
SAT-Based Parallel Planning Using a Split Representation of Actions

Nathan Robinson†, Charles Gretton‡, Duc-Nghia Pham†, Abdul Sattar†
†ATOMIC Project, Queensland Research Lab, NICTA and

Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia
{nathan.robinson,duc-nghia.pham,abdul.sattar}@nicta.com.au

‡ School of Computer Science, University of Birmingham
c.gretton@cs.bham.ac.uk

Abstract

Planning based on propositional SAT(isfiability) is a power-
ful approach to computing step-optimal plans given a paral-
lel execution semantics. In this setting: (i) a solution plan
must be minimal in the number of plan steps required, and
(ii) non-conflicting actions can be executed instantaneously
in parallel at a plan step. Underlying SAT-based approaches
is the invocation of a decision procedure on a SAT encoding
of a bounded version of the problem. A fundamental limi-
tation of existing approaches is the size of these encodings.
This problem stems from the use of a direct representation
of actions – i.e. each action has a corresponding variable in
the encoding. A longtime goal in planning has been to miti-
gate this limitation by developing a more compact split – also
termed lifted – representation of actions in SAT encodings of
parallel step-optimal problems. This paper describes such a
representation. In particular, each action and each parallel
execution of actions is represented uniquely as a conjunct of
variables. Here, each variable is derived from action pre and
post-conditions. Because multiple actions share conditions,
our encoding of the planning constraints is factored and rel-
atively compact. We find experimentally that our encoding
yields a much more efficient and scalable planning procedure
over the state-of-the-art in a large set of planning benchmarks.

Introduction

Optimal domain-independent planning approaches that ex-
ploit state-of-the-art propositional SAT(isfiability) proce-
dures usually exhibit excellent performance. The win-
ner of the optimal track at the fourth International Plan-
ning Competition (IPC-4) was SATPLAN-04, and at IPC-
5 SATPLAN-06 (Kautz, Selman, and Hoffmann 2006) and
MAXPLAN (Chen, Xing, and Zhang 2007) tied for first
place. Based on BLACKBOX (Kautz and Selman 1999),
these solvers are step-optimal in a parallel setting because:
(1) a solution plan must be minimal in the number of plan
steps required, and (2) non-conflicting actions can be exe-
cuted instantaneously in parallel at a plan step. They oper-
ate by iteratively constructing propositional plangraphs for
successive horizon lengths (e.g., h = 1, 2, 3, ... plan steps),
at each horizon performing the ubiquitous reachability and
neededness plangraph analysis (Blum and Furst 1997). The

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bounded planning problem posed by the plangraph at h is
compiled into a conjunctive normal form (CNF) proposi-
tional formula whose solutions, if any, correspond to par-
allel h-step plans. Successively generated CNFs are input to
a satisfiability-testing procedure which determines whether
the formula has any satisfying models, and if so reveals one
of these. Iteration terminates once a solution is found. The
compilation to SAT is direct in the sense that each variable
in the CNF corresponds to whether an action is executed at a
plan step, or whether a proposition is true at a plan step. The
planning constraints, such as frame axioms, conflict exclu-
sion, and that an action implies its precondition and effects,
are encoded naturally in terms of those variables. Not sur-
prisingly then, a fundamental limitation of BLACKBOX and
its successors is size blowup, a problem that refers to the
enormous sized CNFs they generate. For example, the 11-
step decision problem generated by SATPLAN-06 for IPC-5
problem PIPESWORLD-9 has over 11 million clauses.

Recently there has been a significant research effort in-
vested in approaches which improve the overall efficiency of
step-optimal planning as SAT in a parallel setting. Generally
speaking, such proposals have been in two directions. The
first seeks query strategies that are more efficient than the de
facto standard – i.e., where a SAT solver is instantiated at in-
cremental horizon lengths. The second seeks to retain con-
straints (e.g., conflict clauses) “learned” during processing
at horizon h at successive horizons h + 1, h + 2, In more
detail, optimal systems discussed above use simple ramp-
up h = 1, 2, 3, ..., and ramp-down h = hbig, hbig−1, ..., 1
query strategies. For ramp-down, also called backwards
level reduction, hbig is obtained in practice by querying
a satisficing planner. Better efficiency has been demon-
strated for interleaved and parallel query strategies described
by Rintanen (2004), and for efficient variants of binary
search described by Streeter and Smith (2007). In the
case of constraint retention between queries, Nabeshima
et al. (2006) developed the Lemma-Reusing Planner (LRP)
that carries conflict clauses learned in refuting plan existence
at h − 1 steps to the problem with h steps. In a similar
vein, Ray and Ginsberg (2008) introduce SAT-based system
CRICKET that uses modified SAT procedures that exploit a
predefined branching order guaranteeing optimality what-
ever the queried horizon – i.e., using ramp-down strategy,
CRICKET makes a single call to a SAT procedure to produce

281

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

a step-optimal solution. In practice Ray and Ginsberg (2008)
used a geometric ramp-up strategy – i.e., for some α > 1,
h1 = 1, hi = αhi−1. Overall, these developments in the op-
timal setting have not addressed the problem of size blowup,
which in these works remains a hindrance to scalability and
efficiency.

