
Suboptimal and Anytime Heuristic Search on Multi-Core Machines

Ethan Burns and Seth Lemons and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

eaburns, seth.lemons, ruml at cs.unh.edu

Rong Zhou
Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA
rzhou at parc.com

Abstract

In order to scale with modern processors, planning algorithms
must become multi-threaded. In this paper, we present paral-
lel shared-memory algorithms for two problems that under-
lie many planning systems: suboptimal and anytime heuris-
tic search. We extend a recently-proposed approach for par-
allel optimal search to the suboptimal case, providing two
new pruning rules for bounded suboptimal search. We also
show how this new approach can be used for parallel anytime
search. Using temporal logic, we prove the correctness of
our framework, and in an empirical comparison on STRIPS
planning, grid pathfinding, and sliding tile puzzle problems
using an 8-core machine, we show that it yields faster search
performance than previous proposals.

Introduction

It is widely anticipated that future microprocessors will not
have faster clock rates, but rather more computing cores per
chip. Tasks for which there do not exist effective paral-
lel algorithms will suffer a slowdown relative to total sys-
tem performance. Many modern AI planning systems are
based upon suboptimal or anytime heuristic search. In this
paper, we develop parallel algorithms for these important
problems.

In a best-first heuristic search, two sets of nodes are main-
tained: open and closed. Open contains the search frontier,
nodes that have been generated but not yet expanded. In
A*, open nodes are sorted by f(n) = g(n) + h(n). Closed
contains all previously expanded nodes, allowing the search
to detect duplicated states in the search space and avoid ex-
panding them multiple times. The main challenge in par-
allelizing best-first search is avoiding contention between
threads when accessing the open and closed lists. We will
use a technique called Parallel Best-NBlock-First (PBNF),
originally demonstrated by Burns et al. (2009) for paralleliz-
ing A*. As we discuss in detail below, PBNF requires a
many-to-one abstraction function that maps search states to
abstract nodes called nblocks. The sparse connectivity of
this abstract graph is used to divide labor among threads
without requiring frequent locking.

We make three central contributions. First, we provide a
proof of correctness for the PBNF framework, demonstrat-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing its liveness and completeness in the general case. Sec-
ond, we show how to adapt PBNF for bounded suboptimal
search, quickly finding w-admissible solutions (within a fac-
tor of w of optimal). We provide two new pruning criteria
for parallel suboptimal search and prove that they retain w-
admissibility. Third, we demonstrate how suboptimal PBNF
leads naturally to an effective anytime search algorithm. Our
new algorithms are empirically compared to serial and al-
ternative parallel algorithms on a dual quad-core Intel ma-
chine using three benchmark domains: STRIPS planning,
grid pathfinding, and the sliding tile puzzle. We find that
weighted and anytime PBNF surpass alternative proposals,
achieving substantial speed-up over serial search with an ad-
vantage that increases with problem difficulty.

Background

There have been several proposed approaches to parallel
heuristic search. Parallel Retracting A* (PRA*) (Evett et
al. 1995) attempts to avoid contention by assigning separate
open and closed lists to each thread. A hashing scheme is
used to assign nodes to the appropriate thread when they are
generated. (Full PRA* also includes a retraction scheme for
bounded-memory operation; we ignore that feature in this
paper.) Burns et al. (2009) increased the performance of
this method by using an abstraction function before hashing
in order to reduce the connectivity of the communication
graph—they call this abstraction-based algorithm APRA*.
Note that each thread needs a synchronized message queue
that other threads can add nodes to. While this is less of a
bottleneck than having a single shared open list, we will see
that it can still be expensive.

Best-First PSDD

Zhou and Hansen (2007) parallelized breadth-first heuristic
search (Zhou and Hansen 2006b) using a scheme they call
parallel structured duplicate detection (PSDD). This algo-
rithm uses an abstraction function to create an abstract graph
of nodes that are images of the nodes in the state space. If
two states are successors in the state space, then their im-
ages are successors in the abstract graph. We use the terms
‘abstract node’ and ‘nblock’ interchangeably. Each nblock
has its own open and closed lists. Two nodes representing
the same state s will map to the same nblock b. When we
expand s, its children can map only to b’s successors in the

42

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



1. while there is an nblock with open nodes
2. lock; b← best free nblock; unlock
3. while b is no worse than the best free nblock or
4. we’ve done fewer than m expansions
5. n← best open node in b
6. if f(n) > f(incumbent), prune all open nodes in b
7. else if n is a goal
8. if f(n) < f(incumbent)
9. incumbent← n
10. else for each child c of n
11. insert c in the open list of the appropriate nblock

Figure 1: A sketch of the PBNF search framework.

abstract graph. These nblocks are called the duplicate de-
tection scope of b because they are the only nblocks whose
open and closed lists need to be checked for duplicate states
when generating the children of nodes in b. PSDD takes ad-
vantage of the fact that nblocks whose duplicate detection
scopes are disjoint can be expanded in parallel without any
locking.

An nblock b is considered to be free for expansion iff none
of its successors are being used. Free nblocks are found by
explicitly tracking σ(b), the number of nblocks among their
successors that are in use by another thread. An nblock can
only be acquired when its σ = 0. PSDD only uses a single
lock, controlling manipulation of the abstract graph, and it
is only acquired by threads when finding a new free nblock
to search.

