
Multi-Agent Online Planning with Communication

Feng Wu
Department of Computer Science

University of Sci. & Tech. of China
Hefei, Anhui 230027 China
wufeng@mail.ustc.edu.cn

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

shlomo@cs.umass.edu

Xiaoping Chen
Department of Computer Science

University of Sci. & Tech. of China
Hefei, Anhui 230027 China

xpchen@ustc.edu.cn

Abstract

We propose an online algorithm for planning under uncer-
tainty in multi-agent settings modeled as DEC-POMDPs.
The algorithm helps overcome the high computational com-
plexity of solving such problems off-line. The key challenge
is to produce coordinated behavior using little or no commu-
nication. When communication is allowed but constrained,
the challenge is to produce high value with minimal commu-
nication. The algorithm addresses these challenges by com-
municating only when history inconsistency is detected, al-
lowing communication to be postponed if necessary. More-
over, it bounds the memory usage at each step and can be
applied to problems with arbitrary horizons. The experimen-
tal results confirm that the algorithm can solve problems that
are too large for the best existing off-line planning algorithms
and it outperforms the best online method, producing higher
value with much less communication in most cases.

Introduction

In many applications involving cooperative robots, dis-
tributed sensor networks, or communication networks,
multi-agent systems offer a natural and robust framework
for planning. Besides taking actions to achieve common
goals, planning in these settings includes coordination to en-
sure that a group of agents can work together in a coherent
manner under uncertainty. In typical domains such as robot
soccer, each robot operates autonomously, but is also part of
a team and must cooperate with the other members of the
team to play successfully. The sensors and actuators used
in such systems introduce considerable uncertainty. What
makes such problems particularly challenging is that each
agent gets a different stream of observations at runtime and
has a different partial view of the situation. And while the
agents may be able to communicate with each other, sharing
all the information all the time is not possible.

When agents have limited information about their team-
mates, they must reason about the possible policies of team
members and how these policies affect their own behaviors.
Communication can alleviate this problem by sharing pri-
vate information such as sensory data. However, communi-
cation is often limited by bandwidth and sometimes can be
costly or unreliable. For example, robots that work under-
ground or on another planet may need to move to certain

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

locations to initiate communication. Even when commu-
nication is readily available and cheap–for instance, in the
case of indoor mobile robots–limited bandwidth and unre-
liability often lead to latency and robots may need to wait
for a period or re-communicate several times until the criti-
cal information is fully received. In all these situations, too
much communication will affect negatively the performance
of the system. It is known that appropriate amounts of com-
munication can improve the tractability and performance of
multi-agent systems. The interesting and challenging ques-
tion addressed by this paper is how to integrate planning
with communication and use communication effectively.

The Markov Decision Process (MDP) and its partially ob-
servable counterpart (POMDP) have proved very useful for
planning and learning under uncertainty. The Decentralized
POMDP (DEC-POMDP) offers a natural extension of these
frameworks for cooperative multi-agent settings. We use
DEC-POMDPs to model multi-agent systems. Solving opti-
mally general finite-horizon DEC-POMDPs has been shown
to be NEXP-complete (Bernstein, Zilberstein, and Immer-
man 2000), much harder than single-agent MDPs (NP-
complete) and single-agent POMDPs (PSPACE-complete).
Although free communication transforms a multi-agent
DEC-POMDP into a large single-agent POMDP, computing
optimal communication policies when communication is not
free is as hard as the general DEC-POMDP problem.

Background on Communication in DEC-POMDPs

Developing algorithms for solving DEC-POMDPs has been
an active research area (Seuken and Zilberstein 2008). The
literature on communication in DEC-POMDPs or equivalent
models can be divided into works that compute full off-line
policies and those that do not. In the former group, plans and
communication strategies are determined off-line and stored
for use at runtime. The DEC-POMDP-COM model (Gold-
man and Zilberstein 2003), which is equivalent to the COM-
MTDP model (Pynadath and Tambe 2002), provides a the-
oretical framework for reasoning about communication off-
line. Spaan, Gordon, and Vlassis (2006) established a new
model where messages are sent as part of agents’ action vec-
tors and received in the next time step as part of the recipi-
ents’ observation vectors.

Generally, reasoning about communication off-line re-
quires the enumeration of all possible messages and their
effect on the team. Unfortunately, the number of these

321

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

messages grows exponentially and is as large as the set
of all possible observation histories. The COMMUNICA-
TIVE DP-JESP technique integrates a communication strat-
egy into K-step pieces of the JESP algorithm and finds a
Nash equilibrium of policies for multiple agents (Nair et al.
2004). In order to keep the algorithm tractable, it uses a fixed
communication decision which enforces a rule that commu-
nication must occur at least every K steps.

In other approaches, the decision when and what to
communicate occurs at execution time. Xuan, Lesser,
and Zilberstein (2001) consider communication whenever
the monitoring agent notices ambiguity in what an agent
should plan next. Oliehoek, Spaan, and Vlassis (2007)
use a QBG (Oliehoek, Spaan, and Vlassis 2008) heuristic
to find communication policies for domains where com-
munications have a one-step delay. More recent work
extends this approach to handle stochastic delays (Spaan,
Oliehoek, and Vlassis 2008). Several different aspects of
communication for special cases of DEC-POMDPs have
been studied in recent years. Becker, Lesser, and Zilber-
stein (2005) developed a myopic communication strategy
for transition-independent DEC-MDPs. Roth, Simmons,
and Veloso (2007) proposed an algorithm to generate decen-
tralized policies with minimal communication for factored
DEC-MDPs. Williamson, Gerding, and Jennings (2008)
introduced the dec POMDP Valued Com model, which in-
cludes a special communication reward function in the DEC-
POMDPs.

