
Improving Planning Performance Using Low-Conflict Relaxed Plans

Jorge A. Baier
Department of Computer Science

University of Toronto
Canada

Adi Botea
NICTA and

the Australian National University
Canberra, ACT

Abstract

The FF relaxed plan heuristic is one of the most effective
techniques in domain-independent satisficing planning and
is used by many state-of-the-art heuristic-search planners.
However, it may sometimes provide quite inaccurate infor-
mation, since its relaxation strategy, which ignores the delete
effects of actions, may oversimplify a problem’s structure. In
this paper, we propose a novel algorithm for computing re-
laxed plans which – although still relaxed – aim at respecting
much of the structure of the original problem. We accom-
plish this by generating relaxed plans with a reduced number
of conflicts. An action a will add a conflict when added to a
relaxed plan if the resulting plan is provably illegal (i.e, not
executable) in the un-relaxed problem. As a second contri-
bution, we propose a new lookahead strategy, in the spirit of
Vidal’s YAHSP lookahead, that can better exploit the con-
tents of relaxed plans. In our experimental analysis, we show
that the resulting heuristic improves over the FF heuristic in
a number of domains, most notably when lookahead is en-
abled. Moreover, the resulting system, which uses our new
lookahead, is competitive with state-of-the-art planners, and
even better in terms of the number of solved problems.

Introduction

In domain-independent satisficing planning with heuristic
state-space search, the quality of the heuristic has a strong
impact on the planner performance. Some of the most suc-
cessful approaches to compute heuristics are based on re-
laxations which ignore parts of the interactions between ac-
tions. The relaxed plan (RP) heuristic, introduced in the FF
planner (Hoffmann and Nebel 2001), estimates the actual
length of a plan by the length of a plan for a relaxed instance.
It is usually quite effective; indeed, it is used by many state-
of-the-art planners, including several systems awarded in re-
cent planning competitions.

In addition to using the RP length as a heuristic, the actual
contents of RPs can be further exploited by identifying help-
ful actions (Hoffmann and Nebel 2001), building lookahead
policies (Vidal 2004) and building macro-operators (Botea,
Müller, and Schaeffer 2007). These techniques have been
shown to be very effective for many planning benchmark
problems. As they exploit the contents of RPs, their success

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

depends directly on the similarity between the relaxed and
the actual plans.

However, the RPs obtained by the method of Hoffmann
and Nebel can dramatically differ from actual plans in some
respects. For example, the RP never changes any fact more
than once, even when the corresponding actual plan may in-
volve making some facts true and false several times repeat-
edly. Moreover, an FF-style RP never contains any action
more than once, even though the actual plan could use an
action several times.1 For n actions, the maximum obtain-
able plan length is n, even though in some cases the actual
plan might require a greater number of actions (which could
be even exponential in n).

In this work we consider methods that aim at computing
RPs that are more accurate, i.e., more similar to real plans.
In addition, to better exploit not only the length but also the
contents of a relaxed plan, this paper presents a new algo-
rithm to construct lookahead policies, that can be viewed as
an extension of Vidal’s technique.

To improve the accuracy of an RP, our technique attempts
to explicitly minimize the number of conflicts in the RP
during its construction. A conflict is introduced by an ac-
tion that generates a state with a pair of facts that cannot
hold both at the same time. Conflicts bear similarities with
flaws in partial-order planning (McAllester and Rosenblitt
1991) and permanent mutexes in Graphplan (Blum and Furst
1997). Formally, we define an optimization problem whose
objective is to find an RP with a minimum number of con-
flicts, and propose a greedy approximation algorithm that
can quickly obtain a low-conflict RP. By minimizing the
number of conflicts in the RP we indirectly incorporate into
it more of the structure that is lost when completely ignoring
the actions’ delete effects.

On the other hand, our algorithm for computing looka-
head policies differs from Vidal’s method in that we can in-
sert new actions into an RP, without having to remove an RP
action instead. This allows to build longer macros, which are
capable of taking larger steps towards the goal.

Experiments demonstrate that the enhancements de-
scribed in this paper can lead to significant improvements
in search performance. The resulting system is competi-

1The situation is slightly more sophisticated in domains with
conditional effects. We skip the details for the sake of simplicity.

10

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

tive with state-of-the-art planners such as LAMA (Richter,
Helmert, and Westphal 2008) and YAHSP (Vidal 2004), and
is even better in terms of the number of problems solved.

The next section contains background information. We
then formalize our approach as an optimization problem that
minimizes conflicts, proceeding then to describe the details
of our method for RP extraction. The presentation of the
new lookahead technique follows. Finally, we include an
experimental evaluation, followed by a discussion.

Background

A STRIPS planning problem P is a tuple 〈F , I,O,G〉,
where F is a finite set of facts, I ⊆ F is an initial state, G ⊆
F are goal facts, and O is a finite set of action operators that
map a state (i.e., a collection of facts) into another state. An
operator a is specified as a triple 〈prec(a), add(a), del(a)〉
of lists of facts for, respectively, preconditions, positive ef-
fects, and negative effects (deletes). The facts prevailed by
a, prev(a), are those preconditions of a that are not deleted
by a. We write as γ(s, a) the state obtained by applying a
to s. For a collection of actions that can be applied in a se-
quence, γ(s, a0a1 . . . an) = γ(γ(s, a0), a1 . . . an). The set
A(s) contains all actions applicable to a state s.

