
A Semantics for HTN Methods

Robert P. Goldman
SIFT, LLC

211 N. First St.
Minneapolis, MN 55401

rpgoldman@sift.info

Abstract

Despite the extensive development of first-principles plan-
ning in recent years, planning applications are still primar-
ily developed using knowledge-based planners which can ex-
ploit domain-specific heuristics and weaker domain models.
Hierarchical Task Network (HTN) planners capture domain-
specific heuristics for more efficient search, accommodate in-
complete causal models, and can be used to enforce standard
operating procedures. Unfortunately, we do not have seman-
tics for the methods or tasks that make up HTN models, that
help evaluate the correctness of methods, or to build a reli-
able executive for HTN plans. This paper fills the gap by
providing a well-defined semantics for the methods and plans
of SHOP2, a state-of-the-art HTN planner. The semantics are
defined in terms of concurrent golog (ConGolog) and the sit-
uation calculus. We provide a proof of equivalence between
the plans generated by SHOP2 and the action sequences of
the ConGolog semantics. We show how the semantics reflects
the distinction between plan-time and execution-time, and
provide some simple examples showing how the semantics
can support method verification. The semantics provide an
implementation-neutral specification for an executive, show-
ing how an executive must treat the plans SHOP2 generates
in order to enforce the expected behaviors. Future directions
include automated verification of method specifications, au-
tomatically generating plan monitors, and plan revision and
repair.

Introduction

Despite extensive development of domain independent, first-
principles planning in recent years, knowledge-based plan-
ning that exploits domain-specific heuristics is still the solu-
tion of choice for most planning applications. As a method
for knowledge-based planning, Hierarchical Task Network
(HTN) planning has much to recommend it. HTN planners
capture domain-specific heuristic information in their meth-
ods, which are skeletal procedures that indicate how a task
may be performed. HTN methods simplify knowledge en-
gineering by avoiding the need for full causal (precondition
and postcondition) models, and allowing designers to stip-
ulate that certain actions will be performed “just because I
say so.” The methods of an HTN planner can easily encode
constraints on the means by which a goal may be achieved.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such constraints can only be engineered clumsily in first-
principles planning domains.1

In many applications, standard operating procedures must
be obeyed or complete causal models are difficult to obtain,
so applying first-principles planners is difficult. For exam-
ple, we may know that a particular treatment in a medical
domain is associated with good outcomes, and need to en-
force it, without being able to provide a causal account suf-
ficient to convince a first-principles planner to derive the
desired plan fragment. Other domain-specific knowledge
may include constraints relating to possible futures that are
not certain but should influence plans, such as retaining a
fuel reserve for unmodeled contingencies. It is easy to en-
code such standard procedures and operational constraints in
HTN methods. While in theory HTN planning is harder than
conventional planning because the HTN framework is more
expressive, in practice HTNs achieve efficiency through the
heuristic information in their methods.

HTNs are particularly useful in planning for autonomous
systems. When planning for autonomous systems, one typi-
cally marries a projective planner with a smart, reactive ex-
ecutive. The projective planner gives the autonomous sys-
tem a broad perspective, notably over long term state tra-
jectories, resource usage, and optimization. These domains
are often very complex and incompletely modeled. With the
aid of domain knowledge, one may be able to tackle specific
cases of planning problems whose general cases are still be-
yond the state of the art.

Unfortunately, we don’t have clear semantics for HTN
methods and plans, making it extremely difficult to evaluate
the correctness of methods, or to build a reliable executive
for HTN plans. This paper fills the gap by providing a well-
defined semantics for the methods and plans of SHOP2, a
state of the art HTN planner. The semantics are defined us-
ing concurrent golog (ConGolog) and the situation calculus.

The semantics will help us ask, for any given method and
task, “is this a good method for this task?” The soundness of
SHOP2 provides a guarantee that no method will expand to
an illegal plan, but makes no guarantees beyond that. To go
beyond that, we must reason about what kind of plans will
be produced when using a given HTN method. In particular,

1E.g., Boddy et al. (2005) describe efforts to encode standard
plan snippets into PDDL for cyber security.

146

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

we want to be able to postulate invariants — properties that
should hold of any plan containing the method — and use
our semantics to evaluate these invariants.

Our new HTN semantics also enable us to better de-
velop protections for HTN plans. Protections are a mech-
anism used in HTNs to avoid the introduction of inter-
ference into the body of a method. A protection will be
added by some HTN method or action, and the HTN al-
gorithm will not introduce any actions that would violate
the protection until it has been removed. For example, in
a satellite control application, one might have a “downlink”
method that would point the satellite’s antenna at the ground
station, protect the proposition (point-at antenna
ground-station), carry out some additional actions to
transmit data, terminate the transmission, and then remove
the protection. The protection would keep the planner from
inadvertently introducing an operator that would change the
antenna’s orientation. As discussed below, our semantics for
HTN methods give a means to identify useful protections.