The approaches most similar to ours are BaGA-
Comm (Emery-Montemerlo 2005) and Dec-Comm (Roth,
Simmons, and Veloso 2005). In the BaGA-Comm frame-
work, a Bayesian game is constructed and solved using
BaGA-Cluster (Emery-Montemerlo et al. 2005) to gener-
ate policies and joint-type spaces at each time-step. The
authors present three types of communication strategies: a
fixed policy, an expected-value-difference (EVD) policy and
an approach based on policy-difference (PD). The experi-
mental evaluation of these method showed that EVD and
PD result in similar performance and number of communi-
cation acts, and are much better than the fixed policy ap-
proach (Emery-Montemerlo 2005). That work has demon-
strated that it is important to decide when and not just how
often an agent should communicate to achieve good perfor-
mance. In the Dec-Comm framework, each agent maintains
a distribution of possible joint beliefs and chooses to com-
municate only when integrating its own observation history
into the joint belief causes a change in the joint action se-
lected by QPOMDP. Basically, communication in Dec-Comm
is based on the PD policy. Subsequent work has also ad-
dressed the question of what to communicate (Roth, Sim-
mons, and Veloso 2006).

Overview of MAOP-COMM

In this paper, we introduce a new Multi-Agent Online Plan-
ning algorithm with Communication (MAOP-COMM). Un-
like BaGA-Cluster, which merges histories by their sim-
ilarity in terms of the worst-case expected loss (Emery-
Montemerlo et al. 2005), we merge histories by the sim-
ilarity of the future policy structures. Moreover, our ap-
proach bounds the size of the histories in memory at each

step while BaGA-Cluster does not. Thus, MAOP-COMM
can solve problems in which agents may not communicate
for a long period of time, while BaGA-Comm becomes in-
tractable very quickly when the state and observation spaces
are large. The Dec-Comm framework with particle filter-
ing also requires a fixed amount of memory by using sam-
pling (Roth, Simmons, and Veloso 2005). However, in many
domains, the number of particles needed to accurately model
joint beliefs may be large. With the particle representation,
agents may initiate too much communication when the real
joint belief is not sampled. Our approach can better address
these situations as it communicates when history inconsis-
tency is detected. To the best of our knowledge, this is
a new way to initiate communication dynamically at run-
time. Another feature of our work is that we do not re-
quire instantaneous communication. Agents can postpone
their communication when the communication resource is
unavailable or there is some delay or error in communica-
tion. This is a more realistic assumption for many multi-
agent systems. Certainly, postponing communication will
decrease the value of the plan, but the ability to continue
to act until successful communication can be completed is
important.

The rest of the paper is organized as follows. We first
introduce the formal model. Then we describe how the al-
gorithm works. Finally, we present experimental results and
summarize the contributions and future work.

Decentralized POMDPs

We adopt the DEC-POMDP framework (Bernstein, Zilber-
stein, and Immerman 2000), however our approach and re-
sults apply to equivalent models such as MTDP (Pynadath
and Tambe 2002).

Definition 1 (DEC-POMDP) A finite-horizon decentral-
ized partially observable Markov decision process is a tuple
〈I, S, {Ai}, {Ωi}, P, O, R, b0〉 where

• I is a finite set of agents indexed 1, . . . , n.
• S is a finite set of states.

• Ai is a finite set of actions available to agent i and �A =
×i∈IAi is the set of joint actions, where �a = 〈a1, . . . , an〉
denotes a joint action.

• Ωi is a finite set of observations available to agent i and
�Ω = ×i∈IΩi is the set of joint observations, where �o =
〈o1, . . . , on〉 denotes a joint observation.

• P is a Markovian state transition probability table.
P (s′|s,�a) denotes the probability that taking joint action
�a in state s results in a transition to state s′.

• O is a table of observation probabilities. O(�o|s′,�a) de-
notes the probability of observing joint observation �o af-
ter taking joint action �a and reaching state s′.

• R : S × �A → � is a reward function. R(s,�a) denotes the
reward obtained from taking joint action �a in state s.

• b0 ∈ Δ(S) is the initial belief state distribution.

Solving a DEC-POMDP for a given horizon T and start dis-
tribution b0 can be seen as finding policies that maximize the

expected joint reward E[
∑T−1

t=0 R(st,�at)|b
0].

Formally, we define the history for agent i, hi, as the se-
quence of actions taken and observations received by agent

322

i. At any time step t, ht
i = (a0

i , o
1
i , a

1
i , . . . , o

t−1
i , at−1

i , ot
i),

and the joint history, ht = 〈ht
1, . . . , h

t
n〉. The term joint be-

lief b(h) ∈ Δ(S) denotes the probability distribution over
states induced by joint history h. Given a set of joint his-
tories of the previous step, computing a set of joint belief
states of current step is straightforward using Bayes’ rule:

bt(s′) =
O(�o|s′,�a)

∑
s P (s′|s,�a)bt−1(s)∑

s′′ O(�o|s′′,�a)
∑

s P (s′′|s,�a)bt−1(s)
(1)

A local deterministic policy δi for agent i is a mapping
from local histories to actions in Ai, i.e. δi(hi) = ai.
And a joint deterministic policy, δ = 〈δ1, . . . , δn〉, is a tu-
ple of local deterministic policies, one for each agent, i.e.
δ(h) = 〈δ1(h1), . . . , δn(hn)〉 = �a. The deterministic pol-
icy can be represented as a policy tree with action nodes
and observation edges and the joint deterministic policy is
a group of policy trees. Similarly, a local stochastic pol-
icy for agent i, πi(ai|hi), is a mapping from a local his-
tory hi to a distribution over Ai and a joint stochastic policy
π = 〈π1, . . . , πn〉 is tuple of local stochastic policies.