Recent times have also seen proposed SAT-based proce-
dures and encodings for step-optimal planning with a serial
execution semantics, and approximately step-optimal plan-
ning with a parallel execution semantics. In these settings
lateral approaches have been devised for delivering scalabil-
ity and efficiency. In the case of serial execution semantics,
only one action can be executed at a plan step. Ernst, Mill-
stein, and Weld (1997) developed the system MEDIC which
implemented a number of encodings of serial planning as
SAT. The problem of CNF size blowup in MEDIC was mit-
igated by using a split representation of actions – An idea
originally proposed by Kautz and Selman (1992). For the
serial case splitting yields a much more compact representa-
tion of the planning constraints compared with a direct en-
coding along the lines of BLACKBOX and its successors. In
practice however, parallel planning with a direct encoding
is easier than serial planning with a split encoding. This is
due to the comparatively long horizon required for the serial
case. For example, for IPC-5 problem ROVERS-07, the opti-
mal serial plan requires 18 steps, whereas SATPLAN-06 re-
quires only 5 steps. To date, no proposals for a compact split
representation of actions has been made for step-optimality
in a parallel setting.

In the case of approximately optimal planning with a
parallel execution semantics, two directions are proposed
to mitigate the problem of size blowup for encoding the
bounded problems that arise in a SAT-based setting. Rinta-
nen, Heljanko, and Niemelä (2006) and Wehrle and Rinta-
nen (2007) propose reducing the number of queries required
to find a plan by relaxing constraints on action parallelism.
Their works exploit the concept of post-serialisability
from Dimopoulos, Nebel, and Koehler (1997), thereby al-
lowing a set of conflicting actions to be prescribed at a single
plan step provided a scheme, computed a priori, is available
for generating a valid serial execution. In this case, the h
step problem posed to a SAT procedure has solutions that
correspond to parallel plans that require more than h steps
to execute without conflict. Hence, parallel step-optimality
is not guaranteed. In a somewhat opposite direction Robin-
son et al. (2008) proposed an encoding that lies between the
serial and parallel case. They use the split representation
of actions from MEDIC in a semi-parallel setting. In that
work, legal parallel executions of non-conflicting actions are
forbidden where the action representation is not sufficiently
rich to describe them. Thus, again parallel step-optimality is
not guaranteed.

Unlike recent research directed at improving the effi-
ciency of step-optimal planning in a parallel setting, this
paper tackles the problem of size blowup directly. In do-
ing so, we are able to demonstrate improvements in both the
efficiency and scalability of optimal planning. Our direc-
tion takes the concepts of operator splitting from the work
of Ernst, Millstein, and Weld (1997) in the serial setting,

and Robinson et al. (2008) in the approximate parallel set-
ting, and brings them to the optimal parallel setting. The
main consequence of our split representation is that we re-
quire fewer clauses in our encoding of the h horizon prob-
lem than BLACKBOX-like systems that use a direct encod-
ing. For example, looking again at the 11-step IPC-5 prob-
lem PIPESWORLD-09, SATPLAN-06 required ~11M clauses
whereas our split representation requires only ~670k. In
practice the relative compactness of our encoding translates
to better efficiency and scalability over the state-of-the-art.
Finally, in our work we use the plangraph as the source of
our compilation from planning to SAT. This is because plan-
graph analysis yields mutex constraints between pairs of ac-
tions and pairs of state propositions that are: (1) useful, and
feature, in state-of-the-art satisfiability procedures (Kautz
2006), and (2) are not redundant, because such mutex re-
lations are not deduced independently by modern SAT pro-
cedures (Rintanen 2008).

This paper is organised as follows. We summarise the
propositional planning problem and introduce our notations.
Following this we review existing SAT representations of ac-
tions, consider the problem of interference that occurs using
existing split representations, and then develop a split repre-
sentation of actions without interference. We then present a
compilation of the bounded problem posed by a plangraph
into SAT using our split representation of actions. We empir-
ically evaluate our approach on planning benchmarks from
a number of the International Planning Competitions. Fi-
nally we make concluding remarks and propose directions
for future research.

Background and Notations

Propositional Planning

A propositional planning problem is given in terms of a fi-
nite set of objects Σ, first-order STRIPS-like planning oper-
ators of the form 〈o, C〉, and predicates Π. By grounding Π
over Σ we obtain the set of propositions P that characterises
problem states. For example, in a blocks-world problem
we can have two blocks A, B ∈ Σ, and a binary predicate
On(x1, x2) ∈ Π, one grounding of which is the proposition
On(A, B) ∈ P .

An operator o is an expression of the form O(−→x) where O
is an operator name and −→x = x1, .., xk is a list of variable
symbols. Our C notation departs from typical expositions
in planning. C is a set of elements which describe the op-
erator pre-conditions, and negative/positive post-conditions.
Intuitively, each element C ∈ C is a composite, contain-
ing the set of conditions that range over the same argu-
ment variables. Writing −→x ′ for an argument list made up
of elements from −→x , for π ∈ Π a basic operator condi-
tion has the form τ(π(−→x ′)). Here τ denotes a condition
type, either: (1) a basic precondition, written PRE(π(−→x ′)),
(2) a basic negative postcondition DEL(π(−→x ′)), or (3)
a basic positive postcondition ADD(π(−→x ′)). For exam-
ple, the operator Move(x1, x2, x3) from blocks-world has
the basic conditions: PRE(On(x1, x2)), PRE(Clear(x1)),
PRE(Clear(x3)), DEL(On(x1, x2)), DEL(Clear(x3)),
ADD(On(x1, x3)), and ADD(Clear(x2)). We define ele-

282

ments in C to be composites of basic conditions as follows.
Let α(−→x ′) be any permutation of argument list −→x ′. If there
is any pair τ1(π1(

−→x ′)) and τ2(π2(α(−→x ′))) of basic condi-
tions of an operator 〈o, C〉, then there is exactly one C ∈ C
so that τ1(π1(

−→x ′)), τ2(π2(α(−→x ′))) ∈ C. For example, the
previously mentioned Move operator can be described in
terms of C as follows:

