
Integrating Planning and Scheduling in a CP Framework:
A Transition-Based Approach

Debdeep Banerjee

The Australian National University and NICTA
debdeep.banerjee@rsise.anu.edu.au

Abstract

Many potential real-world planning applications are on the
border of planning and scheduling. To handle the complex
choices of actions and temporal and resource constraints of
these problems we need to integrate planning and scheduling
techniques. Here we propose a transition-based formulation
of temporal planning problems, that enables us to represent
features like deadlines, time windows, release times etc. in a
simple way. We describe a CSP encoding of the transition-
based formulation and its potential advantages in integrating
planning and scheduling techniques.

Motivation
Many potential real-world planning applications are on the
border of planning and scheduling. For example, consider
a group of robots (like NASA’s Mars Rovers) that can ma-
neuver over a designated area, perform soil tests, and can
take pictures of interesting objects. To achieve a set of given
goals (like testing soil of different locations and taking pic-
ture of different objects), the robots have to decide how to
achieve those goals (planning choices) and also they need to
achieve these goals without violating any temporal and re-
source constraints (scheduling choices). For any automated
system, that would able to handle the complexity of this type
of problems, it is essential to integrate planning and schedul-
ing techniques.

In recent years there is a growing interest in integrating
planning and scheduling to solve problems similar to the
above example. Smith et al.(2000) described three possible
integration approaches: separating planning and scheduling
and solving them individually (Stratified P&S), interleaving
planning and scheduling (Interleaved P&S), and compiling
a bounded planning problem into a scheduling problem (Ho-
mogeneous P&S). Systems, like IxTeT, (Ghallab & Laruelle
1994), HSTS (Muscettola 1993), and EUROPA (Jónsson
et al. 2000), are examples of interleaved P&S, These par-
tial order planners resolve conflicts by making ordering de-
cisions among the actions. CPT (Vidal & Geffner 2006),
which compiles a temporal planning problem into a CSP,
and timeline-based approaches (Pralet & Verfaillie 2008;
Fratini, Pecora, & Cesta 2008) are examples of homoge-
neous P&S. One advantage of this approach is that action

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

choice and action ordering decisions can be made in a uni-
fied fashion.

Here we propose a new homogeneous P&S approach
based on a transition-based formulation1 for problems,
that are in between planning and scheduling, represented
in the multi-valued state variable representation (Jonsson &
Bäckström 1998). The advantage of this formulation is that
it allows us to incorporate important features such as dead-
lines, time windows, release times and others, into the plan-
ning formalism in a straightforward way, and to make use
of sophisticated constraint-based scheduling techniques in
solving such planning problems. The main building-blocks
of this formulation are transitions. Each transition repre-
sents an effect of an action, which can be either a change
of values of a state variable or a persistent requirement on
a specific value of a state variable. The motivation behind
the transition-based formulation is to exploit the fact that
evolution of each state variable, over a time period2, can be
represented by a sequence of transitions, which induces tem-
poral constraints between the transitions and ordering con-
straints between the related actions. A solution to a plan-
ning problem, in the transition-based formulation, is a se-
quence of transitions for each state variable, such that goals
are achieved. This can be modelled as a CSP.

The rest of the paper is organized as follows: First we de-
scribe the basics of the transition-based formulation with an
example of temporal planning problem. Then we describe a
CSP encoding of the transition-based formulation. We con-
clude the paper with a discussion about the advantages of
the transition-based formulation and future directions.

Basics: Transition-based Formulation

A planning problem can be represented with 4 components:
a set of state variables, a set of (grounded) actions, an initial
state and a goal description. In the multi-valued state vari-
able representation each state variable has a finite discrete
domain of possible values. Each action is made up of a set
of transitions, i.e. changes or persistent value requirements
on a subset of state variables. We say that the action causes
these transitions or that the transitions are associated with

1Banerjee et al. (2008) reported the formulation for classical
planning based on the ideas from Tuan A. Nguyen and Minh Do.

2This can be seen as a timeline of the state variable.

330

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



the action. The initial state description is a complete assign-
ment of the state variables to their initial values and the goal
description is a partial assignment of a subset of state vari-
ables to their goal values.

For a transition T, T.var denotes the state variable affected
by the transition, T.from denotes the value that the transition
changes, T.to denotes the changed value and T.act is the
action associated with the transition. There are two types
of transitions: EFFECT transitions and PREVAIL transi-
tion. An EFFECT transition T , represents a change (i.e.
T.to �= T.form) in the related state variable’s value caused
by the action T.act. A PREVAIL transition T , represents
that the associated action requires T.var’s value to be same
(i.e T.from = T.to) throughout its execution.

Domain Transition Graph (DTG)

The DTG (Jonsson & Bäckström 1998) of a state variable
V is a digraph where each node represents a value of the
state variable V , and there is an edge between two nodes
n1 and n2 labelled by a iff there exists a transition T such
that T.var = V , T.from = n1, T.to = n2, and T.act = a.
The DTG of a state variable represents all possible ways its
values can be changed.

