
Minimal Sufficient Explanations for Factored Markov Decision Processes

Omar Zia Khan, Pascal Poupart and James P. Black
David R. Cheriton School of Computer Science

University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

{ozkhan, ppoupart, jpblack}@cs.uwaterloo.ca

Abstract

Explaining policies of Markov Decision Processes (MDPs)
is complicated due to their probabilistic and sequential na-
ture. We present a technique to explain policies for factored
MDP by populating a set of domain-independent templates.
We also present a mechanism to determine a minimal set
of templates that, viewed together, completely justify the
policy. Our explanations can be generated automatically at
run-time with no additional effort required from the MDP
designer. We demonstrate our technique using the problems
of advising undergraduate students in their course selection
and assisting people with dementia in completing the task of
handwashing. We also evaluate our explanations for course-
advising through a user study involving students.

Introduction

Often, a sequence of decisions must be taken by an
individual or system. However, deciding on a course of
action is notoriously difficult when there is uncertainty in
the effects of the actions and the objectives are complex.
Markov decision processes (MDPs) (Puterman 1994) pro-
vide a principled approach for automated planning under
uncertainty. While such an automated approach harnesses
the computational power of machines to optimize difficult
sequential decision making tasks, the users no longer
understand why certain actions are recommended. This lack
of understanding is a serious bottleneck that is holding back
the widespread use of MDPs as planning tools. Hence,
there is a need for explanations that enhance the user’s
understanding and trust of these plans and help MDP
designers to debug and validate their systems.

In MDPs, actions are selected according to the principle
of maximum expected utility. Hence, explaining a decision
amounts to explaining why the chosen action has highest
expected utility. The expected utility depends on the prob-
ability of an event occurring and the utility of that event.
Since MDPs deal with sequential planning, thus it is not
intuitive to estimate the probability of an event occurring,
possibly a few steps later. Further, in most cases the utility
reflects the preference amongst difference states, rather than
being a tangible entity such as money or time. To address

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these issues, we generate simple and easy-to-understand
explanations that provide insight into the expected utility
computation by exposing some key pieces of information.
More specifically, we highlight the frequency of certain
events that are more critical to the computation of the
maximum expected utility through explanation templates.
We do not concern ourselves with natural language gener-
ation and use templates to present explanations. We show
how to populate these templates at run-time, using only the
information in the MDP specification, through two different
domains.

For course-selection advising, an MDP recommends
courses to students, based on their previous performance.
An explanation indicates why the chosen set of courses are
the best option. We conduct a user study involving students
to determine the effectiveness of our explanations. We also
generate explanations for an MDP that assists people with
dementia in handwashing. These explanations are geared
towards the caregivers of these people who can evaluate
whether the system is functioning properly.

Background and Related Work

Background

A Markov decision Process (MDP) is defined by a set S of
states s, a set A of actions a, a transition model, a reward
model, a discount factor γ, and a horizon h. We assume
A and S are finite and variable names are meaningful and
related to the concepts they represent. We focus on factored
MDPs (Boutilier, Dearden, and Goldszmidt 2000) in which
a set of state variables define the state space, with the state
of the MDP determined by the values of all state variables.
The set of states obtained by not assigning values to a
subset of state variables is known as a scenario. A transition
model Pr : S′ × S × A → [0, 1] specifies the probability
Pr (s′|s, a) of an action a in state s leading to a state s′. A
reward model ρ : S×A → R specifies the utility or reward
ρ (s, a) associated with executing action a in state s. The
discount factor, γ ∈ [0, 1), indicates if rewards accumulated
earlier are preferred. The horizon h represents the number
of future steps to consider while planning.

A policy π : S → A consists of a mapping from states
to actions. The value V π (s) of a policy π when starting
in state s can be measured as the sum of the expected

194

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

discounted rewards earned while executing the policy as
shown in Eq. 1.

V π (s0) = E

[∞∑
t=0

γtρ (st, π (st))
∣∣∣∣π, s0

]
(1)

A policy can be evaluated by using Bellman’s equation
in which the value of a state is measured as in Eq. 2.

