. However, ICA-MAP generalizes to 
other synchronizations as well.) 

The function BACKPROPAGATE-SYNCH then 
propagates the effect of these ordering constraints 
throughout the network (Line 12). If back-propagation of a 
synchronization y results in an inconsistency, then that 
synchronization y and its derived constraints are removed 
from L(T,C), and the algorithm continues with the next 
synchronization (Line 13). If L(T,C) remains empty after 
iterating through all full task allocations and 
synchronizations, then there is no solution to the multi-
agent plan and ICA-MAP returns false. Otherwise, ICA-
MAP returns S and L(T,C), which compactly encode the 
scheduling policies for feasible task assignments and 
synchronizations. 
 The key to compactly encoding the scheduling policies 
for feasible task allocations and synchronizations lies in the 
details of the two functions BACKPROPAGATE-TASK-
ASSIGN and BACKPROPAGATE-SYNCH. Next, we 
walk through each of these functions. 
   The function BACKPROPAGATE-TASK-ASSIGN 
takes as its input the queue of task assignment constraints 
Qt, the relaxed network S, and the data structure L(Ti) that 
records the constraint modifications for task assignment Ti. 
Lines 1 and 2 add each constraint ei in  Qt to L(Ti ). Line 3 
applies the DBP rules to propagate the effect of each 
constraint ei. For example, consider applying 
BACKPROPAGATE-TASK-ASSIGN to the queue of task 
assignments in our example:  Qt = {ab|L[8,10], cd|L[8,10], 
ef|R[8,10], gh|R[8,10]}. First, we create the network S' 
associated with task assignment Ti by intersecting the 
constraints in L(Ti ) with the constraints in S. We then 
apply the DBP rules to propagate the effect of ab|L[8,10] 
and the other constraints on Qt throughout the network S'. 

function ICA-MAP (P={G,L}) 
1.     S ←  Relax-Network-to-STN(G) 
2.     S ← Compile-STN-to-Dispatchable-Form(S) 
3.     if S is inconsistent return FALSE  
4.      L(T,C) ← Initialize-Task-Allocation-Synchronization-List  
5.     for each full task assignment (Ti) 
6.          Qt ← add- Ti -constraints-to-queue 
7.          L(Ti ) ← BACKPROPAGATE-TASK-ASSIGN(Qt ,S, L(Ti )) 
8.          if BACKPROPAGATE-TASK-ASSIGN returns false,     
             clear L(Ti ) and goto Line 5 
9.          Cy ← Synchronize-Task-Assignment(Ti,L) 
10.        for each synchronization y in Cy 
11.             Qy ← add- Cy - ordering-constraints-to-queue 
12.                L(Ti , Cy) ← BACKPROPAGATE-SYNCH(Qy ,S, L(Ti , Cy)) 
13.             if BACKPROPAGATE-SYNCH returns FALSE, clear  
                  L(Ti , Cy) and goto Line 10 
14.        end for 
15.    end for 
16.    if L(T,C) is empty return FALSE 
17.    else return S and L(T,C) 
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 If back-propagation deduces a new constraint zi, and zi is 
a positive loop then zi does not have to be recursively 
propagated and the algorithm continues at Line 3. If zi is a 
negative loop then propagation has exposed an 
inconsistency and the function returns false. If zi is neither 
a positive nor negative loop, then Line 7 checks to 
determine whether zi is tighter than the corresponding 
constraint in S'. If so, zi  is recorded in L(Ti) and added to 
the queue Qn for further propagation (Lines 8 and 9).  The 
constraints of Qn are recursively propagated through the 
network in Line 13. If recursive propagation of the 
synchronization constraints does not result in an 
inconsistency, then the function returns true (Line 14). The 
output of BACKPROPAGATE-TASK-ASSIGN is the data 
structure L(Ti), which  records the constraint modifications 
to S that ensure temporally consistent execution of the task 
assignment Ti.  
 Next, we present the function BACKPROPAGATE-
SYNCH, which encodes the set of feasible 
synchronizations for each full task assignment. 
 The function BACKPROPAGATE-SYNCH is called for 
each synchronization y of a task assignment Ti. The 
function takes as its input the queue of synchronization 
constraints Qy, the relaxed network S, and the data 
structure L(Ti , C) that records the constraint modifications 
for task assignment Ti and Ti's set of synchronizations C.  
 Lines 1 and 2 add each constraint ei in  Qy to L(Ti , Cy ), 
which records the constraint modifications for Ti's 
synchronization y. Line 3 applies the DBP rules to 
propagate the effect of each constraint ei. For example, 
consider applying BACKPROPAGATE-SYNCH to the 
queue of ordering constraints: Qy  = {bc|[0,inf], fg|[0,inf]}. 
First we create the network S'' for task assignment Ti  and 
synchronization y by intersecting the constraints in L(Ti) 
and L(Ti , Cy) with the constraints in S. We then apply the 
DBP rules to propagate the effect of bc|L[0,inf] and the 
other constraints in Qy throughout the network S''.  