Plan semantics help us in managing the execution of HTN
plans. Our HTN semantics provide an implementation-
neutral specification for an executive, showing how an exec-
utive must treat the plans that SHOP2 generates in order to
enforce the expected behaviors. We will also show that the
semantics allow the planner to tell the executive, based on a
model of exogenous actions (or disturbances), what condi-
tions it should monitor during execution.

Our work here is in the tradition of work on verifying
and validating conventional programs. However, it is im-
portant to stress that the goal here is in many ways more
difficult than analyzing programs. Although it is tempting
to treat HTN methods as if they were procedures, they are
not, because they are not executed as they are written. In-
stead, they pass through a complex planning process which
selects and composes the HTN methods, potentially inter-
twining multiple methods’ task networks. It is tempting to
overlook this distinction, treating planner methods as proce-
dures, and confusing projecting the effects of actions with
executing those actions. We try to clarify those issues here.

In the next section we briefly introduce the HTN plan-
ner SHOP2, and sketch its planning algorithm. We discuss
some previous work that addresses issues related to ours,
then present concurrent Golog, a procedural extension of the
situation calculus, and show how it can provide a semantics
for SHOP2 plans. We next address issues that arise from the
distinction between plan-time and execution-time reasoning
while planning, and conclude by suggesting some future di-
rections opened by this work.

SHOP2: Simple Hierarchical Ordered Planner

SHOP2 is a modern HTN planner with a relatively sim-
ple, clean implementation, that is easy to adapt for appli-
cations, and that has performed well in past planning com-
petitions (Nau, Au, and others 2003).Another advantage
of the SHOP2 planning system is that it is available un-
der a generous open-source license, and is maintained at
SourceForge2. SHOP2 has made HTN planning more eas-

2http://sourceforge.net/projects/shop

(:method (get-airborne ?a)
already-airborne ; method name
;; method precondition
((airborne ?a))
;; task network
() ; no-op
;; alternative method
rotorcraft-takeoff
;; precondition
((helicopter ?a))
;; task network
((vertical-takeoff ?a))
;; third alternative
fixed-wing-takeoff
((fixed-wing ?a) ;prec
(runway-segment ?a ?s ?d))

;; task network
(:ordered (get-to-segment ?a ?s)

(!takeoff ?a ?s ?d)))

Figure 1: Sample SHOP2 method definition.

ily open to experimentation than the dominant past HTN
planners, Sipe (Wilkins 1988) and O-Plan (Currie and Tate
1991), which for all of their considerable advantages, are
enormously complex and proprietary. We have discussed
elsewhere application-based reasons for our preference for
HTN over first-principles planning(Goldman et al. 2000;
Miller, Goldman, and others 2004), in the context of work
on control of autonomous aerial vehicles.

Like other HTN planners, and unlike first-principles plan-
ners, SHOP2 searches top-down from a task or set of tasks,
rather than chaining together primitive actions. SHOP2 and
other HTN planners decompose complex tasks into more
primitive sub tasks, building a plan tree, which terminates
at leaves that correspond to primitive actions. SHOP2 uses
PDDL actions (permitting conditional effects and quantifi-
cation) as its primitives.3

In addition to actions, SHOP2’s language provides meth-
ods for performing complex tasks. A method definition as-
sociates a task with a set of preconditions and a task network.
When the preconditions are satisfied (more about this later),
a task that matches the task in the method definition can be
decomposed to the given task network. Figure 1 shows a
very simple method indicating that there are three alternative
ways of performing the task of getting an aircraft airborne:
one for aircraft already airborne (no-op); one for a fixed-
wing aircraft; and one for a helicopter.4 Task networks are
lists of tasks that may be constrained to be :ordered, or
that can be executed in any order (:unordered). Method
preconditions may contain disjunctions and quantification.
Like other HTN planners, SHOP2 offers protections.

SHOP2 is unlike other HTN planners in its way of up-
dating the state. In the way it applies actions, SHOP2 is a
forward state-exploring planner. Whenever reducing a task

3The original version of SHOP2 had its own primitive actions,
but we have modified it to accept PDDL actions.

4As an efficiency measure, alternatives in a single method defi-
nition have if-then-else semantics.

147

(1) proc find-plans(State, Tasks, Protects)
(2) if Tasks = ∅ then return ∅ fi
(3) ; nondeterministically choose a task t that has no predecessors
(4) t = chooseFromTasks
(5) if primitive(t)
(6) then
(7) ; nondeterministically choose an action instance for t
(8) < State′, Tasks′, Protects′ >=
(9) applyOp(t, State, Protects)

(10) else (t is a complex task)
(11) ; nondeterministically choose a method for t
(12) < r, R′ >= reduction(State, t)
(13) < State′, Protects′ >= applyOp(r, State, Protects)
(14) Tasks′ = subst(R′, t, Tasks)
(15) fi
(16) P = find-plans(State′, Tasks′, Protects′)
(17) return (o · P)
(18) end find-plans

Figure 2: Pseudocode for SHOP2 plan search

by applying a method, SHOP2 will decompose all the way
down to a leftmost primitive action, and update the current
state with the effects of that action. This can be seen in the
use of the State variable in the SHOP2 algorithm of Figure 2;
at all times SHOP2 has a notion of the current state. This sets
it aside from purely top-down planners (see, for example,
the UMCP algorithm (Erol, Hendler, and Nau 1994b)). The
forward planning nature of SHOP2 makes it amenable to in-
tegration with complex external reasoners, that may be able
to compute state progressions, but not invert state changes
(Nau cites CAD/CAM programs as an example).5

We give pseudocode for the SHOP2 main routine in Fig-
ure 2. We present this as a nondeterministic algorithm, to
conserve space. There are choice points at steps 4,9,12 and
13. Alternatives there must be explored through search. At-
tempts to apply an action (steps 9 and 13) or perform a re-
duction (12) could fail and trigger backtracking.