V π (s) = ρ (s, π (s)) + γ
∑
s′∈S

Pr (s′|s, π (s)) V π (s′) (2)

An alternate method to evaluate a policy involves occu-
pancy frequencies (Poupart 2005). We use this formulation
while generating our explanations. The discounted occu-
pancy frequency (hereafter referred as simply occupancy
frequency) λπ

s0
(s′) is the expected number of times we

reach state s′ from starting state s0 by executing policy π.
Occupancy frequencies can be computed by solving Eq. 3.

λπ
s0

(s′) = δ (s′, s0) + γ
∑
s∈S

Pr (s′|s, π (s)) λπ
s0

(s) ∀s′

(3)
where δ (s′, s0) is a Kroenecker delta which assigns 1
when s′ = s0 and 0 otherwise. We can define occupancy
frequencies for scenarios, λπ

s0
(sc), as the expected number

of times we reach a scenario sc, from starting state s0, by
executing policy π i.e., λπ

s0
(sc) =

∑
s∈sc λπ

s0
(s). The dot

product of occupancy frequencies and rewards gives the
value of a policy, as shown in Eq. 4.

V π (s0) =
∑
s∈S

λπ
s0

(s) ρ (s, π (s)) (4)

In certain domains, it will be impossible to revisit a
state so the occupancy frequency will lie in [0, 1] . But the
frequency is not a probability so it can lie in [0, h]. For
instance, the frequency of a scenario can be greater than
1, even in the course advising domain, but not exceed the
horizon.

An optimal policy π∗ earns the highest value for all states
(i.e., V π∗(s) ≥ V π(s) ∀π, s). Optimal policies for MDPs
can be computed using techniques such as value iteration
in which Bellman’s optimality equation (Eq. 5) is treated
as an update rule that is applied iteratively.

V π∗
(s) = max

a

[
ρ (s, a) + γ

∑
s′

Pr (s′|s, a) V ∗ (s′)

]
(5)

Related Work

Explanations for intelligent systems such as expert and
recommender systems have been studied widely (Tintarev
and Masthoff 2007). Xplain (Swartout 1983) was an early
example of an intelligent tutoring system that provided
justifications of its decisions. In addition to the rules used
by the expert system, it also needed additional domain
knowledge to generate explanations. Another example is

MYCIN (Clancey 1983) which provided execution traces
as explanations. This approach is infeasible for MDPs as
the computation is too complex to be explained directly.
Herlocker et al. (1999) presented the idea of highlighting
key data leading to a recommendation for explanations in
recommender systems. Our approach is also motivated by
this idea with the key difference that choices in MDPs
also impact future states and actions in contrast to recom-
mender systems in which an isolated decision is explained.
McGuinness et al. (2007) identify several templates to
present explanations in task processing systems based on
predefined workflows. Our approach also uses templates,
but we cannot use predefined workflows due to the proba-
bilistic nature of MDPs.

Chajewska and Helpburn (1997) presented an approach
for explanations in probabilistic systems by representing
causality using Bayesian Networks and exploiting different
links. Lacave and Díez (2002) surveyed the existing tech-
niques and their limitation for explanation in Bayesian Net-
works. Lacave et al. (2007) presented several approaches
to explain graphical models, including Bayesian networks
and influence diagrams. Their explanations require a back-
ground in decision analysis and they present utilities of
different actions graphically and numerically. We focus on
users without any knowledge of utility theory. Also it is
often infeasible to employ graphical approaches with MDPs
due to large state spaces and probabilistic effects in sequen-
tial plans. Elizalde et al. (2007) present an approach to
generate explanations for an MDP policy that recommends
actions for an operator in training. A set of explanations is
defined manually by an expert; however, they also propose
to generate explanations automatically. They present an
algorithm that determines a relevant variable. The relevant
variable is the variable most affected by the action, selected
from those that define the value function, and is reported
in a predefined template. Our approach is similar as we
also use templates to generate explanations and analyze
the effects of the optimal action. However, we do not
restrict ourselves to a single relevant variable and consider
the long-term effects of the optimal action (beyond one
time step). We use generic, domain-independent templates
and provide a technique to determine a minimum set of
templates that can completely justify an action.