The MAOP-COMM Algorithm

We propose a new algorithm, Multi-Agent Online Planning
with Communication (MAOP-COMM), for finding approx-
imate solutions of DEC-POMDPs. This algorithm is exe-
cuted in parallel by all the agents in the team, interleaving
planning and execution. At each step, each agent maintains
the same joint histories for the team. This ensures that all
the agents find the same joint policy and thus remain coor-
dinated. While the algorithm is randomized, it nevertheless
ensure that each agent finds the same set of joint policies
by using the same pseudo-random number generator with
an identical seed. It is important to emphasize that we only
use common knowledge for planning. With the same history
pool and random behavior, each agent can generate exactly
the same joint policy. Each agent’s local observation is used
only for policy execution and inconsistency detection.

Communication is triggered when the pool of histories be-
comes inconsistent with the local observation that the agent
receives. The agent then initiates communication as soon as
the communication resource is available. When communi-
cation occurs, each agent broadcasts its own local action-
observation sequence to the other agents. Consequently,
each agent can construct the actual joint history and calcu-
late the actual joint belief state. The best joint action will be
selected based on the new joint belief state. And the history
pool will be emptied and replaced with the actual history.

The algorithm starts by first calculating and executing the
best joint action for the initial belief state using a heuristic
value function. Then, the main planning loop shown in Al-
gorithm 1 is executed. The rest of this section explains the
algorithm in detail.

Searching Stochastic Policies

In settings like DEC-POMDPs, agents without knowledge
of others’ observations must reason about all possible belief
states that could be held by others and how that affects their
own action selection. In order to find agent i’s policy qi for

Algorithm 1 Multi-Agent Online Planning with Comm

Input: b0, seed[1..T − 1]
for all i ∈ I (parallel) do

�a0 ← arg max�a Q(�a, b0)
Execute the action a0

i and initialize h0

i

H0 ← {�a0}; B0 ← {b0}; τcomm ← false
for t = 1 to T − 1 do

Set the same random seed by seed[t]
Ht, Bt ← Expand histories and beliefs in Ht−1, Bt−1

ot

i ← Get the observation from the environment
ht

i ← Update agent i’s own local history with ot

i

if Ht is inconsistent with ot

i then
τcomm ← true

if τcomm = true and communication available then
Synch ht

i with other agents
τcomm ← false

if agents communicated then
ht ← Construct the communicated joint history
bt(ht) ← Calculate the joint belief state for ht

�at ← arg max�a Q(�a, bt(ht))
Ht ← {ht}; Bt ← {bt(ht)}

else
πt ← Search the stochastic policy for Ht, Bt

at

i ← Select an action according to πt(ai|h
t

i)
Ht, Bt ← Merge histories based on πt

ht

i ← Update agent i’s own local history with at

i

Execute the action at

i

history hi, agents need to reason about all the possible his-
tories h−i held by others as well as all the possible policies
associated with them. It is important to point out that the
joint policy created by our approach is very different from
the joint policy found by Dec-Comm, which is a mapping
from an agent to a policy (i.e. �q = 〈q1, . . . , qn〉) (Roth,
Simmons, and Veloso 2005). Our search process produces
a truly decentralized policy, which considers the private in-
formation of each agent. Thus the resulting policy of each
agent depends on its individual observations history (i.e.
δ(h) = 〈δ1(h1), . . . , δn(hn)〉).

The straightforward way of finding the best joint policy is
to enumerate all possible combinations of the history-policy
mappings and choose the best one. However, the size of
the joint space is exponential over the size of the possible
histories. In our algorithm, we use stochastic policies and a
linear program to find the approximate solution. The value
of a joint stochastic policy, π, is as follows:

V (π) =
∑
h,b,�q

p(h|b)
∏

i

πi(qi|hi)Q(�q, b) (2)

where p(h|b) =

{
p(h) if b = b(h)
0 otherwise

We use one-step lookahead to estimate the future value. Any
off-line approaches which provide a set of value functions
V (s) can be used to define the heuristic. One approach we
used is the solution for the underlying MDP. For the one-
step lookahead case, qi, �q can be simplified to ai,�a. The
QMDP (Littman, Cassandra, and Kaelbling 1995) heuristic is
written as follows:

Q(�a, b) =
∑

s

b(s)[R(s,�a) +
∑
s′

P (s′|s,�a)VMDP (s′)].

323

Table 1: Improving the policy using linear programming

Variables: ε, πi(qi|hi)
Objective: Maximize ε
Improvement constraint:
V (π) + ε ≤

∑
h,b,�q

p(h|b)πi(qi|hi)π−i(q−i|h−i)Q(�q, b)

Probability constraints:
∀hi

∑
qi

πi(qi|hi) = 1
∀hi, qi πi(qi|hi) ≥ 0

To start, each local stochastic policy πi is initialized to
be deterministic, by selecting a random action with a uni-
form distribution. Then, each agent is selected in turn and its
policy is improved while keeping the other agents’ policies
fixed. This is done for agent i by finding the best parameters
πi(qi|hi) satisfying the following inequality:

V (π) ≤
∑
h,b,�q

p(h|b)πi(qi|hi)π−i(q−i|h−i)Q(�q, b) (3)

The linear program shown in Table 1 is used to find the
new parameters. The improvement procedure terminates
and returns π when ε becomes sufficiently small for all
agents. Random restarts are used to move out of local max-
ima. It is easy to construct situations in which two policies
qi and q′i may have the same value for hi. In order to guaran-
tee coordination, each agent will choose the identical policy
according to a predetermined canonical policy ordering (e.g.
qi ≺ q′i) if the equilibrium-selection tie happens.