Previous approaches

Erol et al. offer a semantics for UMCP, an HTN planner that
was a direct ancestor of SHOP2 (Erol, Hendler, and Nau
1994b; 1994a; Erol 1995). UMCP is more expressive than
SHOP2 but, perhaps for this reason, has never been fully
implemented.6 Erol’s semantics derives state transition se-
mantics for task networks by structural induction, starting
from primitive task networks. Non-primitive task networks
(methods are pairs of tasks and task networks), with vari-
able parameters and non-primitive sub-tasks are interpreted
as sets of primitive task networks that satisfy the constraints
on the non-primitive task net.

The structural induction in Erol et al.’s semantic defini-
tions parallels the planning algorithm in a way that makes
it easy and natural to show that the planning algorithm is

5Dana Nau, personal communication.
6UMCP permits arbitrary inter-step constraints within a

partially-ordered task network. SHOP2 has only limited partial-
ordering and supports only limited protections.

sound and complete. However, it is not particularly helpful
in answering the kind of questions that interest us here. In
particular, in order to reason about the correctness proper-
ties of a particular method in the plan library, it seems we
must reason about all ways an instance of that method might
be composed into primitive task networks, and from there
draw conclusions about the state trajectories in the models
for those composite task nets. This may well be possible,
but the semantic scheme does not make it convenient.

Erol et al. pointed out that HTN planners are strictly more
expressive than first principles planners. The reason is that
an HTN method can constrain the state trajectory that is fol-
lowed by a plan, rather than just its end state. Therefore,
an HTN planner is capable of planning for goals that are
not simple achievement goals, such as Davidson’s exam-
ple of running around a track three times, cited by McDer-
mott (1982). McDermott points out the absurdity of charac-
terizing this in terms of its end state of ‘being in the same
place, and tired.’

Our work is in many ways similar to that of Stephan and
Biundo (1993; 1996). Like them, we are more interested
in reasoning about the correctness of planner methods than
about the correctness of the planner itself. However, their
approach assumes a very complex logical reasoner as the
planner, and the use of a very expressive language to capture
the HTN methods. We, on the other hand, take the conven-
tional planning approach of assuming a very simple action
language, and a highly optimized algorithm that exploits the
characteristics of the action language.

Work on the Golog procedural extension to the situa-
tion calculus is similar to Stephan and Biundo’s work in
attempting to use a very complex action representation for
planning (Reiter 2001; Giacomo, Lespérance, and Levesque
2000). In the Golog framework, one attempts to find a valid
instantiation of a Golog procedure (roughly corresponding
to the decomposition of an HTN task network) by using
search to explore nondeterministic choice points in the pro-
cedure. The situation calculus, with its solution to the frame
problem, provides a means to project the effects of actions
in this search process. Unlike more conventional planning
work (like ours), this approach assumes that the procedures
will be written so that this projection can be done efficiently,
since the problem is so general as to resist more general so-
lutions. Again, our work is more in the vein of mainstream
planning, in assuming more restricted representations so that
our algorithms can exploit them.

The contrast between the Golog approach and ours can
very clearly be seen in the contrast between Gabaldon’s
work on the semantics of HTNs (2002) and our own. Ga-
baldon aims to show that the Golog approach can subsume
HTN planning, which he does by providing translations of
HTNs into Golog. He ends up with a very expressive frame-
work, that uses the full power of Golog. We, on the other
hand, wish to maintain the limitations of conventional HTNs
that allow them to be computationally efficient, and to use
the expressive power of the situation calculus and Golog
only for the purposes of analysis and verification. Similar to
Gabaldon’s work is that of Baral and Son (1999). Baral and
Son translate some HTN constructs (notably partial-ordering

148

and UMCP-style step naming) into Congolog. However, the
result of their work is an extension of Congolog, with more
expressive power; we use Congolog to study SHOP2, so we
provide a sublanguage of Congolog, with strictly restricted
expressive power, to facilitate analyses. McIlraith and her
colleagues have done work that is almost the inverse of ours:
they use Congolog as a comfortable, expressive notation,
and compile it down to less expressive action theories for
use by planners (Fritz, Baier, and McIlraith 2008).