Explanations for MDPs

We want to present an explanation that answers the ques-
tion, “Why has this recommendation been made?” We pop-
ulate generic templates with domain-specific information
from the MDP. The templates are populated at run-time,
with a subset of these included in the explanation.

Templates for Explanations

The reward function reflects the preference amongst dif-
ferent states or scenarios. Rewards are generally assigned
to states or scenarios that have certain semantic value
associated with them. The policy for an MDP is computed
by maximizing the sum of expected discounted rewards
(Eq. 5). Our explanations indicate how this expectation

195

is being maximized by executing the optimal action. Our
approach anticipates the effects of an action and shows
the contributions of those effects to the sum of expected
rewards. The expected reward is the sum of products of
the occupancy frequency of each state/scenario with its
reward. An explanation for choosing an action could be
that the frequency of reaching a scenario is highest (or
lowest). This is especially useful when this scenario also
has a relatively high (or low) reward. Below we describe
templates in which the underlined phrases (scenarios and
their probabilities) are populated at run-time.

• Template 1: “ActionName is the only action that is
likely to take you to V ar1 = V al1, V ar2 = V al2, ...
about λ times, which is higher (or lower) than any
other action”

• Template 2: “ActionName is likely to take you to
V ar1 = V al1, V ar2 = V al2, ... about λ times, which
is as high (or low) as any other action”

• Template 3: “ActionName is likely to take you to
V ar1 = V al1, V ar2 = V al2, ... about λ times”

The frequency λ can be higher than 1 if a state can be
revisited. While the frequencies are discounted they still
represent an expectation of the number of times a state
will be visited. To understand this, consider an alternate
yet equivalent representation of the discount factor in which
1− γ is the termination probability, i.e., the probability of
the MDP terminating at each step.

We proposed slightly different versions of the above
templates in our earlier work (Khan, Poupart, and Black
2008). While these templates provide a method to present
explanations, multiple templates can be populated even
for non-optimal actions; a non-optimal action may have
the highest frequency of reaching a scenario with a high
reward, but it still may not have the maximum expected
utility. Thus, we need to identify a set of templates to
include in the explanation to justify the optimal action. This
is our main contribution in this work.

Minimal Sufficient Explanations (MSE)

We define an explanation as sufficient if it can prove that
the recommendation is optimal, i.e., the selected templates
show the action is optimal without needing additional
templates. A sufficient explanation cannot be generated for
a non-optimal action since an explanation for another action
(i.e., optimal action) will have a higher utility. A sufficient
explanation is also minimal if it includes the minimum
number of templates needed to ensure it is sufficient.
The sufficiency constraint is useful for designers of MDPs
trying to debug their model. The minimality constraint is
useful for users trying to understand the policy with as
little information as is necessary. If needed, we can relax
the minimality or sufficiency constraints and provide more
or less templates depending upon the audience.

Let s0 be the state where we need to explain why
π∗ (s0) is an optimal action. Let πs0,a be defined as

πs0,a (s) =
{

a if s = s0

π∗ (s) otherwise
Note that πs0,a and π∗

are equivalent if a = π∗ (s0). We can express the expected

utility of executing this policy, as V πs0,a

. This is equivalent
to the action-value function (Sutton and Barto 1998), also
known as the Q-function, Qπ∗

(s0, a). We can compute
the value of V πs0,a

or Qπ∗
(s0, a) using Eq. 4. Since a

template is populated by a frequency and a state/scenario,
let us define a term t which encapsulates this information
as t (s, π∗, s0) = λπ∗

s0
(s) ρ (s, π∗ (s)). Now V π∗

can be
computed using Eq. 6.