〈Move(x1, x2, x3),

{{PRE(On(x1, x2)), DEL(On(x1, x2))},

{PRE(Clear(x3)), DEL(Clear(x3))},

{PRE(Clear(x1))}, {ADD(On(x1, x3))}, {ADD(Clear(x2))}}〉

Planning actions are obtained by grounding operator de-
scriptions over object symbols. Grounding according to as-
signment {x1 =A, x2=B, x3 =C} yields STRIPS action:

Action: a = Move (A, B, C)

pre(a) := [On(A, B), Clear(A), Clear(C)];

add(a) := [Clear(B), On(A, C)];

del(a) := [On(A, B), Clear(C)];

We write a for the action having a set of ground pre-
conditions pre(a), positive post-conditions add(a), and neg-
ative post-conditions del(a). As for the above ground Move
example, these lists contain elements from P . Ground con-
ditions associated with a are notated Ca, and elements in
that set Ca ∈ Ca. An action a can be executed at a state
s ⊆ P when pre(a) ⊆ s. We denote A the set of problem
actions, and A(s) the set of actions that can be executed at
state s. When a ∈ A(s) is executed at s the resultant state
is (s ∪ add(a))\del(a). Actions cannot both add and delete
the same proposition – i.e., add(a) ∩ del(a) ≡ ∅.1 A set of
actions is said to be non-conflicting if any serial execution
of the actions, at any state, produces the same outcome.

A planning problem is posed in terms of a starting state
s0 ⊆ P , a goal G ⊆ P , and a small set of domain operators.
Supposing non-conflicting actions can be executed instan-
taneously in parallel, a parallel plan is a discrete sequence
of time-indexed sets of non-conflicting actions which, when
applied to the start state, lead to a goal state. For a serial
plan (a.k.a. linear plan) each time-indexed set contains one
action. Whether the format is parallel or serial, we say that
a plan is (step-)optimal iff no other plan of the same format
can reach a goal state using fewer steps.

Action Representations

A number of propositional representations of actions have
been proposed for planning as satisfiability. In decreasing
order in the number of variables required for serial planning,
these include: (1) direct, (2) simply split, and (3) bitwise. In
the direct case, each action corresponds to a Boolean vari-
able in the SAT formula that represents whether the action
is executed. All existing step-optimal systems that adopt
a parallel execution semantics use this direct encoding. In
the simply split case, each legal binding to each operator ar-
gument is represented by a variable. For example, writing
Move[k](x) for the predicate that says “the k’th argument
of action Move is x”, we have that action Move(A, B, C)

1This restriction does not apply in practice, and the case is given
a special semantics. The details will not be discussed in this paper.

is represented by the conjunct Move[1](A)∧Move[2](B)∧
Move[3](C).2 Finally for the bitwise case, each action is
mapped to an integer n in base-2. In particular, for increas-
ing i = 0�log2(|A|), taking pi to be the ith significant
bit of n we represent 5 = Move(A, B, C) with conjunct
p0 ∧ ¬ p1 ∧ p2. Hence, a bitwise encoding requires the
fewest variables, and theoretically should produce the easi-
est SAT problem among the three representations. However,
Ernst, Millstein, and Weld (1997) and others found that the
performance of encodings based on bitwise representation is
worse than those based on other representations.

Factoring and Interference

Simply split representations of actions have been the sub-
ject of a significant body of work in the planning as SAT
paradigm (Robinson et al. 2008; Giunchiglia, Massarotto,
and Sebastiani 1998; Ernst, Millstein, and Weld 1997;
Kautz and Selman 1992). Its major advantage is compact-
ness due to factorisation of constraints, whilst its major dis-
advantage is interference.

Two observations are necessary to see the main advantage
of simple splitting over a direct representation. First, a sim-
ply split encoding of actions requires fewer variables than
the direct case – e.g., in the split case grounding an n-ary
operator over Σ results in order n|Σ| variables compared to
order |Σ|n in the direct case. Second, there are relatively
few constraints, such as frame axioms, conflict exclusion,
and that an action implies its precondition and effects, in the
compiled problems because these can be factored. For ex-
ample, precondition Move(A, B, C) → Clear(A) is writ-
ten Move[1](A)→ Clear(A). Due to these advantages, it
is more efficient to plan in a simply split encoding of a serial
planning problem than in its direct counterpart.

In the comparatively easier setting of parallel planning,
interference prevents the use of a simply split representation.
In particular, simple splitting is imprecise because variables
cannot generally be used to encode parallel executions of ac-
tions. For example, parallel execution of 2 non-conflicting
actions Move(A, B, C) and Move(D, E, F) interferes be-
cause it is represented by a conjunct of Move[1](A) ∧
Move[2](B)∧Move[3](C)∧Move[1](D)∧Move[2](E)∧
Move[3](F). This implies 6 additional instances of
Move corresponding to: Move(A, B, F), Move(A, E, C),
Move(A, E, F), Move(D, B, C), Move(D, B, F), and
Move(D, E, C). In summary, interference prevents the sim-
ply split representation of actions from being used for encod-
ings of parallel planning problems.

Splitting Actions Without Interference

Interference occurs when variables in a simply split rep-
resentation are imprecise in the parallel setting. We now
develop an interference free split representation called pre-
cisely split. Where a is an instantiation of an action with op-
erator name O, this representation requires a condition vari-
able OCa for every ground condition Ca ∈ Ca. The action a

2Ernst, Millstein, and Weld (1997) also devised an overloaded
variant of simple splitting. This is an important concept, however
irrelevant to this discussion.