PSDD is based on breadth-first search and cannot exploit
heuristic guidance unless a tight upper bound is available.
Burns et al. (2009) present an adaptation of PSDD to best-
first search called best-first PSDD (BFPSDD) which outper-
formed standard PSDD in all domains which were tested.
The search is divided into f value layers, and in each thread
of the search, only the nodes in the current layer in an nblock
are searched. If no more nblocks have nodes in this layer,
all threads synchronize and then progress to the next layer.
To ensure that there are a sufficient number of nodes in each
layer to outweigh the synchronization overhead, at least m
nodes are expanded before abandoning a non-empty nblock.
Also, when populating the list of free nblocks for each layer,
at least k nblocks are added, where k is four times the num-
ber of threads. With these enhancements, threads may ex-
pand nodes with f values greater than that of the current
layer. Because the first solution found may not be optimal,
search continues until all remaining nodes are pruned by the
incumbent solution.

Parallel Best-NBlock-First (PBNF)

Ideally, all threads would be busy expanding nblocks that
contain nodes with the lowest f values. PBNF approxi-
mates this by maintaining a heap of free nblocks ordered on
their best f value. A thread will search its acquired nblock
as long as it contains nodes that are better than those of
the nblock at the front of the heap (or until m nodes have
been expanded). There is no layer synchronization. Figure
1 shows pseudo-code, indicating the single lock required.
While incumbent information is shared between threads,
atomic updates can be used to avoid the addition of a sec-

ond lock.
Our implementation attempts to reduce the time a thread

is forced to wait on a lock by using try lock whenever
possible. Rather than sleeping if a lock cannot be acquired,
try lock immediately returns failure. This allows a thread
to continue expanding its current nblock if the lock is busy.
As with the minimum number of expansions, this optimiza-
tion can introduce ‘speculative’ expansions that would not
have been performed in a serial best-first search.

The greedy free-for-all order in which basic PBNF threads
acquire free nblocks can lead to livelock in domains with
infinite state spaces. Because threads can always acquire
new nblocks without waiting for all open nodes in a layer to
be expanded, it is possible that the nblock containing the
goal will never become free. We have no assurance that
all nblocks in its duplicate detection scope will be unused
at the same time. To fix this, Burns et al. (2009) devel-
oped an enhanced version called ‘Safe PBNF’ that uses a
method called ‘hot nblocks’, where threads altruistically re-
lease their nblock if they are interfering with a better nblock.
The interference scope of an nblock b is those nblocks
whose duplicate detection scopes overlap with b’s. In Safe
PBNF, whenever a thread checks the heap of free nblocks, it
also ensures that its nblock is better than any of those in its
interference scope. If it finds a better one, it flags it as ‘hot.’
Any thread that finds a hot nblock in its interference scope
releases its nblock in an attempt to free the hot nblock. For
each nblock b, σh(b) tracks the number of hot nblocks in b’s
interference scope. If σh(b) �= 0, b is removed from the heap
of free nblocks. This ensures that a thread will not acquire
an nblock that is preventing a hot nblock from becoming
free.

Correctness of PBNF
Given the complexity of parallel shared-memory algorithms,
it can be reassuring to have proofs of correctness. Because
we will be using the PBNF framework, we will verify that
PBNF exhibits various desirable properties.

Soundness Soundness holds trivially because no solution is
returned that does not pass the goal test.

Deadlock There is only one lock in PBNF and the thread
that currently holds it never attempts to acquire it a second
time, so deadlock cannot arise.

Livelock Burns et al. (2009) used a model checker to find
an example of livelock in plain PBNF. They were unable to
find an example of livelock in Safe PBNF when using up to
three threads and 12 nblocks in an undirected ring-shaped
abstract graph and up to three threads and eight nblocks in
a directed graph. This leaves open the question of whether
livelock can occur in other situations. We have modeled Safe
PBNF in the temporal logic TLA+ and proved by hand that
a hot nblock will eventually become free regardless of the
number of threads or the abstract graph. Because the full
proof in TLA+ notation is eight pages long, we present an
English summary. First, we need a helpful lemma:

Lemma 1 If an nblock n is hot, there is at least one other
nblock in its interference scope that is in use by a thread.
Also, n is not interfering with any other hot nblocks.

43



Proof: Initially no nblocks are hot. This can change only
while a thread searches or when it releases an nblock. Dur-
ing a search, a thread can only set n to hot if it has acquired
an nblock m that is in the interference scope of n. Addi-
tionally, a thread may only set n to hot if it does not create
any interference with another hot nblock. During a release,
if n is hot, either the final acquired nblock in its interference
scope is released and n is no longer hot, or n still has at least
one acquired nblock in its interference scope. �

Now we are ready for the key theorem:

Theorem 1 If an nblock n becomes hot, it will eventually
be added to the free list and will no longer be hot.

Proof: We will show that the number of acquired nblocks in
the interference scope of a hot nblock n is strictly decreas-
ing. Therefore, n will eventually become free.

Assume an nblock n is hot. By Lemma 1, there is a thread
p that has an nblock in the interference scope of n, and n is
not interfering with or interfered by any other hot nblocks.
Assume that a thread q does not have an nblock in the inter-
ference scope of n. There are four cases:
1. p searches its nblock. p does not acquire a new nblock
and therefore the number of nblocks preventing n from be-
coming free does not increase. If p sets an nblock m to hot,
m is not in the interference scope of n by Lemma 1. p will
release its nblock after it sees that n is hot (see case 2).
2. p releases its nblock and acquires a new nblock m from
the free list. The number of acquired nblocks in the inter-
ference scope of n decreases by one as p releases its nblock.
Since m, the new nblock acquired by p, was on the free list,
it is not in the interference scope of n.
3. q searches its nblock. q does not acquire a new nblock
and therefore the number of nblocks preventing n from be-
coming free does not increase. If q sets an nblock m to hot,
m is not in the interference scope of n by Lemma 1.
4. q releases its nblock (if it had one) and acquires a new
nblock m from the free list. Since m, the new nblock ac-
quired by q, was on the free list, it is not in the interference
scope of n and the number of nblocks preventing n from
becoming free does not increase. �

We can now prove the progress property that we really
care about:

Theorem 2 A node n with minimum f value will eventually
be expanded.