V π∗
=

∑
s∈S

t (s, π∗, s0) (6)

The MSE comprises a subset of the terms in Eq. 6. For
this reason, the expected utility of the terms included in
the MSE, VMSE , cannot exceed that of the optimal action,
V π∗

, but must be higher than that of any other action, i.e.,
V π∗ ≥ VMSE > Qπ∗

(s0, a) ∀a �= π∗ (s0). In the worst
case, all terms will have to be included in the explanation.
To compute the MSE, we arrange all terms in Eq. 6 in
descending order, and then select the first k terms of this
sequence, necessary to ensure that VMSE ≥ Qπ∗

(s0, a).
We can compute VMSE using Eq. 7

VMSE =
∑
i≤k

ti +
∑
i>k

λπ∗
s0

(si) r (7)

VMSE comprises two components. First, we include
the expected utility from all the terms in the MSE, i.e.,∑

i≤k ti. Second, for every term not included in the MSE,
we need to consider its worst case by adding utility
computed by using the minimum possible reward, r, to
the MSE. The second component is needed to ensure suf-
ficiency if rewards are negative, and minimality otherwise.

In Eq. 6, the total number of terms will equal the size
of the state space. This can be computationally prohibitive
for large state spaces. Typically, factored MDPs are used
in such cases. Also, the reward function can be defined
by a set R of reward variables R such that the sum
of their values r is the reward at any given state (e.g.
ρ (s, a) =

∑
R∈R rR,s,a). Let scR=r define the scenario for

which reward variable R has value r1, and V π∗
f represent

the utility of executing π∗ for a factored MDP. In Eq. 7,
r represents the minimum value for the reward function.
With multiple reward variables, every variable may have
its own minimum value which can be used instead. Let ri

define the minimum value for the reward variable used in
term i in the sorted sequence. Now, we can rewrite Eq. 6
and 7 as Eq. 8 and 9 respectively.

V π∗
f =

∑
R∈R

∑
r∈dom(R)

λπ∗
s0

(scR=r) r (8)

VfMSE =
∑
i≤k

ti +
∑
i>k

λπ∗
s0

(sci) ri (9)

1For the sake of completeness, we would like to point out that
we can also handle the special case where a set of scenarios
for reward variable R have value r by computing the occupancy
frequency for each scenario independently and then adding them
to create a single term for use in Eq. 8.

196

The number of terms is now significantly lower since we
only need a single term per value of each reward variable.
This allows us to compute an MSE even for domains with
large state spaces.

We know that the optimal policy is invariant to positive
linear transformations on the reward function. We also want
this property in the MSE to ensure that the MSE only
changes if the model has changed. This will assist designers
in debugging the model efficiently.

Proposition 1: MSE remains invariant under affine
transformations of the reward function.

Proof: Let V̂f
π

denote the expected utility for any
policy π when rewards have been scaled by adding any
constant c. If we substitute r by r + c in Eq. 8 we get
V̂f

π
= V π

f + c
∑

R∈R
∑

r∈dom(R) λπ
s0

(scR=r) r. Since
occupancy frequencies computed for an MDP must add
up to the horizon (

∑
r∈dom(R) λπ (scR=r) r = h), so

V̂f
π

= V π
f + c|R|h, where |R| is the total number of

reward variables. Similarly V̂fMSE = VfMSE + c|R|h.
Since VfMSE > V π

f , thus V̂fMSE > V̂f
π

for any constant
c. Also V̂fMSE will comprise the same scaled reward
values and frequencies as those in VfMSE otherwise the
explanation would not remain either sufficient or minimal.
For discounted domains, the frequencies will add up to
the expected discounted horizon instead of h. A similar
proof can also be presented for the case where rewards are
multiplied by a positive constant.

Workflow and Algorithm

The basic workflow for our explanation process is as
follows. The designer identifies the states and actions, and
specifies the transition and reward functions of an MDP.
The optimal policy is computed by using a technique such
as value iteration. Now the designer/user can consult an
optimal policy to determine an optimal action and request
an explanation. Our system will compute an MSE using
the algorithm given below.

1) Compute scR=r, the scenario which comprises the
set of all states that lead to each value r of each
reward variable R. This information is directly avail-
able from the dependencies encoded in the reward
function. For each partial assignment of value r to
variable R, note the set of states that receive reward
r to compute the scenario.