Marthi et al. (2007) propose an HTN method semantics
based on angelic nondeterminism alone — whereby the
meaning of a method lies in the transitions made by success-
ful plans containing those methods. They dismiss adversar-
ial nondeterminism, because they are only concerned with
the plan that is the product of planning. We are concerned
with both angelic and adversarial nondeterminism: the for-
mer when generating plans, the latter when executing them.
Even during planning, there is adversarial nondeterminism
since unfavorable interactions between multiple goals can
arise. In this paper, we exploit the expressive power of the
Congolog framework to address these interactions.

Kambhampati et al. (1998) discuss the meaning of HTN
methods while developing an algorithm to merge HTN and
first-principles planning. Their work focuses on different is-
sues than ours — less on execution and on analyzing the
effect of interval constraints on execution and search. How-
ever, their notions of schema completeness and user intent
are of great importance, and we hope to explore them in fu-
ture work. Furthermore, integrating first principles planning,
especially for replanning, is of great interest to us.

Modal temporal logics such as LTL and CTL have been
used to characterize plan trajectories, both in order to encode
heuristics about what would be a good plan (Bacchus and
Kabanza 2000), and to encode more expressive goal spec-
ifications (Bacchus and Kabanza 1996; Gerevini and Long
2005). While the design of these logics capture important
insights into how to capture state trajectory constraints, they
are not convenient for reasoning about methods because they
are endogenous; i.e., they do not make it convenient to talk
about programs (or plans), because a particular program is
implicit, rather than programs and their components being
explicit entities to be reasoned about in the logic.7

HTN Semantics

Our semantic approach builds upon the semantics for con-
current situation calculus programs developed for Con-
Golog (Giacomo, Lespérance, and Levesque 2000).

ConGolog is a concurrent programming language for pro-
grams that interact with their environment. The semantics of
ConGolog’s primitive actions come from the situation calcu-
lus (Reiter 2001). That is, these actions are characterized by
precondition and effect axioms, and a closure assumption is
made to solve the frame problem. The critical components
of the situation calculus theory of actions are:
Action precondition axioms, Poss(a, s): Action a may be

executed in situation s.
7See Kozen and Tiuryn (1990) for a discussion of endogeny in

logics for reasoning about programs.

Successor state function: do(a, s) is the state that results
from performing action a in state s.

Effect axioms: State conditions under which an action
will cause a fluent to change. E.g., has-fuel(a, s) ⊃
in(a, r, do(fly(a, r′, r), s)).

Successor state axioms: We assume that the set of actions
is complete, and based on this assumption, generate a set
of successor state axioms that captures all possible ways a
fluent could come to (not) hold in a state after performing
some action.
The actions in our SHOP2 methods are ADL-style PDDL

actions, with conditional effects.8 We can easily model these
with the situation calculus, extracting the executability con-
ditions (Poss (a, s) for actions a) from the preconditions.
For example,

Poss (takeoff(ac, ap, r)) ≡ landed(ac, ap) ∧ region(ap, r)

We may also compile successor state axioms from a set of
PDDL action definitions. E.g.,

in(ac, r, do(a, s)) ≡ ∃ap.a = takeoff(ac, ap, r) ∧
region(ap, r) ∨
∃r′.a = fly(ac, r′, r) ∨
[in(ac, r) ∨ ¬∃r′.a = fly(ac, r, r′)
∨¬∃ap.a = land(ac, ap, r)]

This gives a solution to the frame problem, formalizing an
extended STRIPS assumption that corresponds to the PDDL
semantics, which we will need for our correctness proofs.

The constructs we need to give semantics for SHOP2
HTN methods are simple atomic actions, which we get from
the situation calculus (but see below), concurrent composi-
tion (‖), sequential composition (;), which we take from the
ConGolog semantics.9 Later, we will augment these con-
structs with additional ones needed to capture HTN meth-
ods. ConGolog gives semantics to programs composed out
of situation calculus using these constructs by means of
the Trans(δ, s, δ′, s′) and Final(δ, s) relations. Intuitively,
Trans(δ, s, δ′, s′) means that a program, δ, in a situation, s,
can evolve in one step to a new program δ′ in a new situ-
ation, s′. Final(δ, s) means that the program δ in state s,
represents a terminating computation. Then the Do relation
for a complex program, may be captured in terms of the tran-
sitive closure of Trans, Trans∗, and Final:

Do(δ, s, s′) ≡ ∃δ′. Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′) (1)

Note that Do, is a relation, unlike do, since our programs
may be nondeterministic. Also note that, while the orig-
inal ConGolog semantics involve second order quantifica-
tion, ours need not, because we have less expressive power

8For the moment, we ignore numerical fluents, and we do not
permit truly simultaneous actions, as PDDL 2.1 does.

9For the purposes of this short paper, we omit the nondetermin-
istic choice of value (πμ.δ) construct. In applications where we
make use of the lifted nature of SHOP2, this is necessary to com-
plete the semantic treatment. However, it is not an obstacle, and
complicates the discussion unnecessarily here.