Proof: We consider n’s nblock. There are three cases:
1. The nblock is being expanded. Because n has minimum
f , it will be at the front of open and will be expanded.
2. The nblock is free. Because it holds the node with min-
imum f value, it will be at the front of the free list and se-
lected next for expansion, reducing to case 1.
3. The nblock is not on the free list because it is in the
interference scope of another nblock that is currently being
expanded. When the thread expanding that nblock checks
its interference scope, it will mark the better nblock as hot.
By Theorem 1, we will eventually reach case 2. �

Completeness This follows easily from liveness:

Corollary 1 If the heuristic is admissible or the search
space is finite, a goal will be returned if one is reachable.

Proof: If the heuristic is admissible, we inherit the com-
pleteness of serial A* by Theorem 2. Otherwise, note that
nodes are only re-expanded if their g value has improved,
and this can happen only a finite number of times in a finite
search space, so a finite number of expansions will suffice to
exhaust the search space. �

Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for
a solution that is not optimal. Suboptimal solutions can of-
ten be found much more quickly and with lower memory
requirements. Weighted A*, a variant of A* that searches
on f ′(n) = g(n) + w · h(n), is probably the most popular
suboptimal search. It guarantees that, for a weight w, the
solution returned will be w-admissible.

Pruning Poor Nodes

It is possible to modify APRA*, BFPSDD, and PBNF to use
weights to find suboptimal solutions, but, as in the optimal
case, parallelism implies that a strict f ′ search order will not
be followed and we must prove the quality of our solution by
either exploring or pruning all nodes. Thus finding effective
pruning rules is critical for performance.

Let s be the current incumbent solution and w the subop-
timality bound. A node n can clearly be pruned if f(n) ≥
g(s). But according to the following theorem, we only need
to retain n if it is on the optimal path to a solution that is a
factor of w better than s. This is a much stronger rule.

Theorem 3 We can prune a node n if w ·f(n) ≥ g(s) with-
out sacrificing w-admissibility.

Proof: If the incumbent is w-admissible, we can safely
prune any node, so we consider the case where g(s) >
w · g(opt), where opt is an optimal goal. Note that without
pruning, there always exists a node p in some open list (or
being generated) that is on the best path to opt. By the ad-
missibility of h and the definition of p, w·f(p) ≤ w·f∗(p) =
w · g(opt). If the pruning rule discards p, that would imply
g(s) ≤ w · f(p) and thus g(s) ≤ w · g(opt), which contra-
dicts our premise. Therefore, an open node leading to the
optimal solution will not be pruned if the incumbent is not
w-admissible. Therefore a search that does not terminate
until open is empty will not terminate until the incumbent is
w-admissible. �

We make explicit a useful corollary:

Corollary 2 We can prune a node n if f ′(n) ≥ g(s) without
sacrificing w-admissibility.

Proof: Clearly w · f(n) ≥ f ′(n), so Theorem 3 applies. �

With this corollary, we can use a pruning shortcut: when the
open list is sorted on increasing f ′ and the node at the front
has f ′ ≥ g(s), we can prune the entire open list.

Pruning Duplicate Nodes

When searching with an inconsistent heuristic, as in
weighted A*, it is possible for the search to find a better
path to an already-expanded state. Likhachev, Gordon, and
Thrun (2003) proved that, provided the heuristic is consis-
tent, weighted A* will still return a w-admissible solution if

44



these duplicate states are pruned during search. This ensures
that each state is expanded at most once during the search.
Unfortunately, their proof depends on expanding in exactly
best-first order, which is violated by several of the parallel
search algorithms we consider here. However, we can still
prove that some duplicates can be dropped. Consider the
expansion of a node n that re-generates a duplicate state d
that has already been expanded. We propose the following
weak duplicate dropping criterion: the new copy of d can be
pruned if the old g(d) ≤ g(n)+w · c∗(n, d), where c∗(n, d)
is the cost of the path from n to d.

Theorem 4 Even if the weak dropping rule is applied, there
will always be a node p from an optimal solution path on
open such that g(p) ≤ w · g∗(p).

Proof: We proceed by induction over iterations of search.
The theorem clearly holds after expansion of the initial
state. For the induction step, we note that node p can
only come off open by being expanded. If its child pi

that lies along the optimal path is added to open, the
theorem holds. The only way it won’t be is if there
exists a previous duplicate copy p′

i
and the pruning rule

holds, i.e., g(p′
i
) ≤ g(pi−1) + w · c∗(pi−1, pi). By the

inductive hypothesis, g(pi−1) ≤ w · g∗(pi−1), and by
definition g∗(pi−1) + c∗(pi−1, pi) = g∗(pi), so we have
g(p′

1
) ≤ w · g∗(p′

1
). �

Note that the use of this technique prohibits using the
global minimum f value as a lower bound on the optimal
solution’s cost, because g values can now be inflated by up
to a factor of w. However, if s is the incumbent and we
search until the global minimum f ′ value is ≥ g(s), as in a
serial weighted A* search, then w-admissibility is assured:

Corollary 3 If the minimum f ′ value is ≥ g(s), where s is
the incumbent, then we have g(s) ≤ w · g∗(opt)

Proof: Recall node p from Theorem 4. g(s) ≤ f ′(p) =
g(p) + w · h(p) ≤ w · (g∗(p) + h(p)) ≤ w · g∗(opt). �

Algorithms

We implemented and tested weighted versions of the parallel
search algorithms discussed above: wAPRA*, wBFPSDD,
and wPBNF. All algorithms prune nodes based on the w · f
criterion presented in Theorem 3 and prune entire open lists
on f ′ as in Corollary 2. Additionally, in the grid pathfinding
domain all parallel algorithms drop duplicate nodes using
the criteria of Theorem 4. Search terminates when all nodes
have been pruned by the incumbent solution.