2) For every scenario scR=r, compute the occupancy
frequency λπ∗

s0
(scR=r) for every action using Eq. 3.

The occupancy frequency for a scenario is computed
efficiently by summing the occupancy frequencies
of each state in it using variable elimination. The
recurrence is terminated after a number of steps equal
to the horizon of the MDP or when convergence
is achieved (due to the discount factor) for infinite
horizon problems.

3) Compute the term t (s, π∗, s0) and λπ∗
s0

(sci) ri for
every scenario scR=r. They respectively represent
the advantage and disadvantage of including and
excluding a term from the MSE.

4) Sort ti − λπ∗
s0

(sci) ri in descending order and select
the first k terms from this sequence to include in
the MSE for which VMSE > Qπ∗

(s0, a) ∀a �=
π∗ (s0). Note that ti and λπ∗

s0
(sci) ri respectively

represent the advantage and disadvantage associated
with including and excluding a term from the MSE,
so their difference indicates the benefit of this term
in the explanation versus excluding it.

5) Present each term in the explanation to the user in
one of the defined templates. Choose templates using
the following criteria.

a) Use template 1 if the optimal action has the
highest (or lowest) expected frequency to reach
that scenario by a significant margin2.

b) Use template 2 if the optimal action has the
highest (or lowest) expected frequency, but not
by a significant margin.

c) Use template 3 if neither of the previous tem-
plates can be used.

The expensive step in the algorithm is Step 2 that involves
computing the occupancy frequency using Eq. 3. The rest
are basic arithmetic operations and logical comparisons
except sorting the sequence of terms in Step 4. Computing
occupancy frequencies is similar to policy evaluation whose
complexity is that of solving a linear system of equations,
which is cubic in the state space. To speed up computation,
we compute occupancy frequencies by performing vari-
able elimination using algebraic decision diagrams (ADD).
ADDs provide a compact representation that automatically
aggregates states with identical values/frequencies, needed
for scenarios, thereby significantly reducing the running
time. More details on the use of ADDs in MDPs can be
found in (Hoey et al. 1999).

Discussion

For any given state, an MSE is guaranteed to exist; in the
worst case it will need to include all the terms in the MSE
from Eq. 6 or Eq. 8. Thus, the upper bound on the number
of templates displayed to the user is also given by this
number of terms, which will depend on the structure of
the MDP being explained. A relatively large number of
terms in the MSE will indicate that the effect of the optimal
action is not substantially different from that of at least one
other action. We can also argue that for every term there
is at least one template that can be used to present the
information to the user since Template 3 can always be
used. While template 3 may not seem to provide much
information in itself, it does indicate that there are better
or worse actions available if the scenario being depicted is
of particular interest to the user or designer.

Our technique can be used in finite and discounted
infinite horizon problems. For discounted MDPs, the fre-
quencies are discounted so if their value appears non-
intuitive, the user may have to be explained that a discount
factor is being used. If an infinite horizon MDP is only

2In our implementation, a significant margin means twice as
high as the next highest. It can be adjusted depending on the
domain.

197

Table I
EXPLANATIONS FOR COURSE ADVISING DOMAIN (REWARD VARIABLES=2, VALUES PER VARIABLE=2+2, MAX. TERMS=4)

Terms in MSE 1 2 3–4
Frequency 134 48 0

Mean ±STD of Qπ∗
(s0, a

′) /V π∗
0.46±0.41 0.81±0.24 -

Table II
EXPLANATIONS FOR HANDWASHING DOMAIN (REWARD VARIABLES=3, VALUES PER VARIABLE=2+2+15, MAX. TERMS=19)

Terms in MSE 1 2 3 4 5 6 7–19

Frequency 0 142 94 119 2 25 0
Mean ±STD of Qπ∗

(s0, a
′) /V π∗

- 0.51±0.22 0.62±0.10 0.68±0.04 0.61±0.15 0.69±0.05 -

discounted for computational convenience, the explanation
may again appear non-intuitive. As explained, we also cater
to the case where multiple goals are expressed through
different reward variables.