283

then has a natural representation as conjunct:
∧

Ca∈Ca

OCa

For example, the blocks-world action Move(A, B, C) is
represented by the conjunct:

Move{ADD(Clear(B))} ∧ Move{PRE(On(A, B)), DEL(On(A, B))}∧

Move{PRE(Clear(C)),DEL(Clear(C))}∧

Move{PRE(Clear(A))} ∧ Move{ADD(On(A, C))}

Before presenting our encoding we sketch two conse-
quences of precise splitting. First, as required for any useful
lifted representation, every action is determined by a unique
conjunct. It follows that a precisely split representation can
be used to encode step-optimal serial planning in SAT. Sec-
ond, every parallel execution of actions is determined by a
unique conjunct over conditional variables, except where re-
dundant actions occur. In more detail, for any action a and
a set of non-conflicting actionsA so that a ∈ A, we say a is
redundant with respect to parallel execution of actionsA iff
at any state any execution ofA is indistinguishable from any
execution of A\a. Intuitively this type of redundancy oc-
curs when the conditions representing an action are a strict
subset of those representing a different set of actions. For
example, suppose that ψ1 and ψ2 are the unique conjuncts
representing two actions a1 and a2. Conjunct ψ1 ∧ψ2 could
imply three or more distinct actions whose representations
are given by conjuncts ψ1, ψ2, .., ψn, corresponding to dis-
tinct actions a1, a2, .., an. If this were the case, for i > 2,
actions ai are redundant with respect to parallel executions
a1, a2, ai.

In summary, our precisely split representation yields a
unique conjunct for every unique parallel execution of non-
conflicting actions. Hence, a precisely split representation
can be used to encode step-optimal parallel planning in SAT.

Compilation to SAT

We describe a compilation of the bounded planning problem
posed by an h-step plangraph into SAT.3 The result of com-
pilation is a conjunctive normal form (CNF) propositional
formula φ. Our encoding is constructive (and sound) in the
sense that any satisfying model of φ corresponds more-or-
less directly with a plan. We also have completeness because
φ is satisfiable iff a plan exists for the original bounded plan-
ning problem.

Below we give our compilation to SAT in terms of ax-
iom Schemata. Each individual Schema specifies how a
planning constraint from the plangraph is represented in φ.
The compilation makes use of the following propositional
variables. For each propositional fluent p occurring at step
t = 1, ..., h we have a variable pt.4 We write At for the set
of ground actions occurring at step t, Ct

a for the set of all
ground conditions associated with action at ∈ At, and Ct

for the union of ground conditions occurring at step t – i.e.,

3There is insufficient space to describe the plangraph here, thus
we assume familiarity with (Blum and Furst 1997).

4A fluent is a state proposition whose truth value can be modi-
fied by executing an action.

Ct ≡
⋃

at∈At Ct
a. For our compilation we have a condition

variable OCt for each Ct ∈ Ct. To indicate that Ct ∈ Ct
a for

variable OCt, we use the notation OCt
a.

In addition to the above variables, we also introduce
auxiliary condition variables when compiling mutex rela-
tions between instantiations of the same operator (see Intra-
operator mutex axioms, Schema 6). Copies of condition
variables, called condition copy variables, are introduced
when constraining parallel groundings of an operator (see
Intra-operator mutex axioms, Schema 7). Finally, we avoid
annotating variables with their time index if those follow
clearly from the context.

1. Start state and goal axioms: A unit clause containing
p0 occurs for every p ∈ s0. For each p ∈ G we have a unit
clause containing ph.

2. Precondition and postcondition axioms: This Schema
encodes action effects using the corresponding condition
variables. For each variable OCt we have the following con-
straint: ∧

PRE(p)∈Ct OCt → pt ∧∧
ADD(p)∈Ct OCt → pt+1 ∧∧
DEL(p)∈Ct OCt → ¬pt+1

3. Successor state axioms (i.e., frame axioms): These
constrain how the truth values of fluents change over suc-
cessive plan steps. For proposition pt, let make(pt) be the
set of conditions in Ct−1 containing an element of the form
ADD(p). Then for each pt, t > 0 we have:

pt → (pt−1 ∨
∨

Ct−1∈make(pt)

OCt−1)

This says that if p is true at step t, then either it was true
previously, or an action was executed with an add condition
that makes it true. For example, in a blocks-world domain
for On(A, B) we have a clause:

On(A, B)t→(On(A, B)t−1 ∨Move{ADD(On(A, B)t−1)})

4. Propositional mutex axioms: For every pair of state
propositions pt

1 and pt
2 that occur mutex in layer t of the

plangraph, we have a clause:

¬pt
1 ∨ ¬pt

2

5. Inter-operator mutex axioms: Schemata 2 and 4 pro-
hibit parallel instantiation of a, b ∈ A provided either

a. Schema 2 gives constraints of the form O1Ct
a → pt+1

1 and

O2C
t
b → ¬pt+1

1 ; or

b. Schema 2 gives constraints of the form O1Ct
a → pt

1 and
O2Ct

b → pt
2, and Schema 4 gives ¬pt

1 ∨ ¬pt
2.

Consequently, we do not have to enforce mutex between
conditions – and therefore between their corresponding ac-
tions – where this is already implied by Schemata 2 and 4.
In the remaining case we have mutex actions a, b ∈ A so
that in Schema 2 O1Ct

a → pt and O2Ct
b → ¬pt+1 occur.

Provided (O1 �= O2), we have the clause:

¬O1C
t
a ∨ ¬O2C

t
b

284

For example, in logistics O1Ct
a can be

Load{PRE(At(truck1, loc1))}t and O2Ct
b can be

Drive{PRE(At(truck1, loc1)),DEL(At(truck1, loc1))}t.