The regression of a set of goals G over an action a
is the minimal set of facts that have to hold true in a
state to ensure the satisfaction of G after performing a.
Formally, the regression of G over a is Regr(a, G) =
(G \ add(a)) ∪ prec(a).2 For a nonempty sequence
of actions a0 · · · an we define Regr(a0a1 · · ·an, G) =
Regr(a0, Regr(a1 · · · an, G)).

P+, the delete-relaxation of P , is a planning problem just
like P but in which the delete lists of operators are empty. A
plan for P+ is called a relaxed plan (RP) for P . Formally, a
sequence of actions σ is an RP for P iff Regr(σ,G) ⊆ I.

Using RP-based heuristics, the heuristic value assigned to
a state s is the length of RP (s), an RP from s to G. The RP
is computed in polynomial time by first building a (mutex-
free) planning graph for P+ until it contains all goals. Then,
for each goal, an action that achieves it (achiever) is selected
and a new set of goals is obtained by regressing the goals
over the achiever. This repeats until all regressed goals hold
in s. FF chooses an achiever for a subgoal g heuristically.
First, it selects the earliest ones, i.e., the ones responsible
for the first appearance of g in the planning graph. Then,
among the earliest achievers, it chooses one with the cheap-
est preconditions. A precondition’s cost is equal to the ear-
liest graph level that contains it.

RP heuristics can be used in combination with standard
search algorithms, but RPs can be exploited further. For
example, while expanding a state, FF prioritizes the so
called helpful actions, which are the applicable actions that
achieve facts marked as goals on the second atom layer of
the RP. Particularly relevant to this work is the use of for-
ward (or lookahead) macros built from RPs (Vidal 2004;
Botea, Müller, and Schaeffer 2007). A forward macro is a

2In regression planning the regression of G with respect to a is
defined only when del(a)∩G = ∅. In the relaxation, this condition
always holds, so we omit it from the definition of Regr.

sequence of actions that can be applied, in the un-relaxed
world, to a state s, allowing to take longer steps towards the
goal in a search. Their effectiveness, however, depends di-
rectly on the similarity between an RP and a real solution.

For example, the YAHSP planner (Vidal 2004) builds a
lookahead macro iteratively, by removing an action a from
RP (s) and appending it to the current macro prefix. When
none of the remaining actions in RP (s) can be appended to
the current macro prefix, a plan repair strategy will, if pos-
sible, replace an action in RP (s) with one or possibly more
actions, suitable to be appended to the macro. The procedure
traverses (the remaining part of) RP (s) repeatedly, until no
more actions can be appended to the macro.

A Motivating Example

We motivate our conflict minimization approach with an ex-
ample in the storage domain, a benchmark 2006 Interna-
tional Planning Competition (IPC-2006). In the STRIPS
version of this domain, there are crates that can be trans-
ported from one area to another using hoists. Crates can be
lifted and dropped by hoists. Hoists can carry at most one
crate at a time, and can move between connected areas. A
hoist can only move to a clear area, and can pick up or drop
a crate in an area that is connected to the one it is currently
in. A crate can only be dropped in a clear area. Depots and
containers are composed by connected areas.

The planning tasks considered for this domain consist of
moving a set of crates located initially in containers to their
destination depots. As such, given an instance, both decid-
ing whether there is a solution, and computing a non-optimal
solution can be done in polynomial time in the size of the
problem. Nonetheless, these problems turned out to be sur-
prisingly hard for most of the IPC-2006 competitors: none
of them but SGPlan5 (Hsu et al. 2007) could solve instances
19-30, even though these instances do not show a significant
increase in size. Interestingly – as we see later in our exper-
imental evaluation – these problems are also very hard for
LAMA (Richter, Helmert, and Westphal 2008), the winner
of the IPC-2008 satisficing track.

Storage is hard for many heuristic-based planners because
their heuristics oversimplify the problem. We illustrate this
with a simple situation depicted in Figure 1. An RP, as com-
puted by FF, for this state would be as follows:

drop(c1, a4, hall), pick(c2, c-a2), drop(c2, a4, hall),

where drop(c, to, from), stands for dropping c in area to
while the hoist is located in area from . This RP obviously
underestimates the number of actions required to reach the
goal. However, it has another problem which can be even
more critical to the scale-up of state-of-the-art planners: it
does not include go-in (the action that makes the hoist go in
the depot). Thus, planners that rely on helpful actions will
never prioritize – and might not even consider – the use of
the only actually useful action in this situation.

Although the focus of this paper is on RPs, it is interest-
ing to note that other domain-independent heuristics, like
the causal graph (CG) heuristic (e.g., Helmert 2006) and
its recent generalization (Helmert and Geffner 2008) have
similar limitations in this particular situation. Indeed, since

11

a1 a2
depot1 container1

ca1hall

ca2

c2

a4a3
c1

Figure 1: An intermediate state in a 2-crate storage task.
Dashed lines divide connected areas; e.g. a4 is connected
to loadarea but a2 is not. The goal is to have all crates in
depot1. The hoist is currently holding c1.

these heuristics consider top-level goals as essentially inde-
pendent, they will also behave as if all crates could be put
in the same location, and never thus consider go-in as part
of a solution. In the context of the Fast Downward planner
(Helmert 2006), this means that go-in is not a “preferred op-
erator,” but in more general terms, any RPs that one would
extract from a solution to the CG relaxation will potentially
exhibit the same issue.