If back-propagation deduces a new constraint zi, which 
is tighter than the corresponding constraint in S'', then 
Lines 8-16 perform computations to refactor L(Ti , C) such 
that constraints common to all feasible synchronizations of 
Ti are recorded in L(Ti). In Line 17, zi  is added to the queue  
Qn for further propagation. The constraints of Qn are 
recursively propagated through the network in Line 21. If 
recursive propagation of the synchronization constraints 
does not result in an inconsistency, then the function 
returns true (Line 22). BACKPROPAGATE-SYNCH 
returns L(Ti) and L(Ti,C), which record the constraint 
modifications to S that ensure synchronized execution of 
the task assignment Ti. The refactoring process in Lines 8-
16 ensures that constraints common to all of Ti's 
synchronizations are recorded once, contributing to the 
compactness of the encoding.  
 We provide a proof sketch that ICA-MAP is complete in 
that it compiles a multi-agent plan to a dispatchable form  
 

function BACKPROPAGATE-TASK-ASSIGN (Qt , S, L(Ti )) 
1.     for each constraint ei in Qt 
2.          add ei to L(Ti ) 
3.          for each DBP incremental update rule propagating ei 
4.               deduce-new-constraint-zi (ei, S, L(Ti )) 
5.               if is-pos-loop(zi) then goto Line 2 
6.               if is-neg-loop(zi) then return FALSE 
7.               if zi-is-tightening(zi , S, L(Ti ))  
8.                    L(Ti ) ← add zi to L(Ti ) 
9.                    Qn  ← add zi to Qn  
10.             end if 
11.        end for 
12.    end for 
13.    BACKPROPAGATE-TASK-ASSIGN (Qn , S, L(Ti )) 
14.    return L(Ti ) 

Figure 4: Pseudo-code for BACKPROPAGATE-TASK-
ASSIGN 
function BACKPROPAGATE-SYNCH (y, Qy , S, L(Ti , C)) 
1.     for each constraint ei in Qy 
2.          add ei to L(Ti , Cy) 
3.          for each DBP incremental update rule propagating ei 
4.               deduce-new-constraint-zi (ei, S, L(Ti , Cy)) 
5.               if is-pos-loop(zi) then goto Line 2 
6.               if is-neg-loop(zi) then return FALSE 
7.               if zi-is-tightening(zi , S, L(Ti , Cy))  
8.                    if L(Ti) contains a  constraint f with ei's start and end events 
9.                          L(Ti, C) ← add f 
10.                        L(Ti, Cy) ← replace f with ei 
11.                        L(Ti,) ← remove f 
12.                  end if 
13.                  if L(Ti, C) all contain ei 
14.                        L(Ti) ← add ei 
15.                        L(Ti, C) ← remove ei 
16.                  end if 
17.                  Qn  ← add zi to Qn  
18.             end if 
19.        end for 
20.   end for 
21.   BACKPROPAGATE-SYNCH (y, Qn , S, L(Ti , C)) 
22.   return L(Ti ) and L(Ti , C) 

Figure 5: Pseudo-code for BACKPROPAGATE-SYNCH   
that preserves the set of execution possibilities attained 
using the [Tsamardinos, 2000] method. We know that to 
compile a dispatchable DTP, it is sufficient to compile 
each of the component STPs to a dispatchable form. First 
(i) we show that ICA-MAP enumerates all the component 
STPs for compilation. Second, (ii) we sketch that 
compiling each component STP using the Back-
Propagation Rules is complete in that the compiled form 
contains the same set of dispatchable executions as the 
APSP-dispatchable form. 

(i) ICA-MAP explicitly enumerates every possible task 
assignment and synchronization (Line 5,10). Each full task 
assignment corresponds to choosing one disjunct of each 
disjunctive constraint in the TCSP representation of the 
multi-agent plan (ex. Fig 2), thus enumerating all possible 
component STPs in the TCSP. Synchronization involves 
choices over ordering constraints among activities in a 
given task allocation, thus enumerating all component 
STPs of the full DTP.  