6. Intra-operator mutex axioms: We are again concerned
with enforcing mutex not already implied by Schemata 2 and
4. Unlike Schema 5, that expressed mutex between instan-
tiations of distinct operators, here we have mutex actions a
and b that instantiate the same operator O. Mutex between
these actions will be compiled in the context of mutex con-
ditions Ca and Cb according to the following rules:

a. Suppose either: (i) Ca = Cb, or (ii) there is an action
c with distinct conditions Cc and C′c so that Cc = Ca

and C′c = Cb. Situation i occurs in the blocks-world
for Move{PRE(On(A, B)),DEL(On(A, B))}, which
is responsible for the mutex relationship between
actions Move(A, B, C) and Move(A, B, D), and
Move(A, B, C) and Move(A, B, E), etc. Situation
ii does not occur in practice, however could occur
theoretically and is thus included here.

Direct compilation of mutex between Ca and Cb given the
above situations is not admissible. Thus, we represent
mutex between a and b using auxiliary condition vari-
ables that are generated as needed. We choose two such
variables OC′ and OC′′, and later enforce a → OC′ and
b → OC′′ in grounding support Schema 7. Thus, mutex
between a and b is expressed with the clause:

¬OC′ ∨ ¬OC′′

b. If the above case does not hold, mutex is expressed ac-
cording to Schema 5.

Auxiliary condition variables only appear in this Schema
and Schema 7. Thus, there are no pre- or post-conditions
associated directly with them. Moreover, in our implemen-
tation of the compilation, we generate a minimal number
of auxiliary condition variables given mutex relations are
processed sequentially. That is, we opportunistically re-use
auxiliary variables to encode more than one mutex relation
provided this does not cause legal parallel executions of ac-
tions to be forbidden.

7. Grounding support axioms: For each step t = 1, 2, .., h
we have constraints that ensure whole instances of opera-
tors are executed (in parallel) rather than individual con-
ditions. For example, consider a logistics problem with
two trucks T1 and T2 and three locations L1, L2, and
L3. If Drive{ADD(At(T1, L2))} is true, then we need
constraints ensuring all conditions associated with either
Drive(T1, L1, L2) or Drive(T1, L3, L2) are true. Those
conditions are given in Table 1 along with their associated
actions.

We develop our grounding support in terms of depen-
dency trees. Such a tree is defined for each condition that
contains a basic term of the form ADD(p).5 The tree is
rooted at a node labelled with the corresponding condition
OC – i.e., ADD(p) ∈ OC. Using the notation n for a tree

5Here the set of conditions includes auxiliaries added for
Schema 6 – i.e., if Schema 6 supposed a → OC

′ for an auxiliary
OC

′, then here C
′
∈ Ca.

ADD(At(T1,L2)) related conditions Ci of Drive Drive(t, l1, l2)

C0 := ADD(At(T1,L2)) (T1,L1,L2), (T1,L3,L2)

C1 := PRE(Road(L1,L2)) (T1,L1,L2), (T2,L1,L2)

C2 := PRE(Road(L3,L2)) (T1,L3,L2), (T2,L3,L2)

C3 := {PRE(At(T1,L1)), DEL(At(T1,L1))} (T1,L1,L2), (T1,L1,L3)

C4 := {PRE(At(T1,L3)), DEL(At(T1,L3))} (T1,L3,L2), (T1,L3,L1)

C5 := PRE(In-Service(T1)) (T1,L1,L2), (T1,L1,L3)

(T1,L2,L1), (T1,L2,L3)

(T1,L3,L1), (T1,L3,L2)

Table 1: Conditions and their associated actions from a lo-
gistics instance with trucks T1 and T2 and locations L1, L2,
and L3. The left column lists conditions that occur in an
action with Drive{ADD(At(T1, L2))}. The right column
gives instances of Drive associated with the condition.

�
��

�
��

C0

C1 C2

C4C3

�
��

�
��

C0

C∗
1

C2

C4C3

Corresponding constraints:-Restricted dependency tree

Dependency tree with condition copies Corresponding constraints:-

Omitting nodes: C5

C0 → C5

Compiling dependency tree:

C0 → C1 ∨ C2; C0 ∧ C1 → C3

C0 ∧ C2 → C4

Omitting nodes: C5

C0 → C5

Compiling dependency tree:

C0 → C∗
1
∨ C2; C0 ∧ C∗

1
→ C3

C0 ∧ C2 → C4; C∗
1
→ C1

Figure 1: For C0 in Table 1: (above) Restrictive dependency
tree, and (below) the same tree with a condition copy C∗1 .
The clauses derived from each tree are listed to their right.

node, we write prefix(n) for nodes in the root path of n,
parent(n) for the parent of n, children(n) for children
of n, and OCn for the condition that labels n. A node la-
belled OCn has a possible child for each ground condition
that it co-occurs with in a conjunct that represents execution
of whole instances of O. Where O has first-order conditions
C (i.e., C ∈ C), we choose actual children that only instan-
tiate, and that exhaust instantiations of, one C′ ∈ C. We
avoid loops by ensuring C′ is not from the label of a node in
prefix(n) ∪ n, and choose C′ that yields fewest children.
A node n is excluded if, for some condition OC→n there
is a dependency of the form OC→n → OCn where C→n

ranges over a superset of the argument variables in the range
of Cn. For example, such a dependency occurs in blocks-
world where:

Move{ADD(On(A, C))} →

Move{PRE(Clear(C)), DEL(Clear(C))}.