We also considered an additional algorithm that has not
been evaluated in prior work. There has been much work on
complex data structures that retain correctness under concur-
rent access. We implemented a simple parallel A* search,
which we call Lock-free A*, in which all threads access the
same concurrent priority queue and concurrent hash table.
We implemented the concurrent priority queue data struc-
ture of Sundell and Tsigas (2003). For the closed list, we
used a concurrent hash table data structure developed by
Click (2008) and implemented by Dybnis (2009)

Evaluation

We have implemented and tested the parallel bounded sub-
optimal heuristic search algorithms discussed above on three
different benchmark domains: grid pathfinding, the sliding
tile puzzle, and STRIPS planning. The algorithms were pro-
grammed in C++ using the POSIX threading library and
run on dual quad-core Intel Xeon E5320 1.86GHz proces-
sors with 16Gb RAM, except for the planning results, which
were written in C and run on a dual quad-core Intel Xeon
X5450 3.0GHz processors limited to roughly 2GB of RAM.
For grids and sliding tiles, we used the jemalloc library
(Evans 2006), a special multi-thread aware malloc imple-
mentation, instead of the standard glibc 2.7 malloc, because
the latter is known to scale poorly above 6 threads. We
configured jemalloc to use 32 memory arenas per CPU. In
planning, a custom memory manager was used that is also
thread-aware and uses a memory pool for each thread.

For the following experiments we show the performance
of each algorithm with its best parameter settings (e.g., mini-
mum number of expansions and abstraction granularity) that
we determined by experimentation. On grids and sliding
tiles, nblock data structures are created lazily, so only the
visited part of abstract graph needs to fit in memory.

STRIPS Planning We used a domain-independent op-
timal sequential STRIPS planner employing regression
and the max-pair admissible heuristic of Haslum and
Geffner (2000). The abstraction function is generated dy-
namically on a per-problem basis and, following Zhou and
Hansen (2007), this time was not taken into account in
the solution times presented for these algorithms. The ab-
straction function is generated by greedily searching in the
space of all possible abstraction functions (Zhou and Hansen
2006a). Because the algorithm needs to evaluate one candi-
date abstraction for each of the unselected state variables, it
can be trivially parallelized by having multiple threads work
on different candidate abstractions.

Figure 2 shows the performance of the parallel search
algorithms in terms of speed-up over serial weighted A*.
wAPRA* was not able to solve some problems due to ex-
cessive memory consumption (marked M in the table). It
also exhibited the poorest speed-up. All algorithms had
better speed-up at 7 threads than at 2. wPBNF seems to
have the largest and most consistent speed-up. Its perfor-
mance is sometimes slower than weighted A* (speed-up
< 1) on short-running problems, but is generally larger for
the more difficult instances or lower weights. On one prob-
lem, freecell-3, serial weighted A* performs much worse as
the weight increases. Interestingly, wPBNF and wBFPSDD
do not show this pathology, and thus record speed-ups of up
to 1,700 times.

Grid Pathfinding We tested on grids 2000 cells wide by
1200 cells high, with the start in the lower left and the goal
in the lower right. Cells are blocked with probability 0.35.
We tested three different action models: 1) Four-way unit
cost, in which each move has the same cost. 2) Four-way life
cost, which captures the intuition that goal are often quickly
achieved if cost is no object. Moves in the life cost model
have cost equal to the row where the move was performed:

45



wPBNF wBFPSDD wAPRA*
1.5 2 3 5 1.5 2 3 5 1.5 2 3 5

logistics-8 2.68 2.27 4.06 1.00 1.86 2.12 1.14 0.86 1.01 0.98 0.64 1.14
blocks-16 0.93 0.54 0.48 1.32 0.34 0.19 0.16 2.42 1.16 0.82 2.42 0.25
gripper-7 2.01 1.99 1.99 2.02 1.91 1.89 1.86 1.84 0.77 0.76 0.76 0.75
satellite-6 2.02 1.53 5.90 3.04 1.71 2.22 7.50 2.80 0.71 0.84 0.67 0.79
elevator-12 2.02 2.08 2.21 2.15 1.76 1.76 1.81 2.18 0.70 0.68 0.72 0.73