Bounding Joint Histories

Note that the underlying system state as well as the obser-
vations of other agents are not available during execution
time of DEC-POMDPs. Each agent must reason about all
possible histories that could be observed by the other agents
and how that may affect its own action selection. However,
the number of possible joint histories increases exponen-
tially with the horizon. For a two-agents tiger problem with
two observations (Nair et al. 2003), the number of possi-
ble joint histories with 100 steps is 2100×2. This presents a
major challenge for developing online algorithms for DEC-
POMDPs. Unlike existing approaches, we present a way to
maintain a bounded size history pool online and use it to
coordinate the strategy of the team.

The key observation here is that the history tracked by
each agent is not necessarily the true individual history of
that agent. As long as the true history and the stored one
share the same future policies, the agent can choose the right
best-response action for the current step based on its current
local observation. A more detailed analysis shows that most
of the histories kept in memory are useless. In our algorithm,
we merge histories whenever they result in a similar future
policy. We only keep one joint history per future policy, so
the number of histories retained is bounded by the number of
the future policies generated and the definition of similarity.

Theorem 1 If the policies generated at each step are opti-
mal, merging histories with the same policies will not affect
the optimality of future steps.

Proof: (sketch) See the Appendix.

Algorithm 2 Merge Histories

Input: Ht, Qt, πt

for all i ∈ I do
Hi(qi) ← ∅,∀qi ∈ Qi; H ′t

i ← ∅
for all hi ∈ Ht

i do
qi ← Select a policy according to πt(qi|hi)
Hi(qi) ← Hi(qi) ∪ {hi ∪ ai(qi)}

for all qi ∈ Qt

i do
h′i ← Select a history from Hi(qi) randomly

H ′t

i ← H ′t

i ∪ {h′i}, if h′i �= null
return H ′t

Unfortunately, the optimal future policy for each agent is
not available during execution time. Finding the optimal fu-
ture policy is as hard as solving the entire problem. But we
can approximate future polices using limited lookahead. A
k-step lookahead policy is a set of policy trees of depth-k,
one for each agent. The value function therefore is decom-
posed into an exact evaluation of the k-steps and a heuristic
estimate of the remaining part. Then, we can define similar-
ity by comparing the depth-k policy trees. In this paper, we
require that the depth-k policy trees be identical for them to
be considered similar, but that can be generalized to other
measures of similarity.

In our implementation, we only try one-step lookahead.
So the future policy for each agent is just a one-node pol-
icy tree associated with a certain action. When storing the
history, we do not need to save the whole action-observation
sequence in the history pool. We only need to assign an in-

dex to a history and use 〈�θ, b〉 to represent the joint history
where θi is the history index for agent i and b is the joint
belief induced for the joint history. Each agent’s own local
history used for execution is also represented by an index.
At every step, we update each index as well as the joint be-
lief state. Since we keep only one history for one policy,
the history index for agent i can be represented as a tuple

〈qt−1
i , ot

i〉 where qt−1
i is the policy tree index of the previ-

ous step and ot
i is the observation of the current step. For the

one-step lookahead case, this index can be further simplified

as 〈at−1
i , ot

i〉. At each step, we will update all the indexes of
the histories in the pool, as well as the index of the agent’s
own local history. Figure 1 shows how to expand histories
and update the index of the agent’s local history by its ob-
servation. Figure 2 shows how to merge histories and update
the index of the agent’s local history after executing a policy.

Communicating When Inconsistency Arises

The technique described above can be used as a standalone
algorithm for multi-agent online planning. In that case, each
agent maintains a shared pool of histories and searches the

Algorithm 3 Expand Histories and Update Beliefs

Input: Ht−1, Bt−1

Ht ← ∅; Bt ← ∅

for ∀h ∈ Ht−1,∀�o ∈ �Ω do
ht ← h ∪ �o; p(ht) ← p(�o,�a(h)|h)p(h)
bt(ht) ← Update the belief state for bt−1(h)
Ht ← Ht ∪ {ht}, Bt ← Bt ∪ {bt(ht)}, if p(ht) > 0

return Ht, Bt

324

Agent 2Agent 1 History Pool

t-1

t

o2

〈q2, ∗〉

〈q1, ∗〉

〈�θ0, b0〉

〈q2, ∗〉

〈q2, o2〉

〈q2, o1〉

〈�θ4, b4〉

〈q1, o2〉

〈q2, o2〉

〈�θ2, b2〉

〈q1, o1〉

〈q2, o2〉

〈�θ3, b3〉

〈q1, o2〉

〈�θ1, b1〉

〈q1, o1〉

〈q1, ∗〉

〈q1, o1〉

〈q2, o1〉

(o2, o1)(o1, o1) (o1, o2) (o2, o2)

t

t-1

o1

Figure 1: Example of history expansion and updating. The

joint history 〈�θ0, b0〉 with two components 〈q1, ∗〉 and 〈q2, ∗〉

in the pool is expanded to 〈�θ1, b1〉, 〈�θ2, b2〉, 〈�θ3, b3〉, 〈�θ4, b4〉
by assigning all possible joint observations. Agent 1 gets the
observation o1 from the environment and updates its local
history from 〈q1, ∗〉 to 〈q1, o1〉. Agent 2 gets the observation
o2 and updates its local history from 〈q2, ∗〉 to 〈q2, o2〉.

best stochastic policy. However, this may lead to poor per-
formance for some domains because only approximations of
the exact future policies are available and errors might accu-
mulate at every step. We analyze one major source of error
in our algorithm and integrate limited communication to im-
prove its performance.

Notice that we only keep one history per policy when
merging the histories. We may merge inconsistent histo-
ries because we only consider partial future policies. When
the partial policies look similar, the full policies they corre-
spond to may still be different. Two histories are inconsis-
tent if the corresponding optimal future policies, which are
not available at execution time, are different. We can detect
the problem by examining any inconsistency between the
history pool and the real observation from the environment.
When agent i tries some action and observes oi, the proba-
bility of which is less than some small threshold ε according
to the history pool, it is likely that there is something wrong
with the history pool.