As stated earlier, our approach addresses over-relaxation
by attempting to minimize the conflicts appearing in an RP.
As such, our algorithm tries to avoid the appearance of both
drop(c1, a4) and drop(c2, a4) in a single plan, as this gener-
ates a delete conflict: either action deletes clear(a4) which
is a precondition of the other action. As a consequence of
minimizing this conflict, the algorithm considers dropping
the crates in different locations. Ultimately, go-in will be
considered a helpful action, since it will appear in the RP
because it is the only action that leads to the achievement of
the precondition of a drop in a depot area other than a4.

Relaxed Planning as Optimization
Rather than being any solution to the delete-relaxation, we
view RPs as approximate solutions to an optimization prob-
lem, which is to minimize the number of conflicts in the
RP. The definition of this optimization problem is useful for
two reasons: (1) it sets the foundation for the construction of
low-conflict RPs, and (2) it provides an intuitive justification
of the potential benefits of using low conflict RPs.

We introduce formal definitions for conflicts below. Intu-
itively, when a conflict appears in an RP, then the execution
of the RP in the unrelaxed world will visit an illegal state.
Our approach captures illegal states that are characterized
by permanent mutex sets of facts.

Definition 1 (Permanent Mutex Set of Facts) A set of
facts F = {f1, . . . , fn} is a permanent mutex for a problem
P if there is no state s reachable from I such that F ⊆ s.

Example 1 {at(cr1, a2), at(cr2, a2)} is a permanent mu-
tex in storage, since crates cr1 and cr2 cannot both occupy
the same location a2.

It is known that permanent mutexes may not characterize
all illegal states in a planning problem. If, for example, a fact
f1 can only exist in conjunction with another fact f2, then
any state that contains f1 but not f2 is illegal but does not
contain a permanent mutex involving f1 or f2. Using per-
manent mutexes to prove state illegality, is common practice
in regression planning (see e.g., Haslum and Geffner 2000).

Sets of permanent mutexes are hard to compute, and
therefore our algorithm will restrict to only binary perma-
nent mutex sets, since a subset of these can be computed
relatively quickly. In a preprocessing step, for the initial
state only, we compute the h2 heuristic (Haslum and Geffner
2000) which, for each pair of atoms (f1, f2), gives a lower
bound on the distance to a state where both f1 and f2 are
true. Pairs with an infinite distance are permanent mutexes.

Now we are ready to formally define conflicts. We con-
sider three types of conflicts that an action could introduce
when added to an RP. In the following definitions, a is an
action that achieves a fact in a set of (goal) facts G (i.e.,
add(a) ∩ G �= ∅).

Definition 2 (Add-Prevail Conflict) Action a produces N
add-prevail conflicts iff there exist N permanent mutex sets
formed with elements of both prev(a) ∪ add(a) and G.

Definition 3 (Precondition Conflict) Action a produces N
precondition conflicts iff there exist N permanent mutex
sets formed with elements of both prec(a) \ prev(a) and
Regr(a, G).

Definition 4 (Delete Conflict) Action a produces N delete
conflicts iff |G ∩ del(a)| = N .

An add-prevail conflict is produced when the action a that
achieves a goal in G adds or maintains facts that are incom-
patible with some facts in G. A precondition conflict is cre-
ated when some of a’s preconditions are mutex with the re-
gressed goals. A delete conflict occurs when the action just
added deletes one of the subgoals we want to achieve.

The Optimization Problem Let P be a STRIPS planning
problem. Consider the following optimization problem:

min Conflicts(σ,G) s.t. σ is a plan for P+, (1)

where σ = a0a1 · · ·an is an action sequence, and
Conflicts(σ,G) is the sum over i ∈ [0, n] of the number
of conflicts introduced by ai on Regr(ai+1 · · ·an,G).

Proposition 1 Conflicts(σ,G) = 0 iff σ is a plan for P .

Proof for ⇒: The absence of delete conflicts implies Regr
coincides with standard regression in STRIPS. Hence, since
Regr(σ,G) ⊆ I, the linear sequence σ is a plan for P . �

The proof of the proposition shows that precondition and
add-prevail conflicts could be omitted from the optimization
problem and we would still obtain a valid plan via minimiza-
tion of only delete conflicts. However, keeping this con-
straint is useful to anticipate delete conflicts. To see this,
assume we are building an RP using regression and that the
current suffix is σ. Adding an action a to (the head of) σ may
not introduce a delete conflict, but if it introduces any of the
other conflicts, no legal plan can end with aσ, and thus any
RP ending with aσ has a delete conflict.

Example 2 Let pick(c2, a2), drop(c2, a4, hall) be an RP
suffix for the situation of Figure 1, and let G be the set of
regressed goals. Note that both at(hoist, loadarea) and
clear(a4) are in G (introduced by drop(c2, a4, hall)). Then
drop(c1, a4, hall) introduces a delete conflict in G since it
deletes clear(a4). Action drop(c1, a2, a4) does not intro-
duce a delete conflict, but it does introduce a prevail con-
flict because one of its prevailed facts, at(hoist, a2), is mu-

12

tex with at(hoist, loadarea). As shown in the next sec-
tion, the latter conflict can be eliminated by inserting the
go-out(hoist) action in the RP.

Low-Conflict RPs via Greedy Minimization
Our objective is to improve planning performance by uti-
lizing low-conflict (i.e., improved) relaxed plans. A low-
conflict RP is one that has few conflicts in the sense of the
optimization task defined in (1). This section describes an
algorithm that aims at producing low-conflict RPs by greed-
ily approximating a solution to the optimization problem.
Recall that an exact solution is equivalent to finding a plan,
and thus is not a reasonable approach if one wants a heuris-
tic. This section starts by outlining the algorithm at an in-
tuitive level, and continues with more specific details about
the pseudocode and implementation.