2
T

h
re

ad
s

freecell-3 2.06 0.84 8.11 10.7 1.42 0.54 16.9 55.8 1.12 1.18 0.84 1.03
depots-13 2.70 4.49 0.82 0.81 1.48 1.58 0.18 0.16 0.74 1.12 0.32 0.29
driverlog-11 0.85 0.19 0.69 0.62 0.85 0.11 0.19 0.21 0.86 0.33 0.20 0.19
gripper-8 2.06 2.04 2.08 2.07 2.00 1.96 1.97 1.98 0.61 M M M

logistics-8 7.10 6.88 1.91 0.46 3.17 3.59 0.11 0.1 3.17 2.77 2.23 1.02
blocks-16 2.87 0.7 0.37 1.26 0.49 0.22 0.01 0.32 2.67 1.06 1.02 0.13
gripper-7 5.67 5.09 5.07 5.18 4.33 4.28 4.14 4.05 1.76 1.75 1.74 1.80
satellite-6 4.42 2.85 2.68 5.89 3.13 2.31 3.01 1.05 1.10 0.96 1.18 0.97
elevator-12 6.32 6.31 7.10 3.68 3.78 4.04 3.95 0.94 0.96 1.03 1.01 1.01

7
T

h
re

ad
s

freecell-3 7.01 2.31 131 1721 2.12 0.70 44.5 137 2.48 0.76 2.93 2.96
depots-13 3.12 1.80 0.87 0.88 1.88 1.87 0.13 0.12 M 2.58 0.12 0.11
driverlog-11 1.72 0.43 0.67 0.42 1.26 0.21 0.30 0.23 M M M M
gripper-8 5.85 5.31 5.40 5.44 4.62 4.55 4.55 4.51 M M M M

Figure 2: Speed-up over serial weighted A* on STRIPS planning problems for various weights.

moves at the top of the grid are free, moves at the bottom
cost 1200. This strongly differentiates between the shortest
path, which takes expensive moves directly to the goal, and
the cheapest path, which prefers deviations toward the top of
the grid, where moves are cheaper. 3) Eight-way unit cost,
where horizontal and vertical moves have cost one, but diag-

onal movements cost
√

2. The real-valued costs and abun-
dance of different paths to the same state make the domain
very different from the previous two.

The abstraction function we used maps blocks of adjacent
cells to the same abstract state, forming a coarser abstract
grid overlaid on the original space. A 10,000 nblock ab-
straction was used, and the min expansions parameter was
set to 64. Duplicate states that have already been expanded
are dropped in the serial wA* algorithm, as discussed by
Likhachev, Gordon, and Thrun (2003).

Results are presented in the upper portion of Figure 3,
again in terms of speed-up versus serial weighted A*. In
contrast to Figure 2, columns represent number of threads
and rows represent various weights. In general, the parallel
algorithms show increased speed-up as threads are added,
and decreased speed-up as the weight is increased. All al-
gorithms have difficulty in the unit 8-way problems because
they cannot as many drop duplicates as serial wA*. wPBNF
is consistently the fastest algorithm. Lock-free A* is not
shown in the table—its fastest speed-up on unit 4-way grids
was 0.45 (more than twice the time of serial).

Sliding Tile Puzzles The sliding tiles puzzle is a common
domain for benchmarking heuristic search algorithms. We
used forty-three of the easiest Korf 15-puzzle instances that
were solvable by A* in 15GB of memory. We did not use
duplicate dropping in this domain, as we found it made the
searches perform worse. These problems do not have as
many duplicates as grids and have fewer paths to the goal.
An abstraction that takes into account the blank, 1-tile, 2-
tile was used, yielding 3,360 nblocks. The min expansions
parameter was set to 32.

Sliding Tiles: wPBNF v.s wA*

ti
m

es
 fa

st
er

 th
an

 w
A

* 
lo

g1
0

1

0

-1

wA* expansions log10
6543

wpbnf-1.4
wpbnf-1.8

Wwpbnf-2.0
wpbnf-3.0

Swpbnf-5.0

W

W

W

W

W

W

W

W

WW

W

W

W

W

WW

W

W

W

W
W

W

W

W

W
W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W W W

W

W

W

W

WW W

W

W

W
W

W

S

S

S

S

S

S

S
S

S

S

S
S

S

S

SS

S

S

S

S

S S

S

S

S

S

S

S

S

SS

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S

S

S
SS

S

S

S

S

SS

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Figure 4: wPBNF speed-up over wA* as a function of prob-
lem difficulty.

Results are presented in the lower portion of Figure 3.
We see that all of the algorithms lose their advantage over
wA* as weights increase, presumably because the overhead
of threads and contention is too great compared to the low
number of nodes expanded. wPBNF consistently performs
better than wPRA* or wBFPSDD. Also, wPBNF and wBF-
PSDD consistently improve in performance as threads are
added for all but the largest weight values. wPRA* increases
at first, but its performance drops off after a few threads.

To confirm our understanding of the effect of problem size
on speed-up, Figure 4 shows a comparison of wPBNF to
weighted A* on all 100 Korf 15-puzzles. Each point rep-
resents a run on one instance at a particular weight, the y
axis represents wPBNF speed-up relative to serial wA* (on
a log scale), and the x axis represents the number of nodes
expanded by wA* (also on a log scale). Different glyphs
represents different weight values used for both wPBNF and