(ii) Each component STP is compiled to dispatchable 
form by applying constraint tightenings to a relaxed 
dispatchable form of the original DTP. The relaxed 
dispatchable form is guaranteed to contain all possible 
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successful executions of every component STP. The 
Dynamic Back-Propagation (DBP) Rules prune the relaxed 
problem so that it contains exactly the set of possible 
executions generated by dispatching the All-Pairs-Shortest-
Path form of the component STP.  Note that the DBP rules 
are not performing an incremental APSP computation. 
Instead, they perform a subset of the updates of an APSP 
computation, and rely on the propagation of timing 
information at execution to enforce full all-pairs-shortest-
paths [see Shah 2007, 2008 for more details]. 

Empirical Validation of ICA-MAP  
 In this section we empirically investigate the 
compactness of solutions compiled with ICA-MAP. In a 
later section, we empirically demonstrate that this compact 
encoding supports fast dynamic execution. 
 We apply ICA-MAP to a portfolio of parameterized, 
structured multi-agent plans in which parameters are 
generated randomly. We compute the number of 
constraints necessary to represent our compact encoding of 
the solution set, and compare this result to the number of 
constraints necessary to represent the solution set using 
naïve the approach proposed in prior art (Tsamardinos 
2001). The naïve approach maintains a separate, minimally 
dispatchable STN for each feasible synchronization of a 
full task assignment.  
  Both ICA-MAP and the algorithm for computing 
component STNs via the naive approach are implemented 
in JAVA. As a basis for comparison, we apply the two 
algorithms to randomly generated multi-agent plans 
involving coordination of two agents. Plans are generated 
with n = 8, 12, and 16 activities. Each activity is composed 
of two events: a start event  S and end event E. A binary 
disjunctive constraint of two intervals is randomly 
generated between each S and E, where each interval maps 
to one of the two agents. Intervals are randomly generated 
with upperbound time constraints between [1, 
max_duration =10], and lowerbound time constraints 
between [0, upperbound] so that the duration is nonzero 
and locally consistent. The method of generating 
upperbounds and lowerbounds for a disjunctive constraint 
ensures non-overlaping intervals. To derive constraints 
among activities, we randomly place each activity in a 2D 
plan space similar to a simple scheduling timeline, where 
overlapping activities represent concurrent activities. 
Simple interval constraints are generated with locally 
consistent values in order to constrain neighboring 
activities. This process ensures that the structure of 
randomly generated plans results in plan executions that 
generally flow from left to right in the plan space. The 
number of constraints in the plan increases with plan size 
according to O(3n).  
 Fig. 6 shows the number of constraints necessary to 
represent our compact encoding of the solution set, 
compared to the number of constraints necessary to 
represent all consistent component STNs. Thirty random  

Figure 6: Space to Represent Solution: Compact 
Encoding vs. Component STN Moderately- and 
Loosely-Constrained Plans encode 501-1500, and 

1501-5000 feasible component STNs, respectively.  
 

multi-agent plans are each generated for plans with 8, 12, 
and 16 activities. We characterize each generated plan as 
tightly-, moderately-, or loosely-constrained based on the 
plan's number of feasible component STNs. The figure 
presents the mean and standard deviation in the number of 
constraints reported for each compilation method. Fig. 6 
shows that the resulting compact representation reduces the 
space necessary to encode the multi-agent plan by one 
order of magnitude on average, compared to prior art.  

Algorithm for Fast Distributed Execution of 
Multi-agent Plans 

We present the function FAST-MAP-DISPATCH, which 
performs fast distributed execution of multi-agent plans.  
FAST-MAP-DISPATCH is made efficient by performing 
online computations using the compact encoding generated 
by ICA-MAP. ICA-MAP drastically reduces the number of 
constraints necessary to encode the feasible scheduling 
policies, thereby reducing the amount of online 
computation required to propagate timing information 
FAST-MAP-DISPATCH also performs on-demand 
propagation of temporal information, contributing to its 
efficiency. Typically during dispatch, the temporal 
information of an executed event is propagated to all 
immediate neighbors. Instead, we only propagate temporal 
information to enabled events, or events that may possibly 
be executed at the next timestep, thereby reducing the 
amount of propagation for infeasible task assignments and 
synchronizations. We empirically show in the next sections 
that our dispatch method yields low execution latency and 
scales well with the size of the multi-agent plan.  