Let’s denote agent i’s local history at step t by ht
i and the

local observation agent i receives from the environment at
step t by ot

i . Note that ht
i is the local history we maintain at

step t, not the local action-observation sequence. We denote
B(ht

i) a set of joint beliefs for ht
i from the pool Bt.

Definition 2 At time step t, the maintained history pool Ht

is ε-inconsistent with agent i’s local observation ot
i if

∀ot
−i, max

b∈B(ht

i
)

∑
s′

O(�ot|s′,�a)
∑

s

P (s′|s,�a)b(s) < ε (4)

This definition provides a way to monitor inconsistency be-
tween agent i’s local history and observation, which pro-
vides an indication of history inconsistency in the pool. The
threshold ε is determined by the structure of the observation
function. If the uncertainty of the observation is small, ε
should be small too. The amount of communication is de-
termined by both the observation structure and the heuristic.

Intuitively, the agent can make the right decision as long
as the history pool contains the real joint history or some
other similar joint history. However, agents cannot obtain

Agent 2Agent 1 History Pool

1

q3 q5

2

q5q4q3

〈q2, o1〉

〈q1, o1〉 〈q2, o2〉

〈q5, ∗〉〈q3, ∗〉 〈q5, ∗〉〈q3, ∗〉 〈q4, ∗〉

〈q1, o2〉〈q1, o1〉 〈q2, o2〉

Figure 2: Example of history merging and policy execution.
The histories 〈q2, o1〉 and 〈q2, o2〉 in the pool map to the
same policy q5, so only one history is randomly selected
(e.g. 〈q2, o1〉) for the next step and its index is updated as
〈q5, ∗〉. 〈q1, o1〉 maps to q3 and is updated as 〈q3, ∗〉. 〈q1, o2〉
maps to q4 and is updated as 〈q4, ∗〉. The policy for the local
history of agent 1 〈q1, o2〉 is q3, so agent 1 executes q3 and
update its local history to 〈q3, ∗〉. Agent 2 executes q5 and
updates its local history to 〈q5, ∗〉 since 〈q2, o2〉 maps to q5.

the observations of other agents at execution time, so it is
impossible to know the real joint history. But it can check
for inconsistency between the history pool and its actual ob-
servation. If the pool is inconsistent, the agent can refresh
the history pool by communicating with other agents and
synchronizing the observation sequence. After synchroniz-
ing observations, the history pool contains only the real joint
history and is consistent. Unlike most approaches which
require instantaneous communication, our approach allows
agents to postpone communication when the resource is un-
available. They can sacrifice some value and make deci-
sions without communication. The role of communication
is therefore to improve the performance when it is possible.

Experimental Results

We have implemented and tested MAOP-COMM using
three standard benchmark problems and a more challenging
problem called grid soccer. In each of these environments,
we first solved the underlying (centralized) MDP and pro-
vided the resulting value function as a heuristic to our al-
gorithm. The reported results are averages over 20 runs of
the algorithm on each of the problems. We present the av-
erage accumulated reward (R), average online runtime per
step (T(s)), and average percentage of communication steps
(C(%)) with different horizons (H). While communication
is limited and minimizing it is an important goal, we did
not add explicit cost for communication because any such
cost would have been arbitrary and not particularly relevant
to these applications. The main purpose of the valuation is
to test whether high-valued plan can be computed quickly
on-line, while using little communications. MAOP-COMM
was implemented in Java and ran on a 2.4GHz Intel Core
2 Duo processor with 2GB of RAM. Linear programs were
solved using lp solve 5.5. All timing results are CPU times
with a resolution of 0.01 second.

We did try to compare MAOP-COMM with the two ex-

325

isting online planners that use communication (i.e., BaGA-
Comm and Dec-Comm), but only Dec-Comm with particle
filtering (Dec-Comm-PF) can solve the problems we focus
on in this paper. As mentioned earlier, the main reason for
this limitation is that BaGA-Comm and the exact version
of Dec-Comm do not bound the size of histories (or be-
liefs). In our experiments, we observed that agents often
kept silent for 10 steps or more. Consequently, the number
of possible joint histories becomes very large (e.g., 52×10

for 2 agent problem with 5 observations after 10 step of si-
lence). Even the BaGA-Cluster approach could not reduce
such pool of histories to a manageable size in the test do-
mains. BaGA-Comm and the exact version of Dec-Comm
ran out of memory and time very quickly. Therefore, we
compared MAOP-COMM with Dec-Comm-PF, the only ex-
isting algorithm that bounds the amount of memory.

In fact, BaGA-Comm and Dec-Comm yield similar per-
formance (average values and amount of communication) in
most domains which are tractable for both of them (Emery-
Montemerlo 2005). Another fact pointed out by Roth, Sim-
mons, and Veloso (2005) is that Dec-Comm using an exact
tree representation of joint beliefs and Dec-Comm-PF that
approximates beliefs using sufficiently large particle filters
provide no substantial difference in performance. There-
fore, comparing to Dec-Comm-PF–the leading communica-
tive online algorithm which is applicable to all the problems
we focus on in this paper–presents the best way to assess the
performance of our approach.

To put these results in perspective and better understand
the role of communication, we also include the results for
FULL-COMM–the case of full communication (communi-
cating observations at each step, ε = +∞) and MAOP–our
own online approach with no communication (no inconsis-
tency monitoring, ε = 0). The monitoring threshold for
MAOP-COMM was set to ε = 0.01 and the number of par-
ticles for Dec-Comm-PF was 100. According to our experi-
ments, using more than 100 particles resulted in no substan-
tial difference in value but an obvious increase in runtime
for Dec-Comm-PF in the tested domains. We did not use a
discount factor in these experiments because all the tested
problems involve a finite horizon.