149

Trans(nil, s, δ′, s′) ≡ ⊥ (1)
Trans(a, s, nil, s′) ≡ Poss(a, s) ∧ s′ = do(a, s) (2)

Trans(δ1; δ2, s, δ
′, s′) ≡ [∃γ.Trans(δ1, s, γ, s′) ∧ δ′ = γ; δ2] ∨ [Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′)] (3)
Trans(δ1 ‖ δ2, s, δ

′, s′) ≡ [∃γ.Trans(δ1, s, γ, s′) ∧ δ′ = γ ‖ δ2] ∨ [∃γ.Trans(δ2, s, γ, s′) ∧ δ′ = δ1 ‖ γ] (4)
Final(nil, s) ≡ 	 (5)

Final(a, s) ≡ ⊥ (6)
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s) (7)

Final(δ1 ‖ δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s) (8)
(9)

Figure 3: Trans and Final definitions.

than full ConGolog. The Trans and Final definitions we
will adopt from ConGolog are given in Figure 3.

Now we need a semantics for SHOP2 HTN methods. For
this purpose, we give two axioms and an axiom schema that
describes a set of axioms which capture what happens when
expanding a method. This axiom schema will allow us to
avoid second-order quantification, as used in the ConGolog
semantics (Giacomo, Lespérance, and Levesque 2000).

Trans(task(
→
v), s, δ′, s′) ≡ ∃δ. Exp∗(task(

→
v), s, δ)(2)

∧Trans(δ, s, δ′, s′)

Exp∗(task(
→
v), s, δ) ≡ ∃δ′. Exp(task(

→
v), s, δ′) ∧(3)

[Exp∗(δ′, s, δ) ∨
δ = δ′]

For Exp, instead of an axiom, we have an axiom schema:

Exp(task(
→
v), s, δ′) ≡

∨

M
Meth(task(

→
v),M, ψ)∧

Prec(M, φ)∧
∃ψ′. [ψ′ ⊇ ψ ∧ φ/ψ′�s�∧

Body(M, δ) ∧ δ′ = δ/ψ′]

(4)

The above schema will expand into an axiom for each task
expression, that is a disjunction over the different method
definitions (M). This provides us with an explicit closure
over the set of method definitions, akin to the closure in
our successor state axioms. Without this closure property
we would not be able to draw conclusions about what must
happen, only what may happen. Every method definition,
M = 〈Prec(M),Body(M)〉, where Prec is the precon-
dition component of the method definition, and Body is its
body (a task network). The Meth relation maps between a
task, a matching method definition, and a most general uni-
fier (MGU): Meth : task(

→
v) −→ 〈M, ψ〉. task(

→
v) is a

task with a set of bound parameters. ψ′ is a MGU that ex-
tends ψ such that the precondition expression, φ, is satisfied
in the current state, s.

Note that our definition makes the testing of a method’s
preconditions an atomic operation together with the expan-
sion of the method into its body. This must be done so that
concurrent tasks do not get inserted between the testing of
the preconditions and the method expansion. That is why we
do not simply translate the method definition using Golog’s
test construct. The second feature is that we force the ex-
ecution of at least one primitive action in a method body’s
(recursive) expansion. Again, this is done so that the precon-
ditions of a method cannot be clobbered before the method’s
operation has begun.

We have not yet said how the preconditions (Prec(M))
and body of a method (Body(M)) are to be translated.
The preconditions are simplicity itself: in SHOP2 the pre-
condition expression is a formula, and is carried over un-
changed.10 The body is only a little more complicated. A
SHOP2 task network is a set of tasks that can be grouped in
:ordered and :unordered constructs. A group of or-
dered task networks, (:ordered t1t2 . . . tn) translates into
a sequential composition, t1; t2 . . . ; tn, where ti are trans-
lated recursively. Similarly, a group of unordered task net-
works (:unordered t1t2 . . . tn) translates into a concur-
rent composition t1 ‖ t2 . . . ‖ tn (again ti must themselves
be translated).

The last construct that we have left untranslated is the pro-
tection. We present a slight idealization of the mechanism
used in the actual SHOP2 implementation. We allow any
task (primitive action or method invocation) to be followed
by the addition or deletion of protections; let us note this op-
eration as protect(λ), for some literal λ. We will also add an
operation that removes such protections, unprotect(λ). It is
tempting to simply use ConGolog’s sequential composition
for this purpose, so that to carry out an action, a, and protect
some literal, p would be translated as a; protect(p). This
is not appropriate, since in the presence of concurrently-
executing tasks, a protection-clobbering action could slip in
between a step that establishes a protected fluent, and the es-
tablishment of the protection. Consider the case of a method,
M1, in which a UAV is to put its sensor into state S1, protect
S1, and do the observe(x) action, requiring S1. M1 is un-

10A subtlety is that variables in the preconditions are scoped over
the body, as well.

150

ordered wrt M2, in which the same UAV is to put its sensor
into S2, protect S2, and do the observe(y) action. Without
the atomic addition of the protection, we could see: UAV
puts sensor into state S1 (M1); UAV puts sensor into state
S2 (M2); planner attempts to protect S1 [sic]. This signals
the need for a special construction that will insure that the
addition of protections can be bundled into an atomic transi-
tion with the execution of a primitive action.