46



wPBNF wBFPSDD wAPRA*
w 1 2 4 5 8 1 2 4 5 8 1 2 4 5 8

1.1 0.83 1.49 2.69 3.14 4.04 0.87 1.31 1.97 2.21 2.57 0.93 1.50 2.09 1.99 1.76
1.2 0.76 1.38 2.44 2.77 3.38 0.83 1.24 1.84 2.06 2.22 0.88 1.40 1.92 1.83 1.58
1.4 0.52 0.99 1.60 1.75 1.95 0.78 1.15 1.57 1.68 1.53 0.55 0.92 1.26 1.22 1.05U

n
it

4

1.8 0.53 0.61 0.67 0.68 0.65 0.72 0.73 0.67 0.63 0.47 0.51 0.68 0.63 0.51 0.44

1.1 1.02 1.84 3.45 4.13 5.43 1.05 1.63 2.48 2.85 3.52 0.92 1.44 2.41 2.42 2.20
1.2 1.02 1.86 3.44 4.12 5.40 1.05 1.61 2.45 2.80 3.48 0.93 1.42 2.45 2.43 2.23
1.4 1.05 1.91 3.50 4.12 5.23 1.05 1.62 2.40 2.71 3.21 0.92 1.70 2.51 2.47 2.25L

if
e

4

1.8 0.40 0.96 1.82 1.94 2.18 0.99 1.39 1.81 1.90 1.80 0.19 0.34 0.57 0.46 0.72

1.1 0.57 1.08 1.70 1.79 1.75 0.69 1.06 1.47 1.53 1.62 0.67 1.05 1.67 1.87 1.58
1.2 0.29 0.28 0.26 0.25 0.24 0.38 0.42 0.39 0.36 0.29 0.78 0.64 0.43 0.36 0.26
1.4 0.15 0.14 0.13 0.13 0.12 0.26 0.34 0.30 0.27 0.22 0.77 0.51 0.33 0.28 0.19U

n
it

8

1.8 0.14 0.13 0.12 0.12 0.11 0.29 0.28 0.24 0.22 0.18 0.77 0.51 0.33 0.28 0.20

1.4 0.65 1.12 1.65 1.92 2.62 0.64 0.87 1.07 1.32 1.54 0.63 1.03 0.90 1.70 1.35
1.7 0.41 0.76 1.37 1.50 1.49 0.60 0.76 0.99 1.06 1.14 0.61 0.97 0.98 1.79 1.06
2.0 0.37 0.62 1.10 1.34 1.46 0.43 0.47 0.62 0.63 0.66 0.61 1.23 0.82 1.37 0.96T

il
es

3.0 0.74 0.62 0.90 0.84 0.78 0.34 0.39 0.46 0.42 0.32 0.57 0.86 0.54 0.68 0.45

Figure 3: Average speed-up over serial weighted A* for various numbers of threads.

wA*. The figure shows that, while wPBNF does not outper-
form wA* on easier problems, the benefits of wPBNF over
wA* increase as problem difficulty increases. The speed
gain for the weight 1.4 runs levels off just under 10 times
faster than wA*. This is because the machine has eight
cores. There are a few instances that seem to have speed-
up greater than 10. These can be explained by the specula-
tive expansions that wPBNF performs. The poor behavior
of wPBNF for easy problems is most likely due to the over-
head of the abstraction and contention. wPBNF outperforms
wA* more often at low weights, where the problems require
more expansions, and less often at higher weights, where the
problems are easier.

Anytime Search

A popular alternative to bounded suboptimal search is any-
time search, in which a highly suboptimal solution is re-
turned quickly and then improved solutions are returned
over time until the algorithm is terminated (or the optimal
solution is proved). The two most popular anytime heuris-
tic search algorithms are Anytime weighted A* (AwA*)
(Hansen and Zhou 2007), in which a weighted A* search
is just allowed to continue, pruning when the unweighted
f(n) ≥ g(s), and Anytime Repairing A* (ARA*) (Lik-
hachev, Gordon, and Thrun 2004), in which the weight is
lowered when a solution meeting the current suboptimality
bound has been found and a special inconsistent list is kept
that allows the search to expand a node at most once during
the search at each weight.

We used the PBNF framework to implement Anytime
weighted PBNF (AwPBNF). Because PBNF inherently con-
tinues searching after the first solution is found, it serves
very naturally as an anytime algorithm in the style of Any-
time weighted A*. In the planning domain, we also im-
plemented Anytime weighted BFPSDD (AwBFPSDD) and
Anytime weighted APRA* (AwAPRA*) for comparison.

Evaluation

The implementation and empirical set-up was identical to
that used for suboptimal search.

STRIPS Planning Figure shows the speed-up of the paral-
lel anytime algorithms over serial anytime weighted A*. All
algorithms were run until an optimal solution was proved.
(For a weight of 5, AwA* ran out of memory on blocks-14,
so our speed-up values at that weight for that instance are
lower bounds.) For all algorithms, speed-up over serial gen-
erally increased with more threads and a higher weight. The
PBNF algorithm generally gives the fastest performance,
just as in suboptimal search.

Hansen and Zhou (2007) show that AwA* can lead to
speedup over A* for some weight values in certain domains.
Finding a suboptimal solution quickly allows f pruning that
keeps the open list short and quick to manipulate, result-
ing in faster performance even though AwA* expands more
nodes than A*. We found a similar phenomenon in the cor-
responding parallel case. Figure 6 shows speedup over un-
weighted optimal PBNF when using various weights for the
anytime algorithms. A significant fraction of the values are
over 1, representing a speed-up when using the anytime al-
gorithm instead of the standard optimal parallel search. In
general, speed-up seems more variables as the weight in-
creases. For a weight of 1.5, AwPBNF always provides a
speed-up.

Grid Pathfinding To fully evaluate anytime algorithms, it
is necessary to consider their performance profile, ie, the ex-
pected solution quality as a function of time. While this can
be easily plotted, it ignores the fact that the anytime algo-
rithms considered in this paper all have a free parameter,
namely the weight or schedule of weights used to acceler-
ate the search. For ARA*, we considered several different
weight schedules: {7.4, 4.2, 2.6, 1.9, 1.5, 1.3, 1.1, 1}, {4.2,
2.6, 1.9, 1.5, 1.3, 1.1, 1.05, 1}, {3, 2.8, . . . , 1.2, 1}, {5, 4.8,
. . . , 1.2, 1}, for all other algorithms we consider weights of
1.1, 1.2, 1.4, and 1.8.