Benchmark Problems The first set of experiments in-
volves three standard benchmark problems: Broadcast
Channel (Bernstein, Hansen, and Zilberstein 2005) , Meet-
ing in a Grid (Bernstein, Hansen, and Zilberstein 2005) and
Cooperative Box Pushing (Seuken and Zilberstein 2007).
All of them are typical cooperative multi-agent domains
and well-known benchmark problems for DEC-POMDPs1.

Because the number of possible histories is |O||I|×|T | and
bounding the size of histories is one of our key con-
tributions, we used benchmark problems with larger ob-
servation sets. Other well-known benchmark problems
such as Multi-Agent Tiger (Nair et al. 2003), Recycling
Robots (Amato, Bernstein, and Zilberstein 2007) and Fire
Fighting (Oliehoek, Spaan, and Vlassis 2008) have only 2
observations.

The Broadcast Channel problem (Bernstein, Hansen, and
Zilberstein 2005) is a simplified two agent networking prob-

1http://users.isr.ist.utl.pt/∼mtjspaan/decpomdp/index en.html

lem. At each time step, each agent must choose whether or
not to send a message. If both agents send messages, there
is a collision and neither gets through. This problem has 4
states, 2 actions and 5 observations. The results in Table 2
show that in this problem all the methods achieved similar
values with runtime less than 0.01. Both MAOP-COMM
and Dec-Comm-PF initiated no communication. The per-
formance without communication were almost the same as
the case of full communication. These results have a sim-
ple intuitive explanation. The probability that agent’s buffer
will fill up on the next step is 0.9 for one agent and 0.1 for
the other. Therefore, it is easy to coordinate in this case by
simply giving one agent a higher priority.

In the Meeting in a Grid problem (Bernstein, Hansen, and
Zilberstein 2005), two robot navigate on a grid with no ob-
stacles. The goal is for the robots to spend as much time as
possible in the same location. In order to make the problem
more challenging, we used larger 3×3 grid and simulated a
noisy sensor with a 0.9 chance to perceiving the right obser-
vation. This problem has 81 states, since each robot can be
in any of 9 squares at any time. Each robot has 5 actions
and 7 legal observations for sensing a combination of walls
around. The results in Table 2 show that MAOP–the on-
line algorithm without communication–performed surpris-
edly well in this case. The one-step lookahead provided
a good heuristic for this problem because agents can meet
anywhere and the problem resets after that. The results for
FULL-COMM show that agents do not benefit much from
communication. MAOP-COMM achieved a higher value
than Dec-Comm-PF, but with much less communication.
The runtimes of MAOP-COMM, MAOP and Dec-Comm-
PF were short and quite close to each other.

In the Cooperative Box Pushing domain (Seuken and Zil-
berstein 2007), two agents located on a 3×4 grid are re-
quired to push boxes (two small and one large box) into
a goal area. The agents benefit from cooperation because
when they cooperatively push the large box into the goal area
they get a very high reward. In order to make the problem
more challenging, we have the agents transition to a random
state when the problem resets itself. We also included uncer-
tain observations in this domain with a 0.9 probability for the
right observation and a 0.025 probability for the others. This
domain has 100 states with 4 goal states and 96 non-goal
states. Each agent has 4 actions and 5 observations. The re-
sults in Table 2 show that in this domain communication did
improve performance significantly. MAOP without commu-
nication performed poorly. The one-step lookahead was no
longer a good heuristic because agents in this domain have
multiple goals (large box or small box). For this domain
with longer horizons such as 50 and 100, MAOP-COMM
outperformed Dec-Comm-PF, again with much less commu-
nication. MAOP and MAOP-COMM ran a little faster than
Dec-Comm-PF.

To summarize, MAOP-COMM performed very well in all
three benchmark problems using much less communication
than Dec-Comm-PF. In some domains such as Broadcast
Channel and Meeting in a Grid, MAOP could also achieve
very high value without any communication. Although the
tested horizon was only up to 100, our approach can solve
problems with an arbitrary horizon since we bound the size

326

Table 2: Experimental Results (20 trials)

H ALG
Broadcast Channel Meeting in a Grid Box Pushing Soccer 2×3 Soccer 3×3

R T(s) C(%) R T(s) C(%) R T(s) C(%) R T(s) C(%) R T(s) C(%)

10

MAOP-COMM 9.28 0.0 0.0% 1.7 0.19 8.0% 67.5 0.12 10.5% 139.0 0.13 14.5% 173.8 2.0 24.0%

MAOP 9.16 0.0 0.0% 1.45 0.09 0.0% 31.3 0.10 0.0% 131.5 0.09 0.0% 103.3 1.7 0.0%

FULL-COMM 9.3 0.0 100.0% 2.3 0.0 100.0% 109.25 0.0 100.0% 154.1 0.0 100.0% 178.9 0.02 100.0%

Dec-Comm-PF 9.05 0.0 0.0% 1.5 0.22 64.5% 85.2 0.35 67.9% 131.8 1.23 30.5% 151.3 14.95 53.9%

20

MAOP-COMM 18.35 0.0 0.0% 3.35 0.26 11.0% 99.3 0.16 11.5% 290.6 0.28 14.8% 296.0 2.3 27.0%

MAOP 18.25 0.0 0.0% 3.1 0.15 0.0% 7.5 0.14 0.0% 180.5 0.25 0.0% 190.7 1.9 0.0%

FULL-COMM 18.9 0.0 100.0% 4.75 0.0 100.0% 222.5 0.0 100.0% 373.9 0.0 100.0% 356.0 0.02 100.0%

Dec-Comm-PF 18.45 0.0 0.0% 2.9 0.22 70.5% 136.75 0.35 83.5% 129.5 1.36 33.5% 271.4 15.26 59.0%