We will add to our notation a new program connective, &,
and allow program expressions of the form

a& [protect(λ) | unprotect(λ)]+

an action composed with one or more (un)protections. Now
we must extend the Trans relationship to add protections to
the arguments. This may most easily be done by encapsu-
lating the original Trans definition as Trans’. Now we may
define the & connective using the following relationships:

Trans(δ, p, s, δ′, p, s′) ≡ Trans’(δ, s, δ′, s′) (5)
∧p�s′�

Trans(δ&Ps, p, s, δ′, p′, s′) ≡ Trans’(δ, s, δ′, s′) (6)
∧update(p, Ps, p′)
∧p′�s′�

The update operation is implemented as one would expect;
literals newly protected are added to p, and literals newly un-
protected are removed from p, to give p′.11 It is not sufficient
to atomically add protections after performing an action, we
must also be able to atomically remove protections before
performing an action, so that a protected literal cannot be
clobbered between the removal of the protection and its in-
tended consumer. The necessary axiom is a simple variant
of (6).

Proof of correspondence: sketch We can prove the cor-
respondence between the SHOP2 algorithm and the Golog
semantics by proving a one-to-one correspondence between
the steps of the algorithm and the corresponding Trans
clauses, and a similar correspondence between the termina-
tion conditions of the find-plans procedure of Figure 2. The
parallel between the termination conditions is one-to-one be-
cause the δ in the Golog semantics parallels the tasks list in
find-plans.12 The parallel between Trans and the algorithm
comes in three components: (I) the choice of a task to ex-
pand from the tasks in the SHOP2 algorithm (step 4) paral-
lels clauses (3) and (4) in Figure 3; (II) method expansion
in SHOP2 parallels the definition of Exp (4); (III) primitive
action execution is the same.

11In SHOP2 and in the interpreter for our semantics is a
slightly more complex scheme associating counts with each pro-
tection. This allows for nested protections of the same fluent,
e.g. p(P), p(P), u(P), u(P) where P is protected until the sec-
ond u(P).

12There are some minor complexities because of the way the
Golog semantics leave nil “on the stack” necessitating clauses (7,8)
in Figure 3.

Implementation We have implemented a trace generator
for the semantics by modifying the Prolog-based Legolog
interpreter of Levesque and Pagnucco (2000). For the HTN
semantics in this section, we have modified the Legolog in-
terpreter, which models deterministic plan execution, to be
able to enumerate all traces for a given plan library.

Examples With the above semantics, we may explore
properties of a plan library. For example, consider a plan
library in which we have a method for photographing a par-
ticular map location by an autonomous agent. Given a sim-
ple problem with a single photo target (and a completely
connected map), we may demonstrate that this method is
guaranteed to achieve its goal. However, we may addition-
ally prove that, given two or more photo targets, the same
method may generate arbitrarily bad plans if it interleaves
working on these two goals — it move towards one, then
towards the other, then back towards the first, etc.

We can demonstrate the flaw by taking the above inter-
preter and extending it to enable the interjection of addi-
tional actions into the plans. Doing this is a conservative
over-approximation of what could happen when execution
of our method is interleaved with arbitrary other methods.
This method will (eventually) find any problem arising from
such an interleaving, but it can find some problems that do
not correspond to any actual interleaving. Indeed, when we
allow the interpreter to put in additional movement actions,
we see that our initial draft method can yield plans that vi-
olate an invariant we would like to see — that during the
approach to the photo target, the vehicle should always be
getting closer.

This would suggest adding protections that would pre-
serve the position of the vehicle during its transit towards
one target from interference by other motion goals.13 In-
deed, when we protect the position of the vehicle as it
moves, the interpreter shows that other movements cannot
be placed into the plan while the vehicle is approaching its
target. Note that the protection approach suggested here is
more flexible than simply forcing the rover to work on one
goal at a time. What the protections do is hold control of the
position of the rover. They leave the rover free to interleave
activities that do not change its position, e.g., do uplink ac-
tivities while moving towards the first target.

Semantics and execution

For the purposes of planning, nondeterminism is properly
modeled as angelic nondeterminism. The agent can freely
search for choices that meet its desires, because it is not ex-
ecuting any actions that change the world, it is only project-
ing the effects of those actions. These are the semantics that
we have assumed up to this point. However, when consid-
ering execution of plans computed in advance of execution,

13Note that sketching out this example also suggests enhanc-
ing the expressive power of protections. Within the same overall
framework, it would make the modeling easier if resources and
properties (such as the position of a vehicle) could be protected,
rather than being limited to protecting ground propositions.

151

choices will be fixed (at least for “classical” plans), and ef-
fects cannot, in general, be undone. Furthermore, we must
take into account the possibility that the environment will
evolve in ways beyond our control. In this section we dis-
cuss how to accommodate this in our semantics.

When analyzing the execution of a plan, we must take
the plan produced off-line as our starting point. Following
on the earlier proof of equivalence, we may either take the
output of the SHOP2 planning process, and translate it into
the Golog dialect, or we may reason about plan generation
using the Golog semantics directly. Which is appropriate
will depend on the task at hand. When reasoning about gen-
eral cases (for example, all possible plans containing a given
method) it will typically be easier to start with the Golog se-
mantics.