In model checking, safety and liveness properties are
used to debug or validate models. While our approach does
not explicitly indicate whether an action is chosen because
it leads to a dead-end or is optimal because it is the only
action that avoids a dead-end, this information is implicit
in the MSE since a dead-end would be a scenario with low
reward, and the optimal action would have a low frequency
of reaching it.

Experiments and Evaluation

Experimental Results

We ran experiments on two different domains. Our course-
advising MDP has 4 core courses and 7 elective courses
(from which the student has to choose), with each course
having 4 possible letter grades and belonging to a certain
area. It has 21 possible actions, with each action represent-
ing a pair of elective courses. The objective is to pass 6
elective courses in 3 terms by taking at least one course
in 3 different areas. The transition model was obtained by
using historical data collected over several years (for 14,000
undergraduate students) at the University of Waterloo. The
reward function provides rewards for completing different
degree requirements with the reward function decomposed
in two different variables, one for each degree requirement,
with 2 values per variable. The horizon of this problem is
3 steps, each step representing one term and it is undis-
counted. The other domain was the handwashing POMDP
developed by Hoey et al. (2007), available online, to assist
people with dementia in handwashing. We converted their
POMDP into an MDP, assuming all states are observable
and changing variable names and values to make them more
user-friendly. The horizon for this domain is 100 steps and
discount factor is 0.95. There are three different reward
variables in the reward function with 19 distinct values for
rewards. Explanations for this domain are intended for a
caregiver/nurse to evaluate the validity of the prompt, and
not for the person washing hands.

We computed MSEs for different starting states in the
course advising and handwashing MDPs. The results are
shown in Table I and Table II. We can see that the MSE

generally contains very few terms for both domains, more
evident in the handwashing domain in which there was a
total of 19 terms, and only 6 were needed for any given
optimal action in 382 different starting states generated
randomly. It is natural to expect an explanation to be
more complicated if two policies have similar effects. We
estimate the complexity of an explanation by the number
of terms included in it. Also we define two policies to
have similar effects if the ratio of their normalized expected
utilities is close to 1. We can see from both tables that if
the ratio between the expected utility of the second best
policy, Qπ∗

(s0, a
′), and optimal policies, V π∗

, is high then
the explanation includes more terms. On the other hand, if
the ratio is low it means that the optimal action is much
superior and we can see that fewer terms are needed in the
MSE. This result is in line with our intuition.

Two sample explanations, one from each domain, are
shown below.

• Action TakeCS343&CS448 is the best action because:-
– It is likely to take you

to CoursesCompleted = 6,
TermNumber = Final about 0.86 times,
which is as high as any other action

• Action DoNothingNow is the best because:-
– It is likely to take you to handswashed = Y ES,

planstep = Clean&Dry about 0.71 times,
which is the higher than any other action

– It is likely to take you to prompt = NoPrompt
about 12.71 times, which is as high as any other
action3

The occupancy frequency in the last template is higher than
1 because it is possible visit a state multiple times with a
reward for not issuing a prompt every time.

We precomputed the optimal policy for both domains
since they do not need to be recomputed for every explana-
tion. We were able to compute explanations for the course
advising and handwashing problems in approximately 1
and 4 seconds respectively on a Pentium IV 1.66 GHz
laptop with 1GB RAM using Java on Windows XP with
the optimal policy and second best action precomputed.
Note that the course advising problem has 117.4 million

3The variable names have been changed from those in (Hoey
et al. 2007)

198

Figure 1. User Perception of MDP-Based Explanations

states and the handwashing problem has 207,360 states.
The simpler reward function (two reward variables with
two values each) in the course advising domain resulted
in faster execution despite a larger number of states. We
conducted a user study to evaluate explanations for course
advising with advisors and students.