High-Level Description

Our algorithm uses a greedy strategy to attempt to minimize
the conflicts, making all its decisions in a locally optimal
manner. The algorithm bears similarities with FF’s extrac-
tion algorithm. As such, for a state s in a problem P , it
receives as input a Graphplan-style planning graph for P+.
Then, until an RP is found, it will iteratively choose a goal
g, then an achiever for g, and will regress the current set of
goals through the achiever.

As opposed to FF, when determining which goal to sat-
isfy, our method picks one that can be achieved by an action
that introduces the minimum possible conflicts. If the best
possible achiever still introduces conflicts, it attempts to fix
this situation by performing two subsequent steps: conflict
avoidance and conflict repair.

Conflict avoidance (lines 12-13 in Algorithm 1) attempts
to replace the action b added to the relaxed plan at the previ-
ous iteration (i.e., the one at the front of the RP suffix before
adding a new action at the current iteration). The replace-
ment, if successful, guarantees that the achiever chosen to
be added to the RP will introduce fewer conflicts than be-
fore the replacement.

Conflict repair (lines 14-17) attempts to reduce the num-
ber of conflicts by inserting a “repairing” sequence of ac-
tions in the RP. The justification for this step is that it turns
out that some conflicts can be fixed by adding actions to
an RP. To see this, consider the RP suffix of Example 2,
and assume that action drop(c1, a2, a4) – which produces
add-prevail conflicts – is considered to be prepended to the
RP suffix. Here, one can insert a 1-action repair to the
head of the current RP suffix, namely go-out(hoist), such
that drop(c1, a2, a4) introduces no conflicts at all when
prepended to the resulting suffix.

The conflict repair phase searches for a k-step action se-
quence that will reduce the conflicts introduced by the cur-
rently considered achiever to the minimum. In case there are
two sequences that reduce the conflicts by the same amount,
the one that has cheapest preconditions is chosen, where the
cost of the precondition is defined as in FF. Repair is obvi-
ously an exponential task, but the search we perform here is
quite constrained, considering only conflict-free actions for
the repair sequence, and usually employing low values of k.

Algorithm 1 Low-Conflict Relaxed Plan Extraction

1: function EXTRACTPLAN(Relaxed planning graph PG, Set of
goal facts finalGoals, Integer k)

2: goals ← finalGoals
3: satGoals ← goals in goals that appear at first level of PG
4: relPlan ← ()
5: for level ← depth of PG downto 1 do
6: thisLevelGoals ← goals

7: while thisLevelGoals \ satGoals �= ∅ do
8: minConfGoals ← MINCONFLGOALS(thisLevelGoals, level)
9: g ← Most constrained goal in minConfGoals

10: a ← min-conflict achiever for g
11: if a introduces conflicts then � conflict avoidance
12: Try to replace relPlan’s first action to reduce a’s confl.
13: if replacement succeeded then goto line 8

14: if a still introduces conflicts then � conflict repair
15: M ← BESTKSTEPREPAIR(k, a, PG, goals, level)
16: else
17: M ← ()

18: relPlan ← a · M · relPlan
19: goals ← regressed goals for new relPlan
20: Delete from thisLevelGoals facts achieved by a · M

21: return relPlan

Specific Details

We now proceed to give a more detailed explanation of some
aspects of the pseudocode and its implementation. As noted
above, the algorithm is inspired by FF’s extraction method.
As such, it takes as input a planning graph PG, a set of goals,
and an integer k corresponding to the maximum length of a
repair sequence. The algorithm iterates from the last (deep-
est) level of the graph. In each iteration it achieves all sub-
goals in thisLevelGoals. Note that this variable is initialized
with the initial set of goals (line 2). As a consequence, all
goals not satisfied at the first level of the graph will be con-
sidered for achievement in the first iteration. On subsequent
iterations, on each level � we satisfy all subgoals generated
by actions at level � + 1. This is a fundamental difference
with FF, since FF’s algorithm achieves at level � only those
goals that first appear at level �. The justification for our
modification is simple: achieving a goal at a higher level in
the graph provides a broader spectrum of achievers to choose
from, and thus decreases the chances of finding only high-
conflict achievers.

To select the next goal to achieve, g, goals that have
achievers that would introduce the fewest conflicts are com-
puted in line 8 and stored in minConfGoals. The most
constrained goals are those in minConfGoals that have the
fewest achievers. In line 9, g is set to a most constrained
goal, with ties broken by choosing the goal that appears at
the highest level of PG for the first time. Remaining ties are
broken arbitrarily. The best achiever for g, i.e. one that pro-
duces the fewest conflicts, is then chosen (line 10). In case of
ties, achievers with lower precondition costs are preferred.

The implementation of the replacement of an action b in
the conflict avoidance phase (line 12) deserves additional
comments. To implement it, we keep track of the set of
min-conflict actions that have been considered at the time
when b has been selected. If an action is found that reduces

13

the conflicts introduced by the current best achiever, such an
action will replace b in relPlan. If the replacement is suc-
cessful (line 13), the control jumps to line 8. This allows the
algorithm to choose a best available new achiever by recon-
sidering new potential min-conflict actions.

For conflict repair, the BESTKSTEPREPAIR function uses
regression search for a sequence of non-conflicting actions
that achieves those facts in thisLevelGoals that are in con-
flict with a. Any action may be considered for this search
(not just those in the PG of the current state). The sequence
sought, besides strictly reducing the conflicts produced by a,
must be such that its preconditions either are added by a or
occur in PG at a depth lower than level.