In excluding a node because of a dependency of the above
form, the constraint OC→n → OCn is included in our com-
pilation. Making these ideas concrete, the topmost tree of
Figure 1 is for condition Drive{ADD(At(T1, L2))} from
the logistics instance of Table 1.

Given a set of dependency trees for operator O, our
grounding support axioms are obtained by compiling each
node n into a clause of the form:

∧

nx∈{prefix(n)∪n\n0},

|children(parent(nx))|>1

OCnx
∧OCn0

→
∨

ny∈children(n)

OCny

285

Above, we write n0 for the root node. For exam-
ple, the top-right of Figure 1 gives the constraints
that are compiled from the restricted dependency
tree for Drive{ADD(At(T1, L2))}. As the name
of the tree suggests, these constraints are overly re-
strictive. In particular, in our logistics example we
must be able to execute Drive(T1, L3, L2) and
Drive(T2, L1, L2) in parallel without the condition
Drive{PRE(At(T1, L1)),DEL(At(T1, L1))}, and hence
action Drive(T1, L1, L2), being true. In order to relax the
constraints developed so far, we introduce the notion of a
copied condition. A tree node OCn can be labelled as being
a copied condition, written OC∗n, in which case we have the
additional condition copy variable OC∗n and the clause:

OC∗n → OCn

In compiling the tree to CNF, we use the condition copy
variable in place of the original condition. The bottom half
of Figure 1 gives the example where the level 2 occurrence
of C1 from Table 1 is copied for the tree rooted at C0.

Although the restrictiveness of the dependency trees de-
veloped thus far could be repaired by making every tree
node a condition copy, we now describe a two phase proce-
dure that introduces few copies while removing all spurious
restrictions. The first phase proceeds bottom-up from the
leaves to the root (i.e., a node is not processed until all its de-
scendants are), labelling a node n as copied if there is a par-
allel execution of actions whose precisely split representa-
tion includes all the conditionsprefix(n)∪n and excludes
the conditions in children(n). Formally, in processing
node n, where prefix(n) �= ∅ and children(n) �≡ ∅,
for ni ∈ {prefix(n) ∪ n} we compute the sets of actions
An(ni) defined as follows:

An(ni) := {a|a ∈ A, Cni
∈ Ca,

∀ny ∈ children(n), (Cny
/∈ Ca∨

(∃C∗ny
∧ ∃nz ∈ prefix(ny), Cnz

/∈ Ca))}

Above, ∃OC∗n is true iff n is labelled as a copy. If for all i
An(ni) are non-empty, then n is labelled as a copy.

Although the first phase is sufficient to make the con-
straints compiled from the resultant dependency trees logi-
cally correct, we perform a second top-down pass to remove
some redundant copies. We apply the same test to decide
if a node should be copied as in the first phase, however a
copied node is interpreted as a placeholder for the conjunct
of itself with the conditions in its root path – i.e., we suppose
OC∗n ≡

∧
ni∈prefix(n)∪n OCni

. Formally, in processing n

we compute sets A′
n(ni) for ni ∈ prefix(n) ∪ n so that,

A′
n(ni) ≡ A′

n(ni) if �C∗ni
, and otherwise:

A′
n(ni) := {a|a ∈ A,

nx ∈ {prefix(ni) ∪ ni}, Cnx
∈ Ca,

∀ny ∈ children(n), (Cny
/∈ Ca∨

(∃C∗ny
∧ ∃nz ∈ prefix(ny), Cnz

/∈ Ca))}

If A′
n(ni) is empty for some i then we retract the condition

copy label of n.
Having been weakened according to the two passes just

described, the modified dependency trees are compiled into

clauses that prevent partial executions of actions while sup-
porting all legal unique parallel executions of actions from
the plangraph.

Plan Extraction

For plan extraction we have that action a is executed at step
t iff OCt

a is true for all Ct
a ∈ Ct

a. It should be noted that
auxiliary conditions from Schema 6 can be safely ignored
for the purposes of plan extraction. Considering condition
copy variables introduced in Schema 7, for plan extraction
purposes we treat copies as if they were the condition from
which they are derived during compilation. Finally, be-
cause the plan extraction method just described often results
in many unnecessary actions being executed at each step,
in practice we remove an action a at step t of the plan if
that plan also includes actions a1, ..., ak at step t, so that
i ∈ 1, .., k ai �= a and Ct

a ⊆
⋃

i∈1,...,k Ct
ai

.

Experimental Results

We developed SOLE (Step-Optimal Lifted Encoding), a
SAT-based planner implemented in C++ that uses the above
encoding. We now discuss an experimental comparison of
SOLE with SATPLAN-06, one of the winners of the opti-
mal track at IPC-5. For our experiments we ran SATPLAN-
06 with the thin GRAPHPLAN-based encoding as that gave
the best results on the benchmark domains we consid-
ered. These include IPC-5 STORAGE, and TPP; IPC-4
PIPESWORLD; IPC-3 DEPOTS, DRIVERLOG, FREECELL,
ROVERS, SATELLITE, and ZENOTRAVEL; and IPC-1 LO-
GISTICS98, GRID, and GRIPPER. For both SOLE and
SATPLAN-06 we use the complete SAT solver RSAT (Pi-
patsrisawat and Darwiche 2007) as the underlying satis-
fiability procedure. RSAT won the gold medals for the
SAT+UNSAT and UNSAT problems of the 2007 Interna-
tional SAT Competition.6 Although we only discuss a com-
parison with SATPLAN-06 here, we did perform prelimi-
nary experimentation using MAXPLAN (Chen, Xing, and
Zhang 2007), finding it uncompetitive with SATPLAN-06
or indeed SOLE.7 All experiments were run on a cluster
of AMD Opteron 252 2.6GHz processors, each with 2GB
of RAM. All plans computed by SOLE, SATPLAN-06, and
MAXPLAN were verified by the Strathclyde Planning Group
plan verifier VAL.