Two parts of the earlier Golog semantics provide for an-
gelic nondeterminism. The first is the interpretation of
choice. This is limited to method choice up to now, and
does not come into play in reasoning about execution, since
all method choices will already have been made. The sec-
ond is the definition of Do∗ in terms of Trans and Final
(1). This definition is inappropriate for use in analyzing plan
execution because the use of Final removes from consider-
ation any unsuccessful execution sequences. Consider how
the plan-time semantics would treat a sequence of primitive
actions that was ill-formed, in the sense that some action’s
preconditions will not be satisfied. The plan-time semantics
would treat this sequence as not corresponding to any se-
quence of situations, because it cannot be completed. This
is appropriate for plan-time, but clearly wrong for execu-
tion. When modeling execution the semantics should be a
trace terminating immediately before execution of an action
whose preconditions are not satisfied. When considering ex-
ecution, we will wish to use not just Do, but also use Trans∗

directly.
We may now introduce into this framework some con-

sideration for exogenous actions or disturbances. To ana-
lyze the robustness of our plans, we may introduce a “de-
monic coprocess” that can introduce exogenous events into
the planned action sequence:

Transe(δ, s, δ′, s′) ≡ Trans(δ, s, δ′, s′) ∨ (7)
Exog(s, s′) ∧ δ′ = δ

When engineering autonomous systems in dynamic do-
mains, we want to develop systems that can handle some
set of disturbances (exogenous actions) that are anticipated,
but that cannot be directly controlled. These disturbances
must be detected and handled (or “rejected,” to use control
theory terminology). We adopt the conventional approach of
having a reactive executive that will execute projective plans
while rejecting disturbances.

A problem in designing such systems is that it is difficult
to know what disturbances need to be rejected, and what
conditions need to be monitored by the executive. Our se-
mantics helps answer this question. We augment the existing
planning constructs by allowing the planner to add monitors
to its plans. A monitor is similar to a protection, and acts the
same way at plan time. Monitors are distinguished from pro-
tections in being carried over into execution time modeling

and being modeled in the same way there. The intuition is
that a monitor enables the executive to detect a disturbance
that is a threat to successful execution and to reject that dis-
turbance. We model this by modifying the Trans relation to
eliminate execution of exogenous actions that are “blocked”
by the presence of a monitor, in a way analogous to the way
formula 6 blocks planned actions from clobbering protec-
tions.

Note that the monitors proposed here go beyond monitor-
ing causal chains. We assume that the executive will take ac-
tions to repair the plan in case of precondition failure. How-
ever, in autonomous systems there are a number of reasons
to have additional monitors. Monitors can be placed strate-
gically to detect impending failures early, before causal fail-
ures. Related to this, monitors can be placed to trigger when
a failure is only likely, not assured. Monitors can be placed
to detect failures in trajectory properties that are not reflected
in causal links.

We have extended the trace generator referred to in the
semantics section to handle execution checking as well. The
original Legolog interpreter (Levesque and Pagnucco 2000)
models deterministic plan execution but, since it is an exec-
utive itself, it does not need the ability to generate multiple
execution traces and so does not provide that capability. We
have added that capability and (for planning-time reason-
ing) added the ability to model plan generation, with angelic
nondeterminism.

Consider, for example, a rover application where the
agent must traverse an area with known dust storms. The
dust storms are modeled by an exogenous action of block-
ing the solar array. Assume that the solar array must be un-
blocked when drilling a rock (because of the current draw).
A plan that clears the solar array, maneuvers the rover to
the rock and begins drilling will successfully be generated
by SHOP2, and satisfies our original plan semantics. How-
ever, in the presence of the dust storm demon, this plan is
unsatisfactory, and it fails the check in our interpreter. But
if we add a monitor to the method, the check succeeds. Fur-
ther, the annotation on the plan acts as a requirement to the
executive to be able to handle such a disturbance.

Remarks Kambhampati and Hendler (1992) propose a
technique for replanning that exploits the protections of an
HTN planner. This work inspired some of our thoughts on
this work. However, as we were exploring the use of protec-
tions, we realized that the function of protections was not to
protect against exogenous events. Protections aim to reduce
the search space by ruling out interference at plan time be-
tween the planning agent’s own actions. A plan library that
has in it only protections that are aimed at plan-time search
control will, in general, not provide sufficient annotations to
derive monitors, and may provide annotations that are of no
value. To return to our earlier example, if considering only
search control, there would be no need for our rover agent
to build in protections against it dropping dust on its own
collector; even if it wanted to, it doesn’t have that capability.
On the other hand, it wouldn’t need monitors against per-
forming radio transmissions at inappropriate times — the

152

planning process will ensure that such activities are never
generated. So while protections and monitors are similar in
appearance, they serve importantly different purposes.

Conclusions

In this paper we have used the situation calculus and Golog
to provide semantics for HTN planning. We have shown
that this semantics sheds light on the meaning of the plans
and methods of the HTN. The semantics also clarifies the
meaning of protections and distinctions between planning-
time and execution-time reasoning.