The two left most panels in Figure 7 shows the “raw” per-
formance profiles for ARA* and AwPBNF on unit cost four-

47



AwPBNF AwBFPSDD AwAPRA*
1.5 2 3 5 1.5 2 3 5 1.5 2 3 5

logistics-6 1.06 1.35 1.94 1.98 0.68 0.91 0.91 0.56 0.93 0.89 1.37 1.20
blocks-14 1.91 1.99 13.22 22.4 1.02 1.18 7.71 11.9 1.33 8.67 52.2 6.65
gripper-7 2.05 1.96 1.99 1.95 1.94 1.89 1.94 1.82 0.80 0.79 0.78 0.76
satellite-6 1.58 1.96 1.98 1.91 1.85 1.87 1.49 1.80 0.75 0.79 0.79 0.80
elevator-12 2.01 2.07 2.13 2.07 1.74 1.74 1.75 1.69 0.67 0.67 0.67 0.68

2
T

h
re

ad
s

freecell-3 1.93 1.06 2.78 6.23 1.45 1.46 1.97 3.08 1.30 1.32 4.71 1.44
depots-7 1.94 2.00 2.01 4.10 1.44 1.45 1.32 2.40 1.22 1.29 1.26 2.69
driverlog-11 1.95 2.10 1.99 0.77 1.73 1.78 1.59 1.41 1.16 1.20 1.14 1.21
gripper-8 2.04 2.05 2.09 2.06 2.01 2.00 1.98 1.96 M M M M

logistics-6 2.04 2.46 4.19 4.21 1.02 1.35 1.37 0.92 1.41 1.32 1.76 1.80
blocks-14 3.72 22.4 25.7 7.20 1.60 1.96 12.1 19.9 2.49 15.2 99.2 170
gripper-7 5.61 5.05 5.03 5.06 4.30 4.24 4.16 3.96 1.70 1.72 1.69 1.71
satellite-6 5.96 4.66 5.74 4.70 4.10 3.54 4.16 3.88 1.27 1.27 1.28 1.29
elevator-12 6.18 6.03 6.20 6.05 3.71 3.74 3.73 3.38 0.94 0.92 0.94 0.93

7
T

h
re

ad
s

freecell-3 3.54 1.50 15.3 11.5 1.78 1.82 2.59 4.14 3.57 3.71 11.8 4.28
depots-7 5.74 5.52 5.48 10.8 2.02 1.96 1.92 3.68 M M M M
driverlog-11 5.78 5.83 5.73 2.18 2.58 2.86 2.57 2.34 M M M M
gripper-8 5.82 5.36 5.39 5.39 4.62 4.55 4.57 4.50 M M M M

Figure 5: Speed-up of anytime search to optimality over serial AwA* on STRIPS planning using various weights.

AwPBNF AwBFPSDD AwAPRA*
1.5 2 3 5 1.5 2 3 5 1.5 2 3 5

logistics-6 1.48 1.84 2.36 2.27 0.68 0.93 0.71 0.54 1.12 1.08 1.08 0.98
blocks-14 1.24 1.22 0.21 0.03 0.87 0.18 0.16 0.16 1.46 1.46 1.42 0.94
gripper-7 1.07 0.99 0.99 1.00 0.93 0.95 0.93 0.92 0.99 1.03 1.01 0.99
satellite-6 1.10 0.87 1.08 0.88 0.88 0.77 0.91 0.90 0.99 1.00 1.01 1.02
elevator-12 1.06 1.04 1.04 1.03 0.77 0.78 0.76 0.73 1.02 1.00 1.00 1.00

7
T

h
re

ad
s

freecell-3 1.05 0.44 0.99 0.29 0.64 0.64 0.20 0.14 1.13 1.16 0.82 0.10
depots-7 1.20 1.15 1.15 1.08 0.54 0.53 0.52 0.49 M M M M
driverlog-11 1.16 1.15 1.19 0.43 0.53 0.58 0.54 0.50 M M M M
gripper-8 1.06 0.99 0.99 1.00 0.99 0.98 0.99 0.97 M M M M

Figure 6: Speed-up of anytime search to optimality over PBNF on STRIPS planning problems using various weights.

way grid pathfinding problems. We can see that the perfor-
mance of ARA* is similar with all weight schedules. The
performance of AwPBNF, however, varies greatly for differ-
ent weights. For weights 1.2 and 1.1 the algorithm finds the
optimal solution immediately and merely spends the remain-
ing time proving it. For weights 1.4 and 1.8 the algorithm
finds a stream of incumbents of gradually increasing quality.

In order to compare algorithms, we make the assumption
that, in any particular application, the user will attempt to
find the parameter setting giving good performance for the
timescale they are interested in. Under this assumption, we
can plot the performance of each anytime algorithm by com-
puting, at each time, the best performance that was achieved
at that time by any of the parameter settings tried. We refer
to this concept as the ‘lower hull’ of the profiles, because
it takes the minimum over the profiles for each parameter
setting.

The right four panels in Figure 7 present the lower hulls of
both serial and parallel algorithms on both grid pathfinding
and sliding tile puzzles. In each panel, the y axis represents
solution cost (relative to optimal) and the x axis represents
wall time (relative to the performance of serial A*). Both
serial and parallel algorithms are plotted. The profiles start
when the algorithm first returns a solution and ends when
the algorithm has proved optimality.