The results of our experiments are summarised in Table 2
and Figure 2. Table 2 compares SOLE and SATPLAN-06
when executed using the ramp-up query strategy. For each
domain, there is one row for the hardest instance solved
by SOLE, and one row for the hardest problem solved by
SATPLAN-06. Here, we measure problem hardness in terms
of the amount of time it takes the solver to yield a solution.

6Since 2005, the majority of state-of-the-art DPLL SAT
solvers, including RSAT, have been based on MINISAT. These
MINISAT variants have dominated the crafted and industrial cat-
egories in recent SAT competitions as well as SAT-Races. In our
experiments RSAT demonstrated the best performance.

7We believe this was due to MAXPLAN requiring a hand crafted
version of the SAT solver MINISAT that is not competitive with
RSAT.

286

SOLE SATPLAN-06

Time (seconds) Time (seconds)

Problem h Total h − 1 h c v #a Total h − 1 h c v #a

DEPOTS-6 26 158.38 75.56 69.86 389268 83292 74 882.11 673.5 153.17 5311797 36527 78

DEPOTS-18 12 23.42 0.36 22.5 428712 110519 85 46.67 7.06 20.38 12355326 41981 82

DRIVERLOG-12 16 11.62 7.09 1.46 61691 21121 53 34.89 21.67 7.11 248447 14049 50

DRIVERLOG-17 13 2400.49 585.87 1777.45 277316 78401 83 Time out

FREECELL-2 8 0.34 0.15 0.16 36539 6727 18 7.22 3.34 3.5 977707 5306 22

FREECELL-5 16 738.08 86.06 423.02 233122 25890 41 Out of memory

GRID-1 14 0.02 - 0.02 35107 6925 14 0.08 - 0.08 173680 4317 16

GRID-2 25 12.30 2.70 6.72 530383 83481 28 76.77 19.77 15.12 17978961 54839 28

GRIPPER-4 19 26.88 11.65 0.33 11767 3099 29 85.25 58.21 0.36 34589 3088 31

GRIPPER-5 23 1998.38 452.52 1.82 18189 4445 35 Time out

LOGISTICS98-10 13 138.9 78.71 55.08 496595 93430 138 160.32 107.4 48.49 2516447 85297 164

LOGISTICS98-23 11 20.07 0.29 19.34 222829 47339 184 27.45 0.47 26.76 506775 38994 193

PIPESWORLD-9 11 112.06 47.11 47.94 670870 143433 19 804.21 446.98 289.88 11429167 28105 22

PIPESWORLD-12 16 1424.5 844.07 359.86 408456 122958 28 Time out

ROVERS-21 16 338.17 295.58 12.12 440662 90867 91 Time out

ROVERS-26 15 117.81 89.84 2.26 310187 62032 120 1676.03 1157.53 8.67 16818595 57775 90

SATELLITE-12 14 56.37 31.48 1.41 140209 50940 56 163.33 86.84 1.8 1734497 53649 63

SATELLITE-13 13 54.95 19.94 2.41 180070 64790 68 79.08 35.54 10.52 2663769 67102 71

STORAGE-13 18 42.54 21.14 2.61 61016 10716 18 148.41 69.66 11.02 362345 7369 20

STORAGE-16 11 1766.34 1609.16 4.25 107223 35727 26 Time out

TPP-21 12 3163.47 3027.91 135.56 239141 58069 154 Time out

TPP-27 11 575.58 0.89 574.68 382160 94433 205 189.6 73.12 116.48 3963639 65235 188

ZENOTRAVEL-15 7 415.14 407.35 4.69 98097 14415 60 59.92 41.93 15.16 8956087 33259 63

ZENOTRAVEL-16 7 Time out 600.2 42.4 544.28 29994624 64078 53

Table 2: h is the step-optimal horizon for each problem. Respectively, columns “Total”, h− 1, and h report the time in seconds
that RSAT spent solving: all CNFs for a problem, the CNF at h − 1, and the CNF at h. Respectively, columns c and v give
#clauses and #variables in the CNF at h. #a is #actions in the solution plan. For each problem, RSAT was timed out after 3600.

If both solvers find the same problem hardest, then we also
include a row for the penultimate hardest for each solver.
Using the same experimental data as for Table 2, Figure 2
plots the cumulative number of instances solved over time
by each planning system, supposing invocations of the sys-
tems on problem instances were made in parallel. For Fig-
ure 2 we only included data for instances that take one of the
planners over 5 seconds to solve.

Summarising the results from Table 2 and Figure 2, ex-
cept for the ZENOTRAVEL domain, where individual actions
have an unusually small number of conditions, SATPLAN-
06 generally requires fewer variables than SOLE to encode
a problem. This disparity is due to the large number of con-
dition copies we require to soundly represent grounding sup-
port constraints. For example, in the PIPESWORLD domain
condition copy variables accounted for as much as 84% of
the total number of variables and in the DEPOTS domain
they accounted for as much as 68%. In addition the aux-
iliary condition variables in SOLE typically accounted for
~1− 3% of the total number of variables. It should be noted
that condition copy variables do not have a significant im-
pact on the performance of DPLL procedures. Intuitively
this is because a copy C∗n represents the execution of at least
one in a (typically) small set of actions whose precisely split
representations include Cn. More technically, a copy C∗n im-
plies the original Cn in Schema 7. Consequently, if a DPLL
branches on either C∗n or Cn, it will not have to branch on the

other due to the application of unit propagation. Also, even
though it is not theoretically always the case (see ZENO-
TRAVEL for example), in practice the vast majority of as-
signments to copies explored by DPLL are inferred from an
assignment to conditions using unit propagation, a compu-
tationally cheap procedure.