A very important note has to do with the input relaxed
planning graph PG. While developing the algorithm we no-
ticed that sometimes actions that produce fewer conflicts do
not appear in a planning graph that is expanded just until
all goals are reached. To attempt to minimize conflicts even
more, our planner may consider graphs that are expanded
beyond the goal’s level.

The planner determines how many extra levels to ex-
panded before starting to plan, and commits to this value
throughout the search for a plan. To this end, the current
implementation uses a very simple strategy. For the initial
search state only, it runs Algorithm 1 for planning graphs ex-
panded to increasing levels beyond the goals, stopping when
a fixed point in the number of conflicts in the RP is found.
The extra value up to which to expand the graph is set to the
level at which the fixed point is reached.

Proposition 2 Algorithm 1 is polynomial in the size of the
problem P and exponential in the parameter k.

Although the algorithm is exponential in k, we see in the
experimental evaluation that good results can be obtained
by setting k to values as low as 1 or even 0.

Lookahead Macros Revisited

An RP can sometimes be too optimistic and therefore much
shorter than a real plan. When building a lookahead macro,
YAHSP’s plan repair strategy – which we call repair by sub-
stitution – replaces an existing action with one or more ac-
tions. The number of replacement actions is bounded by the
number of add effects of the replaced action.

When RPs are computed in a regression fashion, as is the
case in FF and in our new algorithm, it can often happen that
the tail of a relaxed plan is conflict-free. As more actions
are prepended and an RP becomes more complex, conflicts
are harder to avoid towards the beginning of a relaxed plan.
Conflicts that occur early in an RP can limit the length of the
lookahead macros extracted from that RP.

To obtain longer lookahead macros, we introduce a sim-
ple, yet effective extension called repair by insertion. When
generating the lookahead macro from a state s, if no action
from the remaining part of an RP can be appended to the
current macro prefix m, a new action a is sought. The con-
ditions that an action a needs to satisfy are that it can be
added to m (i.e., it is executable in γ(s, m), the final state of
m), and that its effects allow to further append to the macro
at least one action from the remaining part of the RP. The

Algorithm 2 Repair by insertion.

1: function SEEKREPAIRACTION(m, s′, R)
2: C ← ∅ � set of candidate repair actions
3: for each i ∈ [1 . . . |R|] do
4: C ← C ∪ SEEKCANDIDATES(m, s′, Ri)

5: return arg maxa∈C score(a)

repair by insertion strategy is shown in Algorithm 2. Other
details of the algorithm for building lookahead macros are
similar to the original YAHSP procedure, which we outline
in the background section. For more details, see the original
paper (Vidal 2004).

The arguments to SEEKREPAIRACTION are m, the macro
prefix built so far, s′ = γ(s, m) and R, the remaining part of
RP (s). Ri is the suffix of R starting from the i-th position,
and first(R) denotes the first action in R. SEEKCANDI-
DATES returns all actions a that satisfy all following con-
ditions: (1) a ∈ A(s′); (2) first(Ri) ∈ A(γ(s′, a)); and
(3) a does not introduce a cycle (i.e., a state repetition) in
m. Each action returned by SEEKCANDIDATES is assigned
a score defined as |add(a)∩ pre(Ri)| − |del(a)∩ pre(Ri)|.
The expression pre(Ri) corresponds to the precondition of
the sequence of actions Ri, which is formally equivalent to
Regr(Ri, ∅). We introduce a new heuristic criterion (score)
to select a winner among all candidates for insertion, pre-
ferring an action that adds more and removes fewer global
preconditions of Ri. This rule is used to increase the chances
that more steps from Ri – not only the first one – could be
appended to m.

Experimental Evaluation

We implemented our RP extraction algorithm on top of FF-
v2.3. We also implemented 2 lookahead strategies: (1) the
lookahead with insertion repairs (LA-ins), as presented in the
previous section and (2) the YAHSP lookahead (LA-yahsp),
as described in the original paper. In the remainder of the
section, we use hcm to refer to our heuristic, and hFF to re-
fer to the FF heuristic. Note that each time we use hFF we
actually are using Hoffmann and Nebel’s implementation of
hFF, since our techniques are implemented on top of FF.

For the evaluation, we use FF’s search algorithm: en-
forced hill-climbing algorithm (EHC) followed by a best-
first search (BFS) in case EHC fails. We extend EHC and
BFS with lookahead macros such that each search node
has an additional successor that is obtained by applying the
lookahead macro. As in YAHSP, the helpful actions consid-
ered when using our RPs correspond to the set of actions in
the RP that are applicable in the current state. Obviously,
the macro-successor is not pruned in helpful action filtering.

Using 19 benchmarks for classical planning,3 we compare
the performance of hFF and hcm using three lookahead con-
figurations (plain EHC/BFS, EHC/BFS plus LA-yahsp, and
EHC/BFS plus LA-ins), with 4 values for k (0, . . . , 3). Our

3We have used benchmark problems available online. We re-
moved action costs from the woodworking domain (IPC-2008).
For the matching-bw domain (IPC-2008, learning track) we used
30 bootstrap problems plus 30 (out of the 60) target problems.

14

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0.05 1 15 60 120 300 900

hFF

hcm, k=0

hcm, k=1

Search Time (sec.)