Feedback by Advisors

We presented our explanations for several states to under-
graduate advisors and sought their feedback. The advisors
noted that students not performing well would benefit
from our explanations as they would help them focus
on requirements they are likely to not fulfill. They also
mentioned that grade-conscious students would also appre-
ciate our explanations. The advisors considered the model
used by the MDP, i.e., the transition probabilities, as a
useful tool to validate or correct their perception about
various courses being easy or hard. They were apprehensive
that it would be difficult for an online system to replace
them as they consider more factors than completing degree
requirements, which include preferences such as student’s
interests, career path, difficulty level of the course, stereo-
types about areas, courses or professors. There has been
some research on preference elicitation to model student
preferences for course advising in MDPs (Royalty et al.
2002), so we explained that it is possible to extend our
model to include such factors, but it is outside the scope
of our work on explaining MDPs.

User Study with Students

We recruited 37 students from the University of Water-
loo’s CS department and showed 5 recommendations with
explanations for different states. For each explanation, they
were asked to rate the explanations on various factors such
as comprehension, trust-worthiness and usefulness. For 3
states, the explanation was computed by our technique and
for the other 2, the explanations were provided by advisors.

The results regarding the user’s perceptions of our ex-
planations are shown in Figure 1. 59% (65/111) of the
respondents indicated that they were able to understand
our explanation without any other information. Most of the
students who wanted more information either wanted to

Figure 2. Comparison of MDP-Based and Advisor Explanations

know the occupancy frequencies for some other actions to
get a comparison, or knowledge about the technique used to
compute the transition probabilities. For the first concern,
we can provide this information as it is already computed in
Step 2 of algorithm for the MSE. For the second concern,
we attribute this curiosity to our audience mostly being
students in CS interested in understanding the system.

In 76% (84/111) of the cases, it was believed that the
explanation provided by our system was accurate. A few
students wanted to know our sample size to judge the
accuracy. Quite a few respondents, 69% (77/111), indicated
that they would require extra information beyond that
presented in the explanation. When asked what other type
of information they may be interested in, we discovered
that they considered the model inadequate and wanted a
richer model that was able to cater to preferences such as
student’s interest, future career plans, and level of difficulty
rather than the explanation being inadequate for the existing
model. An important indicator of the usefulness of these
explanations is that 71% (79/111) of the students mentioned
that the explanation provided them with extra information
that helped them in making a decision. Another indicator
of their influence is that while students initially disagreed
23% (26/111) of the times with the recommendation, in
35% (9/26) of these cases our explanation convinced them
to change their mind and agree with the original recom-
mendation. In most of the other cases, again the students
disagreed because their final decision depended upon some
factor, not modeled by our system, so their opinion could
not have been changed by any explanation.

To compare our explanations with advisor explanations,
we asked students whether they preferred our explanation,
the advisor explanation, or having access to both of them
simultaneously. These results are shown in Figure 2. 57%
(21/37) students found that the most convincing option was
to access both explanations, as opposed to 32% in favor of
only advisor explanations and 11% in favor of only our
explanations. Similarly, 46% (17/37) students considered
both explanations viewed together as more trust-worthy
as opposed to having only advisor explanations (38%) or
only our explanations (16%). As expected, most of the
students (65% or 24/37) found it easier to understand ad-
visor explanations as they were more personal and human-

199

oriented. This is understandable since the advisors employ
domain-specific constructs in their explanations while our
explanations are totally generic. However, a few students
(32%) also indicated that having a combination of the
two would be easier to understand. Finally, we also asked
students if they were provided access to our system over
the Internet, in addition to the option of discussing their
choices with an undergraduate advisor, would they use our
system. 86% of them mentioned they would use it from
home while trying to determine their choice of courses,
89% mentioned they would use it before meeting with
an advisor to examine different options for themselves,
and 70% mentioned they would use it after meeting with
advisors to arrive at a final decision. Among the 30%,
who indicated they would not use it after meeting advisors,
many expected the advisors to incorporate the information
from our explanations in their advice and thus considered
it redundant to check it themselves. In any case, these
numbers are very encouraging as they show substantial
interest in our explanations.