Pseudo-Code for the FAST-MAP-DISPATCH 
 The pseudo-code for FAST-MAP-DISPATCH is 
presented in Figures 7-8. The function takes as input the 
relaxed, compiled network S, and the data structure L(T,C) 
that records the necessary constraint modifications to 
ensure temporally consistent execution of the feasible task 
assignments (T) and their and synchronizations (C). Plan 
execution is "distributed" in that each agent makes its own 
execution decisions using its own copy of S and L(T,C).  
Agents coordinate through communicative acts that are 
used to (1) broadcast claims to execute events, (2) 
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negotiate to resolve claim conflicts, and (3) broadcast the 
successful execution of events.  

In performing distributed dispatch of the plan, each 
agent must keep a list E of the events currently enabled for 
other agents, and keep a list ESELF of the events currently 
enabled for itself. An event N is enabled for an agent A if 
there exists some feasible synchronization where: the event 
N is assigned to agent A and all events that are constrained 
to occur before event N have already been executed. Lines 
1 and 2 initialize E and ESELF.  Initially, the plan's epoch 
start event is placed in either E, ESELF or both, depending 
on the event's enablement conditions. Line 3 initializes W 
and WSELF, which maintain the feasible windows of 
execution for the events in E and ESELF, respectively. In 
Line 4 the current time is initialized to zero. 
 The algorithm iterates through each enabled event N in 
E or ESELF until all plan events are executed (Lines 5,6). In 
Lines 7 and 8 the dispatcher compiles WE,N and WSELF,N, 
the feasible execution windows of N for other agents and 
itself, respectively. If the current time is within another 
agent's feasible window of execution (Line 9) then the self-
agent checks whether another agent has broadcast the 
successful execution of event N. If so, the self-agent 
records N's execution time as the current time, and labels N 
with the name of the agent that executed N (Line 10). If N 
has not yet been executed by another agent, the self-agent 
checks whether the current time is within its own feasible 
window of execution (Line 11). If so, then the self-agent 
broadcasts a claim to execute N (Line 12). In the case 
where another agent has also broadcast a claim to execute 
N, then the agents communicate to resolve the conflict. If 
after resolution, the self-agent owns the event N, then the 
self-agent records N's execution time as the current time, 
labels N with its own name, executes N, and broadcasts the 
successful execution of N (Line 13).  
 Lines 15-18 describe the process of updating the plan in 
response to an executed event N. First, the enabled lists E 
and ESELF are cleared (Line 15), since the execution of N 
may make the task assignments and synchronizations that 
support the currently enabled events infeasible. Next, the 
function PRUNE-AND-UPDATE-ENABLED is called to 
remove infeasible task assignments and synchronizations 
from L(T,C), update the enabled lists E and ESELF, and 
propagate timing information for the enabled events.  
 PRUNE-AND-UPDATE-ENABLED takes as input N, 
the recently executed event, S, the relaxed network, and 
L(T,C), which records the constraint modifications for the 
feasible task assignments and their and synchronizations. 
The function iterates through each full task assignment Ti 
(Line 1), checking whether the execution of N implies task 
assignment Ti is infeasible.  Ti may be infeasible due to 
inconsistent agent assignment (Line 2), inconsistent 
execution time (Line 3), or unsatisfied enablement 
conditions (Line 4). If Ti is found to be infeasible, then Ti 
and all its synchronizations are marked infeasible. If Ti is 
found to be feasible, then the function iterates through each    

function FAST-MAP-DISPATCH (S, L(T , C)) 
1.     E ← Initialize-other-agents'-enabled-list 
2.     ESELF ← Initialize-self-agent's-enabled-list 
3.     {WE ,WSELF}← Initialize-execution-window-lists 
4.     current_time = 0 
5.     while one or more events have not been executed 
6.          for each event N in E or Eown 
7.               WE,N ← Compile-Other-Agents'-Windows(N, WE) 
8.               WSELF,N ← Compile-Self-Agent's-Windows(N, WSELF) 
9.               if current_time is in WE,N and E contains N 
10.                    if other agent has executed N then set N's execution time  
                         to current_time and label N with executing agent's name 
11.             else if current_time is in WSELF,N and ESELF contains N 
12.                  claim N for self-agent and resolve any claim conflict 
13.                  if self-agent owns N then set N's execution time to  
                          current_time, label N with self-agent's name, execute N,  
                      and broadcast the successful execution of N 
14.             end if 
15.             if N is executed  
16.                  E, ESELF ← clear-lists 
17.                  E, ESELF,WE ,WSELF ←  
                       PRUNE-AND-UPDATE-ENABLED(N,S,L(T,C)) 
18.             end if 
19.        end for 
20.    end while 