N
u

m
b

er
o

f
P

ro
b

le
m

s
S

o
lv

ed

Figure 2: Number of planning instances solved by the three
different RP techniques, using LA-ins as lookahead.

best results – in terms of number of problems solved – were
obtained when k = 0 or k = 1, and therefore we only report
on those here. For higher values, we obtained good results in
some domains but the high overhead incurred in the compu-
tation of hcm did not pay off in the long run. As a conclusion,
for our input data, a simple choice such as not performing k-
step repairs is a good strategy. However, we don’t conclude
that k-step repairs would be useless in general.

All experiments were run on 2.8 GHz AMD Opteron
cores, running Linux. The limits of 1.5 GB of RAM, and
900 seconds of time were imposed on each instance.

The experiments reported below focus on a few main di-
rections. First, we analyze the performance of our best sys-
tem version, which includes both enhancements. Then we
break down the analysis to assess the contribution of each
individual enhancement.

Best Configuration Table 1 summarizes the results of our
best configuration: hcm with LA-ins using k = 0. For com-
parison, we include data for hFF (also with LA-ins), and
the percentage of problems solved by the planning systems
LAMA and YAHSP. Results for these planners are included
as a reference to the state of the art. Since the search algo-
rithms used by them are different, it is not possible to do a
good comparison of their heuristics and ours. Furthermore,
the LAMA planner uses other techniques (i.e., landmark
computation) in addition to also exploiting the FF heuristic.

We observe that in 6 out of 19 domains our approach
solves more problems than hFF using the same lookahead
strategy, whereas hFF is better in 3 domains. Moreover, in
16 out of 19 domains, hcm is equally or more informed than
hFF. The informedness is measured here using the geometric
mean of the ratio between the states expanded by each of hFF

and hcm using LA-ins. The combination hcm and LA-ins has
the best overall success percentage (89.88%), outperforming
YAHSP, LAMA and the system version that uses hFF.

In terms of CPU time, hcm is slower to compute than hFF.
A rough average value, computed over all domains and all
instances, indicates is hcm is 4 times slower per node eval-
uated. Despite this, hcm has a better overall performance,
since the savings in the expanded nodes are often greater

s-ratio �-ratio hFF hcm YAHSP LAMA
Domain mean mean % sol % sol % sol %sol

woodworking 6.07 1.61 93 100 62 100
storage 3.81 1.34 60 100 67 60
matching-bw 2.95 1.09 62 67 * 93
pipesw-notan 2.36 1 86 94 100 88
pipesw-tan 1.61 1 60 80 42 80
satellite 1.4 0.99 100 97 100 83
depots 1.4 0.97 100 100 82 95
mystery-adl 1.36 0.96 50 47 60 63
driverlog 1.26 0.91 95 100 100 100
freecell 1.24 0.91 98 90 95 97
TPP 1.15 0.89 100 100 100 100
blocks 1.11 0.88 100 100 100 100
zenotravel 1.06 0.87 100 100 100 100
mprime-strips 1.05 0.87 100 100 100 100
philosophers 1 0.85 100 100 * 56
gripper 1 0.81 100 100 100 100

logistics 0.97 0.74 96 96 96 96
rovers 0.81 0.73 100 100 100 100
trucks 0.19 0.56 37 37 * 50

Average 1.33 0.92 86.17 89.88 87.75 87.52

Table 1: Geometric mean of the ratio between states ex-
panded (s-ratio) and plan length (�-ratio) obtained by hFF

and hcm using LA-ins, followed by the percentage of prob-
lems in which a plan is found (% sol), for LA-ins with hFF,
LA-ins with hcm, YAHSP and LAMA. YAHSP was run in
“lobfs” mode. Above the line are those domains in which
hcm is more informed than hFF (i.e., s-ratio ≥ 1). �-ratio ≥ 1
iff hcm finds shorter or equal solutions on average. “*”
means the planner does not handle that domain. YAHSP
average values are on a different set of domains.

than the time overhead per node. Figure 2 shows the num-
ber of problems solved as the search time (per instance) in-
creases. We observe that, due to the higher overhead in-
curred by hcm, hFF is better during the first few seconds
of searching. Soon after 15 seconds, hcm catches up, solv-
ing more problems. The time range where hFF solves more
problems than hcm is short (about 15 out of 900 seconds),
despite the rather opposite visual effect created by using a
logarithmic horizontal scale. We use a logarithmic scale for
a better readability. With a normal scale, the [0,15] interval
would be almost invisible.

Finally, in terms of solution quality (length), in problems
that can be solved by both heuristics, hcm tends to produce
longer plans – 8% longer in average. In 10 out of the 19
domains, half of the solutions obtained by hcm are shorter
than those obtained by hFF.

The best value for the k parameter is 0. Using k = 1
yields comparable, but slightly worse results (Figure 2). The
average success ratio drops slightly from 89.88% to 89.31%.

We switch our attention to evaluating how various sys-
tem features contribute to the overall performance. With
lookahead turned on, hcm provides both a heuristic value
for the state at hand, and a set of helpful actions (includ-
ing the lookahead macro). To evaluate the impact of each of
these two ways of employing hcm, an “intermediate” system
configuration was run. We use the standard hFF to provide
heuristic state estimations, and hcm in combination with LA-
ins to compute lookahead macros and helpful actions. De-

15

spite the overhead of evaluating states twice, the resulting
configuration works well. It has an average success rate of
88.56%, which places it right in between the two configura-
tions (hFF and hcm) reported in Table 1. The result suggests
that both ways of using hcm have a positive contribution to
the system performance, a conclusion that is supported by
the following experiments too.

hcm vs. hFF with No Lookahead We continue our anal-
ysis by evaluating each of the two enhancements (hcm and
LA-ins) individually. First, we compare the performance of
hcm and hFF with the lookahead switched off. The best re-
sults were obtained for hcm with k = 1. A summary of the
results is shown in Table 2.