The explanations generated by our system are generic,
while those provided by the advisors are domain-specific.
Our results show that these two types of explanations
are complementary and students would like to access our
explanations in addition to consulting advisors. A recurring
theme during the user study was students inquiring about a
facility to compare different choices, i.e., asking the ques-
tion “Why is action a better than action b?”, especially if
their preferred action was different from the recommended
action. We have extended our system to answer such ques-
tions by presenting the MSE for the recommended action
π∗ and then populating the templates for the same terms
for their preferred action b. The comparison demonstrates
how a is better than b as VMSE ≥ Qπ∗

(s0, b).

Conclusion and Future Work

We presented a mechanism to generate explanations for
factored MDP in any domain without requiring any addi-
tional effort from the MDP designer. We introduced the
concept of a minimal sufficient explanation through which
an action can be explained using the fewest possible terms.
We showed that our explanations can be generated in near-
real time for different domains. We also conducted a user
study to evaluate the effectiveness of our explanations for
course advising. The users appreciated the extra informa-
tion provided by our generic explanation but also required
some domain-specific information. Most of the students
considered the combination of our explanation with the
advisor explanation more effective than either one alone.

Injecting domain-specific information in explanations
increases user-acceptance, though requires additional effort
from the designers. As future work, we intend to develop
a generic mechanism to represent domain-specific infor-
mation so that it may be inserted in our explanations. We
plan to extend our work to partially observable MDPs. The
complication in such explanations is to cater for the obser-
vation function rather than having a single known current
state for which the optimal policy has been computed and

is being executed.

References

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 121(1-2):49–107.
Chajewska, U., and Halpern, J. 1997. Defining explana-
tion in probabilistic systems. In UAI.
Clancey, W. J. 1983. The epistemology of a rule-based
expert system – a framework for explanation. Artificial
Intelligence 20:215–251.
Elizalde, F.; Sucar, E.; Reyes, A.; and deBuen, P. 2007. An
MDP approach for explanation generation. In Workshop
on Explanation-Aware Computing with AAAI.
Herlocker, J. 1999. Explanations in recommender
systems. In CHI’ 99 Workshop on Interacting with
Recommender Systems.
Hoey, J.; St-aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
UAI, 279–288.
Hoey, J.; von Bertoldi, A.; Poupart, P.; and Mihailidis, A.
2007. Assisting persons with dementia during handwash-
ing using a partially observable Markov decision process.
In ICVS.
Khan, O. Z.; Poupart, P.; and Black, J. P. 2008. Explaining
recommendations generated by MDPs. In ECAI-2008
Workshop on Explanation Aware Computing (ExaCt).
Lacave, C., and Díez, F. J. 2002. A review of expla-
nation methods for Bayesian networks. The Knowledge
Engineering Review 17:107–127.
Lacave, C.; Luque, M.; and Díez, F. 2007. Explanation
of Bayesian networks and influence diagrams in Elvira.
IEEE Transactions on Systems, Man, and Cybernetics
37(4):952–965.
McGuinness, D.; Glass, A.; Wolverton, M.; and da Silva,
P. 2007. Explaining task processing in cognitive assistants
that learn. In Proceedings of AAAI Spring Symposium on
Interaction Challenges for Intelligent Assistants.
Poupart, P. 2005. Exploiting Structure to Efficiently
Solve Large Scale Partially Observable Markov Decision
Processes. Ph.D. Dissertation, University of Toronto.
Puterman, M. 1994. Markov Decision Processes. Wiley.
Royalty, J.; Holland, R.; Dekhtyar, A.; and Goldsmith, J.
2002. POET, the online preference elicitation tool. In
AAAI Workshop on Preferences in AI and CP: Symbolic
Approaches.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement
Learning: An Introduction. MIT Press, Cambridge, MA.
Swartout, W. R. 1983. Xplain: A system for creating
and explaining expert consulting programs. Artificial
Intelligence 21:285–325.
Tintarev, N., and Masthoff, J. 2007. A survey of
explanations in recommender systems. In ICDE Workshop
on Recommender Systems & Intelligent User Interfaces.

200

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