Figure 7: Pseudo-code for FAST-MAP-DISPATCH 
 

function PRUNE-AND-UPDATE-ENABLED (N, S, L(T , C)) 
1.     for each feasible full task assignment Ti 
2.          if N's agent assignment is inconsistent with Ti then mark Ti and  
             all its synchronizations as infeasible and goto Line 1  
3.          if N's execution time is inconsistent with Ti then mark Ti and all  
             its synchronizations as infeasible and goto Line 1 
4.          if N's enablement conditions are not satisfied then mark Ti and all  
             its synchronizations as infeasible and goto Line 1 
5.          for each feasible synchronization yn of Ti 
6.               if N's execution time is inconsistent with yn then mark yn as  
                  infeasible and goto Line 5 
7.               if N's enablement conditions are not satisfied then mark yn as  
                  infeasible and goto Line 5 
8.               E, ESELF ← gather-enabled-events-using-( yn , Ti ,S) 
9.               WE ,WSELF ←  
                  update-windows-of-enabled-events-using -( yn , Ti ,S) 
10.          end for 
11.   end for       
Figure 8: Pseudo-code for PRUNE-AND-UPDATE-ENABLED  

feasible synchronization yn of Ti (Line 5), checking 
whether the execution of N implies yn is infeasible.  The 
synchronization yn may be infeasible due to inconsistent 
execution time or unsatisfied enablement conditions (Lines 
6,7).  If a given synchronization yn of task assignment Ti is 
found to be feasible, then Line 8 gathers the enabled 
events. Line 9 then propagates the timing information of N 
and updates the feasible execution windows for the enabled 
events. 
 FAST-MAP-DISPATCH has the following properties: 
(1) it is correct in that any complete task assignment and 
execution sequence generated by the dispatcher also 
satisfied the constraints of the multi-agent plan, (2) it is 
deadlock-free in that any partial execution generated by the 
dispacther can be extended to a complete execution that 
satisfies the constraints of the multi-agent plan, and (3) it is 
maximally flexible in that the dispatcher generates the 
same set of complete execution sequences that are 
generated by dispatching the consistent component STPs 
of the multi-agent plan. Proofs are omitted for space.  
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In the next section we empirically show that FAST-
MAP-DISPATCH reduces execution latency by up to one 
order of magnitude compared to prior art.  

 

Empirical Validation of FAST-MAP-
DISPATCH  

In a previous section we have shown that our incremental 
compilation method drastically reduces the number of 
constraints necessary to encode the set of feasible 
scheduling policies. In this section we empirically show 
that this compact representation supports fast dynamic 
execution of multi-agent plans.  
 We empirically validate FAST-MAP-DISPATCH by 
dynamically executing randomly generated, structured 
multi-agent plans. We compare the execution latency 
associated with dispatching our compact encoding to the 
execution latency of dispatching the component STN 
representation. As a conservative measure, we record the 
execution latency to propagate the timing of the first 
executed event. This is a conservative measure for 
execution latency because all task allocations and 
synchronizations are still feasible, thus increasing the 
computation required to propagate timing information. 

The results of the comparison are shown in Fig. 9. Thirty 
structured multi-agent plans are randomly generated for 
each n = 8, 12, and 16 activities. The figure presents the 
mean and standard deviation of execution latency for each 
dispatch method. The results indicate that dispatching the 
compact encoding significantly reduces execution latency, 
by one order of magnitude on average, compared to the 
dispatch of the component STN representation. Also, the 
results indicate that our method scales well with the size of 
the multi-agent plan. Doubling the size of loosely-
constrained multi-agent plans from 8 to 16 activities 
increases the execution latency by no more than 0.03 
seconds on average using the compact encoding.  

By leveraging a compact encoding of multi-agent plans, 
FAST-MAP-DISPATCH enables agents to perform 
distributed dynamic execution while (1) reasoning on 
flexible scheduling policies for thousands of possible 
futures, and (2) achieving execution latency within the 
bounds of human reaction time (250 ms).    

Conclusion 
 In this paper, we introduced an executive named Chaski 
that enables execution of temporally flexible plans with 
online task assignment and synchronization. Chaski 
generalizes the state-of-the-art in dynamic plan execution 
by supporting just-in-time task assignment as well as 
scheduling. The key innovation of Chaski is a fast 
execution algorithm that operates on a compact encoding 
of the scheduling policies for all possible task assignments. 
We show that Chaski reduces execution latency and the 
number of constraints necessary to encode the randomly 
generated plans by one order of magnitude on average, 
compared to prior art.  

 
 

 
Figure 9: Execution Latency: Compact 
Encoding vs. Component STN Representation. 
Moderately- and Loosely-Constrained Plans 
encode 501-1500 and 1501-5000 feasible 

component STNs, respectively. 
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