Despite requiring more variables, SOLE outperforms
SATPLAN-06 in all benchmark domains tested except for
TPP and ZENOTRAVEL. In these two domains, grounding
support constraints (Schema 7) comprise the overwhelm-
ing majority of clauses for SOLE. We find that complicated
grounding support greatly impacts the performance of RSAT

when refuting plan existence given an inadequate number of
steps. Examining Figure 2 we have that SOLE solves more
“interesting” problems given our experimental timeout, and
indeed scales better than SATPLAN-06. Moreover, SOLE

does not incur any cost in terms of the number of actions in
solution plans. Indeed, the number of actions in plans pro-
duced by SOLE is on a par with SATPLAN-06.

Comparing in terms of compactness of SAT representa-
tion of the bounded problems, SOLE dominates SATPLAN-
06. The overwhelming majority of clauses generated by
SATPLAN-06 encode action mutex. The relative compact-
ness of SOLE follows because we factor mutex relations be-
tween actions. Indeed, the main benefit of our precisely split
action representation is factoring. Because of this, compared
to direct encodings SOLE uses significantly fewer pre/post-

287

Figure 2: The number of “interesting” problems solved in
parallel after a given planning time. Interesting problems are
those which take at least one approach longer than 5 seconds.

condition and mutex clauses, all expressed in 2-SAT, and
usually vastly shorter successor state clauses – i.e., succes-
sor state clauses are expressed according to the small set of
conditions (resp. large set of actions) that alter a fluents
truth value. Quantifying this benefit, in problem DEPOTS-
18, SATPLAN-06 uses ~12.1M clauses to encode action mu-
tex, whereas SOLE uses ~293k clauses to encode both mutex
(Schema 6) and grounding restrictions (Schema 7).

A deeper consequence of precise splitting results form
factored conflict clauses learnt by RSAT. In particular,
RSAT learns conflict between conditions given the SOLE

encoding of the problem, whereas it has to learn conflict be-
tween individual actions in the SATPLAN-06 setting. Due to
factoring, the decision procedure RSAT is usually more effi-
cient given SOLE encodings because: (1) we have relatively
few mutex constraints, and (2) because RSAT is required to
learn and exploit far fewer conflict clauses.

Concluding Remarks

In the spirit of leveraging advances in general-purpose au-
tomated reasoning in a planning setting, we developed a
compilation of step-optimal planning problems into propo-
sitional SAT formulae amenable to off-the-shelf SAT solu-
tion methods. Whereas previous approaches in this direc-
tion used direct representations of actions, we develop the
notion of a precisely split representation of actions that re-
sults in more compact encodings of planning in SAT, and a
more scalable and efficient SAT-based planning procedure
over the state-or-the-art. We perform an experimental evalu-
ation, and find that compactness chiefly derives from having
a factored representation of mutex relations between actions.
The gains in scalability and efficiently in precise splitting
essentially follow from compactness and factoring. We also
find that clause learning techniques implemented in modern
decision procedures benefit from having factored represen-
tation of actions, resulting in further efficiency gains.

The most pressing item for future work is to examine
the benefits of our compact representation for optimal plan-
ning using more advanced query strategies (Streeter and
Smith 2007; Rintanen 2004), and using a ramp-down query

strategy in the CRICKET setting (Ray and Ginsberg 2008).
Further forward, we should explore the benefits of pre-
cisely split representations of actions for fixed horizon cost-
optimal planning, and for probabilistic planning.

Acknowledgements: NICTA is funded by the Australian
Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Ex-
cellence program. This work was also supported by EC FP7-
IST grant 215181-CogX.

References

Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence (90):281–300.

Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance
mutual exclusion for propositional planning. In Proc. IJ-
CAI.

Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encoding
planning problems in nonmonotonic logic programs. In
Proc. ECP.

Ernst, M.; Millstein, T.; and Weld, D. S. 1997. Automatic
SAT-compilation of planning problems. In Proc. IJCAI.

Giunchiglia, E.; Massarotto, A.; and Sebastiani, R. 1998.
Act, and the rest will follow: Exploiting determinism in
planning as satisfiability. In Proc. AAAI.

Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. ECAI.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI.

Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In Abstracts IPC-05.

Kautz, H. A. 2006. Deconstructing planning as satisfiabil-
ity. In Proc. AAAI.

Nabeshima, H.; Soh, T.; Inoue, K.; and Iwanuma, K. 2006.
Lemma reusing for SAT based planning and scheduling. In
Proc. ICAPS.

Pipatsrisawat, K., and Darwiche, A. 2007. Rsat 2.0: SAT
solver description. Technical Report D–153, Automated
Reasoning Group, Computer Science Department, UCLA.

Ray, K., and Ginsberg, M. L. 2008. The complexity of
optimal planning and a more efficient method for finding
solutions. In Proc. ICAPS.

Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.

Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In Proc. ECAI.

Rintanen, J. 2008. Planning graphs and propositional
clause learning. In Proc. KR.

Robinson, N.; Gretton, C.; Pham, D.-N.; and Sattar, A.
2008. A compact and efficient SAT encoding for planning.
In Proc. ICAPS.

Streeter, M., and Smith, S. 2007. Using decision proce-
dures efficiently for optimization. In Proc. ICAPS.

Wehrle, M., and Rintanen, J. 2007. Planning as satisfiabil-
ity with relaxed e-step plans. In Proc. Australia AI.

288

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