With no lookahead, hcm is competitive with and even
slightly better than hFF. This time, however, the overall dif-
ferences between hcm and hFF are smaller than in the case
where lookahead is switched on, which was analyzed earlier
(Table 1). This behaviour seems to indicate that hcm offers a
better pool of actions to be exploited in a lookahead macro.

Finally, in terms of solution quality (length), in problems
that can be solved by both heuristics, hcm tends to produce
longer plans. On average, there is a 10% increase. In 9 out
of the 19 domains at least half of the solutions obtained by
hcm are shorter than those obtained by hFF.

LA-ins vs. LA-yahsp To evaluate the impact of the LA-
ins lookahead, we compare LA-ins and LA-yahsp using the
standard heuristic hFF. LA-ins outperforms LA-yahsp. In-
deed, in 9 of 19 domains LA-ins solves more problems than
LA-yahsp, and in no domain it solves fewer instances. More-
over, in 16 domains, LA-ins expands the same or fewer nodes
than LA-yahsp on average. Even though LA-ins yields a
search that expands fewer nodes, there is no compromise
in solution quality. Solutions produced by LA-ins are only
1% longer on average. It is important to note, however, that
solutions obtained with lookahead are generally of a lower
quality than those obtained without lookahead (Vidal 2004).
Compared to plain EHC/BFS (i.e., the FF planner), LA-ins
obtains solutions that are 20% longer on average. In terms
of time, as both lookahead strategies incur a very similar
overhead, search times very much correlate to the number
of evaluated nodes, and thus are better for LA-ins. In terms
of problems solved, LA-ins plus EHC/BFS outperforms the
FF planner, solving more instances in 10 out of the 19 do-
mains, and solving fewer instances in only one domain.

We note also that our implementation of the YAHSP
lookahead (LA-yahsp) used with hFF is competitive with
the YAHSP planner. Considering only domains that can
be handled by both planners, LA-yahsp has a success ratio
of 88% compared to the 87.75% of YAHSP. LA-yahsp pro-
duces slightly longer plans; on average, 2% longer. These
differences in the results are explained by the fact that (1)
YAHSP uses a slight modification of the FF relaxed plan ex-
traction, and (2) YAHSP uses a different search algorithm.

Finally, we briefly remark that LA-yahsp performs well in
combination with hcm, but not better than LA-ins. Its success
rate, 87.47%, is lower than that of LA-ins (Table 1). Note
that LA-yahsp can exploit hcm better than hFF. In fact, LA-
yahsp with hFF has an average success rate of 83.77%.

FF hcm State Ratio Length Ratio
Domain % sol % sol mean median mean median

storage 57 67 3.84 1.71 0.99 1
pipesw-notan 72 82 3.62 3.44 1 1
matching-bw 62 63 3.6 3.46 0.97 1
pipesw-tan 40 52 2.55 2.11 0.89 0.86
rovers 100 100 2.22 2.05 0.98 1
mprime-strips 97 90 1.46 1.33 0.93 0.93
depots 100 91 1.41 0.58 0.86 0.84
satellite 100 97 1.31 1.19 0.95 0.99
woodworking 59 100 1.24 1 1.01 1
blocks 89 91 1.09 1 0.74 0.77
TPP 87 80 1.02 0.95 1 1

driverlog 80 85 0.65 0.68 0.95 1
mystery-adl 53 50 0.62 0.8 0.93 1
freecell 98 75 0.6 0.68 0.77 0.79
philosophers 25 21 0.57 0.56 1 1
zenotravel 100 100 0.41 0.48 0.8 0.85
logistics 96 96 0.35 0.4 0.8 0.81
gripper 100 100 0.28 0.26 0.77 0.76
trucks 37 43 0.19 0.26 0.9 0.9

Average 76.35 78.11 1.01 0.92 0.9 0.92

Table 2: Percentage of problems solved (% sol), and the
geometric mean and median of the ratio between states ex-
panded and the ratio between plan lengths obtained by hFF

and hcm. As in Table 1, state/length ratios over 1 indicate
better performance for hcm. Above the line, those domains
in which, on average, hcm is more informed than hFF.

Experimental Conclusions In summary, our experimen-
tal results show that, under several search settings, hcm out-
performs hFF in terms of success rate. The benefits of using
hcm come from two sources: first, from the exploitation of
the contents in the low-conflict RPs provided by hcm, and
second, from the sometimes more informed heuristic value
provided by hcm.

hcm produces best results in combination with our LA-ins
lookahead. The results, in terms of success ratios, are state-
of-the-art, with significantly improved performance in a few
domains in which planners like LAMA and/or YAHSP per-
form poorly (e.g., storage). In terms of solution quality, hcm

usually yields slightly longer plans.

Finally, we showed that LA-ins tends to outperform LA-
yahsp, regardless of the heuristic used. LA-ins and LA-yahsp
used with hFF are competitive with the YAHSP planner.

The improvements produced by hcm are not consistent
across all domains. We do not have conclusive insights as
to why this occurs. Clearly, key aspects of some domains
are captured by conflict minimization; e.g., in storage this
leads to additional helpful actions. In other domains (e.g.,
freecell) it seems that the order in which goals are achieved
for the RP construction is not adequate, yielding a poor RP.