In future work, we intend to build upon this work in two
directions. The first is to do more verification and valida-
tion of HTN plan libraries. Bienvenu et al. (2006) provide a
translation of LTL progression in terms of the Golog Trans
relationship. We can incorporate this together with our exist-
ing trace generator to perform model-checking style verifi-
cation of HTN methods, both in terms of execution-time and
plan-time properties, represented as LTL invariants. For the
examples given in this paper, the invariants were only for-
mulated informally, and checked by inspecting traces. In ad-
dition, the existing trace generator does not have the search
control necessary to help find counterexamples efficiently.
The second direction is to develop a new executive archi-
tecture for HTN plans that expands on the ideas presented
here. This material focuses on the meaning of HTN plans,
and what it would mean to build an executive for them. The
next step is to bring a richer model of the executive into this
framework, so that the constraints flow back and forth, with
executive properties influencing planner properties and vice
versa.

Acknowledgments

This article was supported by DARPA/IPTO and the Air
Force Research Labodratory, Wright Labs under contract
number FA8650-06-C-7606. This paper does not represent
the official position or opinions of DARPA/IPTO or Air
Force Research Labodratory, Wright Labs. Thanks to David
Musliner for many helpful suggestions about the paper’s
structure. Thanks to John Maraist, Dana Nau and Ugur
Kuter for discussions about HTNs and their semantics.

References

Bacchus, F., and Kabanza, F. 1996. Planning for temporally ex-
tended goals. In Proceedings AAAI, 1215–1222.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artificial Intelli-
gence 116(1–2):123–191.
Baral, C., and Son, T. C. 1999. Extending ConGolog to allow par-
tial ordering. In Agent Theories, Architectures, and Languages,
188–204.
Bienvenu, M.; Fritz, C.; and McIlraith, S. 2006. Planning with
qualitative temporal preferences. In Doherty, P.; Mylopoulos, J.;
and Welty, C. A., eds., KR2006. Menlo Park, California: AAAI
Press. 134–144.
Boddy, M. S.; Gohde, J.; et al. 2005. Course of action generation
for cyber security using classical planning. In ICAPS, 12–21.

Currie, K., and Tate, A. 1991. O-Plan: the open planning archi-
tecture. Artificial Intelligence 52:49–86.
Erol, K.; Hendler, J.; and Nau, D. S. 1994a. HTN planning:
Complexity and expressivity. In Proceedings AAAI, 1123–1128.
Erol, K.; Hendler, J.; and Nau, D. S. 1994b. UMCP: A sound
and complete procedure for hierarchical task network planning.
In Proc. AIPS, 249–254.
Erol, K. 1995. Hierarchical task network planning :–
formalization, analysis, and implementation. Ph.D. Dissertation,
University of Maryland at College Park. Available as UMCP tech-
nical report CS-TR-3624.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. ConGolog, sin
trans: Compiling ConGolog into basic action theories for plan-
ning and beyond. In Proc. Conf. on Knowledge Representation
and Reasoning, 600–610.
Gabaldon, A. 2002. Programming hierarchical task networks in
the situation calculus. In AIPS’02 Workshop on On-line Planning
and Scheduling.
Gerevini, A., and Long, D. 2005. Plan constraints and preferences
in PDDL3. Technical Report RT 2005-08-47, Dept. of Electronics
for Automation, University of Brescia, Brescia, Italy.
Giacomo, G. D.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, A concurrent programming language based on situation
calculus. Artificial Intelligence 121(1–2):109–169.
Goldman, R. P.; Haigh, K. Z.; Musliner, D. J.; et al. 2000. MAC-
Beth: A multi-agent constraint-based planner. In AAAI Workshop
on Constraints and AI Planning, 11–17.
Kambhampati, S., and Hendler, J. 1992. A validation structure-
based theory of plan modification and reuse. Artificial Intelli-
gence 55(2–3):193–258.
Kambhampati, S.; Mali, A. D.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In AAAI, 882–888.
Kozen, D., and Tiuryn, J. 1990. Logics of programs. In Handbook
of Theoretical Computer Science, volume B: Formal Models and
Semantics. The MIT Press. 789–840.
Levesque, H. J., and Pagnucco, M. 2000. Legolog: Inexpensive
experiments in cognitive robotics. In Proceedings of the Second
International Cognitive Robotics Workshop.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2007. Angelic semantics
for high-level actions. In Proc. ICAPS, 232–239.
McDermott, D. V. 1982. A Temporal logic for reasoning about
processes and plans. Cognitive Science 6:101–155.
Miller, C. A.; Goldman, R. P.; et al. 2004. A playbook approach
to variable autonomy control. In American Helicopter Society
60th Annual Forum, 2146–2157.
Nau, D.; Au, T. C.; et al. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research 20:379–404.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Stephan, W., and Biundo, S. 1993. A new logical framework for
deductive planning. In Proc. IJCAI, 32–38.
Stephan, W., and Biundo, S. 1996. Deduction-based refinement
planning. In Proc. AIPS, 213–220.
Wilkins, D. 1988. Practical Planning. Morgan Kaufmann.

153

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