50

MAOP-COMM 45.3 0.0 0.0% 8.4 0.30 11.8% 230.5 0.20 12.8% 946.5 0.14 16.4% 791.6 2.54 25.5%

MAOP 45.2 0.0 0.0% 7.4 0.16 0.0% -8.0 0.14 0.0% 656.0 0.12 0.0% 456.2 1.6 0.0%

FULL-COMM 45.36 0.0 100.0% 12.8 0.0 100.0% 441.5 0.0 100.0% 949.1 0.0 100.0% 862.4 0.02 100.0%

Dec-Comm-PF 44.75 0.0 0.0% 6.85 0.22 77.5% 233.25 0.35 71.0% 834.2 1.25 35.3% 490.1 15.01 65.4%

100

MAOP-COMM 90.35 0.0 0.0% 17.1 0.30 12.1% 441.95 0.13 12.26% 1933.9 0.16 15.4% 1679.5 2.50 26.9%

MAOP 89.95 0.0 0.0% 15.3 0.19 0.0% -16.0 0.13 0.0% 1157.8 0.14 0.0% 803.6 1.96 0.0%

FULL-COMM 90.6 0.0 100.0% 24.7 0.0 100.0% 880.50 0.0 100.0% 1933.6 0.0 100.0% 1808.2 0.02 100.0%

Dec-Comm-PF 90.0 0.0 0.0% 14.9 0.24 78.2% 296.50 0.36 59.87% 1441.6 1.28 30.8% 1044.4 9.48 70.7%

of histories at each step. The experimental results varied
a little with the horizon because in problems with longer
horizons there is a greater chance for miscoordination, mis-
communication and error accumulation. The parameter ε
presents a good way to tradeoff between the amount of com-
munication and overall value. In domains such as Coopera-
tive Box Pushing, a larger ε would allow more communica-
tion and consequently improve performance.

Grid Soccer To demonstrate scalability, we also tested our
algorithm on a more challenging problem called grid soccer.
The domain includes two agents for one team and one op-
ponent for the other team, as shown in Figure 3. Each agent
has 4 possible orientations (up, down, left or right). The
opponent–with full observation and reliable actions–always
executes a fix policy and tries to get close to the ball as fast as
possible. If the opponent bumps into an agent with the ball,
it will get the ball and the game terminates with a reward of
-50. If the agent with the ball enters the goal grid, the game
also terminates with a reward of 100. Each agent has 6 ac-
tions: north, south, east, west, stay and pass. Each action has
a 0.9 probability of success and 0.1 probability of having no
impact on the current state. When an agent executes a pass
action, the ball is transferred to the other agent on the next
step, if and only if the other agent executes the stay action
at the same time. Otherwise, the ball goes out of the field
and the game terminates with a reward of -20. For each step
resulting in a non-terminal state, there is a penalty of 2. Af-
ter reaching a terminal state the problem is reset. Each agent
gets one out of 5 possible observations describing the situa-
tion in front of it (free, wall, teammate, opponent, goal) and
2 observations indicating who controls the ball. Thus, the

2×3 3×3

Figure 3: Grid Soccer

total number of observations is 11. The observation is noisy
with a 0.9 chance to perceive the correct observation and a
0.01 chance to perceive each of the other observations. We
tested our algorithm on two grid soccer problems: one is a
2×3 grid with 3843 states, and the other is a 3×3 grid with
16,131 states. These problems are the largest tackled so far
by decision-theoretic algorithms for multi-agent planning.

The results are shown in Table 2. MAOP-COMM
achieved higher value than Dec-Comm-PF, while the per-
formance of MAOP is competitive, indicating that MAOP-
COMM with a smaller ε would use even less communication
and produce good value. The runtime of MAOP-COMM
and MAOP were almost ten times faster than Dec-Comm-
PF. One reason is that the operators in MAOP-COMM
and MAOP are much cheaper than the particle filtering
used in Dec-Comm-PF. Another reason is that the number
of histories kept by MAOP-COMM and MAOP is much
smaller than the number of particles used by Dec-Comm-PF.
MAOP-COMM and MAOP scaled well in the 3×3 instance.
The most state-sensitive operator was the Bayesian update.
For a problem with 16,131 states, the update loop takes hun-
dreds of seconds. Fortunately, the transition functions are
sparse in many real applications including grid soccer, al-
lowing us to optimize the Bayesian update in all the algo-
rithms including Dec-Comm-PF. Incidentally, in problems
with larger state spaces, the runtime advantage of keeping
less histories became more significant.

Conclusion

We present a new online algorithm for planning under un-
certainty in multi-agent settings with constrained communi-
cation. The algorithm addresses the key challenge of keep-
ing the team of agents coordinated by maintaining a shared
pool of histories that allows agents to choose local actions
and detect inconsistency when it arises. The algorithm has
several important advantages. First, it can use communica-
tion very selectively to recover from inconsistency. It can
also delay communication when the resource is not avail-

327

able and–if needed–avoid communication for a long period
of time. A second advantage is scalability. The algorithm
can solve existing benchmark problems much faster than the
best off-line algorithms and it can solve larger problems that
are beyond the scope of off-line DEC-POMDP planners. Fi-
nally, the algorithm performs very well in practice, outper-
forming the best existing online method by producing better
value with less communication.