Related Work

Other researchers have also focused on addressing some of
the shortcomings of the FF relaxed plan heuristic. Nguyen
and Kambhampati (2000) propose several heuristics that
combine various measures obtained from a planning graph
(with mutex information) built for the unrelaxed problem,
thus taking some conflicts into account. The heuristic in the

16

SAPA temporal planner uses similar techniques to obtain an
improved estimate of plan makespan (Do and Kambhampati
2003). Yoon, Fern, and Givan (2006) use machine learning
techniques to learn (approximate) mappings from features of
the problem and relaxed plan to the true plan length, given
a number of solutions to problem instances belonging to the
same class. In contrast to our work, these efforts focus only
on improving the heuristic distance estimate, rather than im-
proving the correctness of the relaxed plan itself.

Hoffmann and Geffner (2003) use flaw removal as a cri-
terion to guide the main search in a Graphplan framework.
In contrast, we aim at flaw minimization in a greedy, cheap
procedure that is used to compute relaxed plans.

Works by Benton, van den Briel, and Kambham-
pati (2007), and by Coles et al. (2008) modify the stan-
dard FF relaxed plan extraction to produce relaxed plans
that more closely correspond with linear programming (LP)
relaxations of the original problem. Their methods how-
ever, do not exploit conflicts as we do, and are tailored
for different planning applications: the former deals with
partial satisfaction planning, and the latter with numeric
planning. In classical planning applications, Coles and
Smith (2006) exploit knowledge about generic object types
to recognize when actions need to be added to the relaxed
plan, thus improving its fidelity. While this approach is
domain-independent, as type information is automatically
extracted from the problem description, it can only im-
prove relaxed plans in problems where objects with the pre-
specified generic types are present.

Conclusion and Future Work
In this paper we have proposed the utilization of low-conflict
RPs as an enhancement of classical planning. A low-conflict
plan is an approximate solution to an optimization prob-
lem that minimizes the conflicts in an RP. We proposed
an algorithm that is able to quickly obtain reasonable low-
conflict RPs. The heuristics obtained using our RPs can
improve sometimes significantly over the standard FF RP
heuristic. We showed that state-of-the-art performance is
obtained when using lookahead policies for the construction
of successors. The resulting heuristic provides notably good
performance in selected domains (e.g., storage), in which
it seems to capture aspects of the problem that are over-
simplified by other heuristic-search approaches. In addition,
we have proposed a procedure to construct lookahead poli-
cies, that consistently outperforms previous approaches.

Low-conflict RPs do not seem to provide the same ben-
efits across all domains. Our RPs seem to be particularly
useful in applications in which ignoring conflicts imply ig-
noring critical information about the solution to the problem
(like, for example, omitting a useful action from the set of
helpful actions). An investigation of the key aspects of a
domain that can be exploited by these RPs is an intriguing
problem, but is out of the scope of this paper.

We view our algorithm as one step ahead but, obviously,
not the final answer in addressing the optimization problem
defined in this paper. In the future, we could investigate the
practicality of using other approaches (e.g., LP) to approx-
imate the optimization problem. Also, there are other ap-

plications in which low-conflict RPs could be useful. For
example, they could be utilized with satisfiability planners,
which are usually able to compute makespan-optimal plans.

Acknowledgements We thank Fahiem Bacchus, Christian
Fritz, Patrik Haslum, and Sheila McIlraith for valuable dis-
cussions and comments on drafts of this paper. We also
thank the reviewers for their very useful comments. J. Baier
acknowledges funding from NSERC (Natural Sciences and
Eng. Research Council of Canada) and ERA (Ontario Early
Research Award). NICTA is funded through the Australian
government’s backing Australia’s ability initiative.

References
Benton, J.; van den Briel, M.; and Kambhampati, S. 2007.
A hybrid linear programming and relaxed plan heuristic for
partial satisfaction problems. In ICAPS, 34–41.

Blum, A., and Furst, M. L. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90(1-
2):281–300.

Botea, A.; Müller, M.; and Schaeffer, J. 2007. Fast Plan-
ning with Iterative Macros. In IJCAI, 1828–1833.

Coles, A., and Smith, A. 2006. Generic Types and their Use
in Improving the Quality of Search Heuristics. In PlanSIG.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A
Hybrid Relaxed Planning Graph-LP Heuristic for Numeric
Planning Domains. In ICAPS, 52–59.

Do, M., and Kambhampati, S. 2003. Sapa: A Scalable
Multi-Objective Metric Temporal Planner. Journal of Arti-
ficial Intelligence Research 20:155–194.

Haslum, P., and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In AIPS, 140–149.

Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In ICAPS, 140–147.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Geffner, H. 2003. Branching Matters:
Alternative Branching in Graphplan. In ICAPS, 22–31.

Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. Jour-
nal of Artificial Intelligence Research 14:253–302.

Hsu, C.-W.; Wah, B.; Huang, R.; and Chen, Y. 2007. Con-
straint partitioning for solving planning problems with tra-
jectory constraints and goal preferences. In IJCAI, 1924–
1929.

McAllester, D. A., and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In AAAI, volume 2, 634–639.

Nguyen, X., and Kambhampati, S. 2000. Extracting Effec-
tive and Admissible State Space Heuristics from the Plan-
ning Graph. In AAAI, 798–805.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.

Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In ICAPS, 150–159.

Yoon, S.; Fern, A.; and Givan, R. 2006. Learning Heuristic
Functions from Relaxed Plans. In ICAPS, 162–170.

17

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