In the unit four-way grids (top center panel), we see that,

although ARA* has a smooth anytime profile, AwA* con-
verges much faster. While AwPNBF’s profile resembles
AwA*’s, it successfully exploits multiple threads and dom-
inates the other algorithms. Due to performance issues in
harder grid domains, AwA* is not shown in further grid
plots. In the unit eight-way problems (bottom center panel),
duplicate handling is critical. While AwPBNF takes longer
to find an initial solution, the solution it finds is very good
and it quickly converges to optimal. In the life four-way (top
right panel) grids, ARA* performs poorly, and AwPBNF
continues to scale well. Overall, AwPBNF is very effective
on these domains.

Sliding Tile Puzzles The lower right panel of Figure 7
presents lower hulls for the anytime algorithms on 43 of the
easiest sliding tile puzzles. (Memory constraints prevent A*
from finding optimal solutions to the full benchmark set.)
For ARA* we used the same weight schedules as in grids,
however, for all other algorithms, we used weights of 1.4,
1.7, 2.0, 3.0 and 5.0. We see from the figure that although
serial AwA* finds a suboptimal solution sooner, AwPBNF
quickly becomes competitive and then converges to optimal
much faster.

Conclusions

PBNF approximates a best-first search ordering while try-
ing to keep all threads busy. We proved the correctness of

48



Unit Four-way Grids: Raw ARA* Profiles

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
)

1.2

1.1

1.0

Wall time relative to serial A*
54321

5.0,4.8,4.6,...,1.2,1.0
7.4,4.2,2.6,1.8,1.4,1.2,1.1,1.0

3.0,2.8,2.6,...,1.2,1.0
4.2,2.6,1.8,1.4,1.2,1.1,1.05,1.0

Unit Four-way Grids

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
)

1.2

1.1

1.0

Wall time relative to serial A*
2.52.01.51.00.5

AwA*
AwPBNF 2 threads

ARA*
AwPBNF 4 threads
AwPBNF 8 threads

Life Four-way Grids

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
)

1.008

1.006

1.004

1.002

1.0

Wall time relative to serial A*
54321

ARA*
AwPBNF 8 threads
AwPBNF 4 threads
AwPBNF 2 threads

Unit Four-way Grids: AwPBNF Raw Profiles

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
) 1.04

1.03

1.02

1.01

1.0

Wall time relative to serial A*
0.80.60.40.2

1.8
1.4
1.1
1.2

Unit Eight-way Grids

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
)

1.04

1.03

1.02

1.01

1.0

Wall time relative to serial A*
1.20.90.60.3

ARA*
AwPBNF 2 threads
AwPBNF 8 threads
AwPBNF 4 threads

Easy Korf 15-puzzles

So
lu

ti
on

 C
os

t (
fa

ct
or

 o
ve

r 
op

ti
m

al
)

1.14

1.11

1.08

1.05

1.02

Wall time relative to serial A*
321

AwPBNF 4 threads
AwPBNF 8 threads
AwPBNF 2 threads

AwA*
ARA*

Figure 7: Lower hull anytime profiles.

the PBNF search framework and used it to derive new sub-
optimal and anytime algorithms. In a comprehensive em-
pirical comparison with suboptimal and anytime variations
of other proposed algorithms, we found that the PBNF al-
gorithms exhibit better parallel speed-up and faster absolute
performance. Its advantage over serial search grows with
problem difficulty. The wPBNF algorithm outperforms its
closest competitor, wBFPSDD, because of the lack of layer-
based synchronization. Our results with Anytime wPBNF
confirmed the observation of Hansen and Zhou (2007) that
anytime weighted search can sometimes find and prove opti-
mal solutions faster than plain optimal search. We conclude
that suboptimal and anytime PBNF are promising methods
to help planning systems scale with the increasingly parallel
machines being built.

Acknowledgements

We gratefully acknowledge support from NSF grant IIS-
0812141 and helpful suggestions from Jordan Thayer.

References

Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-
first heuristic search for multi-core machines. In IJCAI-09.

Click, C. 2008. Towards a non-blocking coding
style. http://www.azulsystems.com/events/javaone 2008/-
2008 CodingNonBlock.pdf.

Dybnis, J. 2008. Non-blocking data structures.
http://code.google.com/p/nbds/.

Evans, J. 2006. A scalable concurrent malloc(3) imple-
mentation for freebsd. In Proc. BSDCan 2006.

Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995.
PRA* - massively-parallel heuristic-search. Journal of Par-
allel and Distributed Computing 25(2):133–143.

Hansen, E. A., and Zhou, R. 2007. Anytime heuristic
search. JAIR 28:267–297.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In ICAPS, 140–149.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Proceedings of NIPS 16.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Formal analysis. CMU TR-CS-03-148

Sundell, H., and Tsigas, P. 2003. Fast and lock-free concur-
rent priority queues for multi-thread systems. In Parallel
and Distributed Processing Symposium, 2003.

Zhou, R., and Hansen, E. A. 2004. Structured duplicate
detection in external-memory graph search. In AAAI 2004.

Zhou, R., and Hansen, E. 2006a. Domain-independent
structured duplicate detection. In AAAI-06, 1082–1087.

Zhou, R., and Hansen, E. 2006b. Breadth-first heuristic
search. AIJ 170(4–5):385–408.

Zhou, R., and Hansen, E. A. 2007. Parallel structured
duplicate detection. In AAAI-07.

49


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