One benefit of the algorithm is that the amount of commu-
nication can be easily controlled using the communication
threshold parameter. In fact, we could have easily obtained
better results had we adjusted ε for each of the tested do-
mains. We deliberately experimented with a fixed ε to show
that there is no need for extensive tuning to get good results
with MAOP-COMM. But in future work, we plan to ana-
lyze this question and develop a disciplined approach to set
up the communication threshold, particularly when the cost
of communication is given.

Acknowledgments

Special thanks to Maayan Roth for sharing her source code
of Dec-Comm and to the reviewers for their helpful com-
ments. This work was supported in part by the China Schol-
arship Council, the Air Force Office of Scientific Research
under Grant No. FA9550-08-1-0181, and the National Sci-
ence Foundation under Grant No. IIS-0812149.

References
Amato, C.; Bernstein, D. S.; and Zilberstein, S. 2007. Optimiz-
ing Memory-Bounded Controllers for Decentralized POMDPs. In
Proc. of the 23rd Conf. on Uncertainty in Artificial Intelligence.

Becker, R.; Lesser, V. R.; and Zilberstein, S. 2005. Analyzing
Myopic Approaches for Multi-Agent Communication. In Proc.
of the 2005 IEEE/WIC/ACM Int. Conf. on Intelligent Agent Tech-
nology, 550–557. IEEE.

Bernstein, D. S.; Hansen, E. A.; and Zilberstein, S. 2005.
Bounded Policy Iteration for Decentralized POMDPs. In Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence, 1287–1292.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000. The
Complexity of Decentralized Control of Markov Decision Pro-
cesses. In Proc. of the 6th Conf. on Uncertainty in Artificial In-
telligence, 32–37.

Emery-Montemerlo, R.; Gordon, G. J.; Schneider, J. G.; and
Thrun, S. 2005. Game Theoretic Control for Robot Teams. In
Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation,
1163–1169. IEEE.

Emery-Montemerlo, R. 2005. Game-Theoretic Control for Robot
Teams. Doctoral Dissertation, Robotics Institute, Carnegie Mel-
lon University.

Goldman, C. V., and Zilberstein, S. 2003. Optimizing information
exchange in cooperative multi-agent systems. In Proc. of the 2nd
Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems,
137–144. ACM.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning policies for partially observable environments: Scaling
up. In Proc. of the 12th Int. Conf. on Machine Learning, 362–370.

Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D. V.; and Marsella,
S. 2003. Taming Decentralized POMDPs: Towards Efficient
Policy Computation for Multiagent Settings. In Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence, 705–711.

Nair, R.; Tambe, M.; Roth, M.; and Yokoo, M. 2004. Com-
munication for Improving Policy Computation in Distributed

POMDPs. In Proc. of the 3rd Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, 1098–1105. IEEE.

Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2007. Dec-
POMDPs with delayed communication. In The 2nd Workshop on
Multi-agent Sequential Decision-Making in Uncertain Domains.

Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008. Optimal
and Approximate Q-value Functions for Decentralized POMDPs.
Journal of Artificial Intelligence Research 32:289–353.

Pynadath, D. V., and Tambe, M. 2002. The communicative mul-
tiagent team decision problem: Analyzing teamwork theories and
models. Journal of Artificial Intelligence Research 16:389–423.

Roth, M.; Simmons, R. G.; and Veloso, M. M. 2005. Reasoning
about joint beliefs for execution-time communication decisions.
In Proc. of the 4th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, 786–793. ACM.

Roth, M.; Simmons, R.; and Veloso, M. 2006. What to communi-
cate? execution-time decision in multi-agent POMDPs. In Proc.
of the 8th Int. Symposium on Distributed Autonomous Robotic
Systems.

Roth, M.; Simmons, R. G.; and Veloso, M. M. 2007. Exploiting
factored representations for decentralized execution in multiagent
teams. In Proc. of the 6th Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, 72.

Seuken, S., and Zilberstein, S. 2007. Improved Memory-Bounded
Dynamic Programming for Decentralized POMDPs. In Proc. of
the 23rd Conf. in Uncertainty in Artificial Intelligence.

Seuken, S., and Zilberstein, S. 2008. Formal Models and
Algorithms for Decentralized Decision Making under Uncer-
tainty. Journal of Autonomous Agents and Multi-Agent Systems
17(2):190–250.

Spaan, M. T. J.; Gordon, G. J.; and Vlassis, N. 2006. Decen-
tralized planning under uncertainty for teams of communicating
agents. In Proc. of the 5th Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, 249–256. ACM Press.

Spaan, M. T. J.; Oliehoek, F. A.; and Vlassis, N. 2008. Multia-
gent Planning under Uncertainty with Stochastic Communication
Delays. In Proc. of the 18th Int. Conf. on Automated Planning
and Scheduling, 338–345.

Williamson, S. A.; Gerding, E. H.; and Jennings, N. R. 2008.
A principled information valuation for communication during
multi-agent coordination. In The 3rd Workshop on Multi-agent
Sequential Decision-Making in Uncertain Domains.

Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communication
decisions in multi-agent cooperation: Model and experiments. In
Proc. of the 5th Int. Conf. on Autonomous Agents, 616–623.

Appendix

Proof of Theorem 1: At step 0, if the optimal policies for 0
up to T are given, agents can select the optimal joint policy
by b0. At step t, assume agent i merges two histories ht

i and
h′ti because they share the same optimal policy qt

i . At any

future step t + k, for any k step history hk
i , history ht

i ∪ hk
i

and h′ti ∪hk
i must still share the same optimal policy qt+k

i . If
not, the optimal policies for ht

i and h′ti are different because
they have different sub-trees, contradicting the assumption
that ht

i and h′ti have the same optimal policy. Due to the

assumption of optimality, qt+k
i must be a sub-policy tree of

qt
i . At step t + k, for any given k, agent i can still find the

optimal policy after merging ht
i and h′ti . The theorem thus

holds for all steps by induction.

328

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