Local-Plan

A Local-Plan of a state variable V is a sequence of tran-
sitions, possibly empty, that forms a contiguous path in the
DTG of the variable. Each local-plan induces a transitive
ordering relation, “before”, between the actions that are re-
lated to the transitions in the local-plan as follows:

• Each pair of EFFECT transitions Ti and Tj , where i < j,

induces the action ordering Ti.act
before−→ Tj .act.

• For each pair of a PREVAIL transition Tp and an EFFECT
transition Te, such that there is no EFFECT transition in
between them, if p < e, then Tp.act

before−→ Te.act, other-

wise Te.act
before−→ Tp.act.

Note that two PREVAIL transitions that appear in a local-
plan without an EFFECT transition between them do not in-
duce an ordering of their related actions. This is because
the PREVAIL transitions represent persistent value require-
ments on the same value, which can be achieved without
committing on any ordering between the associated actions.

A transition may need to occur multiple times in a con-
tiguous path. This will cause cycles in the action ordering,
which is not desirable. To avoid this we will assume that
each local-plan is canonical i.e. each transition will occur
at most once in a local-plan. If a transition is needed more
than once in a local-plan, then we will create distinct copies
of the transition.

Temporal Action Model

In the temporal model, each transition T has a start time
T.start, an end time T.end, and a duration T.duration. Here
we assume that each transition is uninterruptable (i.e. non-
preemptive), so the end time of a transition must be con-
sistent with its start time and the duration, i.e T.end =

T.start + T.duration. Each local plan induces the follow-
ing temporal constraints between the transitions based on
their ordering, as described in the previous section:

• Each pair of EFFECT transitions Ti and Tj , such that i <
j, implies Ti.end ≤ Tj .start.

• For each pair of a PREVAIL transition Tp and an EFFECT
transition Te where there is no EFFECT transition in be-
tween them, if p < e, then Tp.end ≤ Te.start, otherwise
Te.end ≤ Tp.start.

For each action A we associate a start time A.start, that
synchronizes the start times of its associated transitions, i.e.
for all transition T, T.start = A.start where T.act = A.

Solution to the Transition-based Formulation

Solution of a planning problem in the transition-based for-
mulation, can be formulated as a problem of constructing a
local-plan (contiguous path in the DTG) for each state vari-
able, such that the union of the local-plans, we will call it
Global-Plan, will satisfy the following conditions:

1. Initial State and Goal Achievement: Each non-empty
local-plan starts from the initial value of the state variable.
If the goal condition specifies a value of a state variable,
then the local-plan of the variable must end at that value.

2. Synchronization: If a transition is part of a local-plan for
some variable, then all the related transitions, i.e transi-
tions caused by the same action, must be part of the local-
plans of their corresponding state variables.

3. Consistency: Ordering between the actions, induced by
the set of local-plans, must be globally consistent.

The final plan represents a set of actions induced by the
Global-Plan. If we execute the actions according to their
start times from the initial state, then it will achieve a state
where goal conditions are true.

Example

Consider a simple instance of the Logistic planning domain,
where we have one truck, three locations A, B and C, and a
package to deliver. The only route between locations A and
B is through C. Initially, the package is at A, and the truck
is at C. The goal is to deliver the package to location B.
State variables loc truck (with values “At A”, “At B”, and
“At C”), and loc pack (with values “At A”, “At B”, “At C”,
and “In Truck”) represent the locations of the truck and the
package, respectively. A boolean variable, empty tuck, en-
forces that the truck can carry only one package at a time.
Actions are to load/unload the package at each of the three
locations, and to move the truck. Figure 1 describes the
DTGs of the state variables. The start and end time of a
transition is shown at the start and end of the corresponding
edge, respectively3. The bold edges in the DTGs represent
the local-plans, which are temporally consistent and the or-
dering between the actions are globally consistent.

3To make the picture clearer, temporal information is shown
only for those transitions that are in the solution plan.

331



Figure 1: DTGs of the example problem

CSP Encoding

A planning problem, in the transition-based formulation, is
a problem of constructing local-plans for the state variables.
To construct a local-plan for a state variable we need to de-
cide, for each transition in the DTG, if the transition is going
to be in the plan or not, and if it is going to be in the plan,
then which transitions will come before and after it. In this
section we describe a CSP model for a planning problem
that will answer the above questions.

For each state variable, we add one initial transition (that
changes a dummy value to the variable’s initial value). If
the goal condition mentions the variable, there is also a goal
transition (that changes the goal value to a dummy value).
Initial and goal transitions must be present in any plan, and
are constrained to appear first and last, respectively, in the
local-plans.

Bounding

To encode a transition-based formulation into a CSP we
need to estimate how many times a transition, i.e. the corre-
sponding action, can appear in the plan, because we need to
make copies of that action accordingly as discussed previ-
ously (see Local-Plan). The theoretical upper bound (num-
ber of possible states) is too large for solving the resultant
CSP efficiently. But, problems that are in between plan-
ning and scheduling, often need an action at most once in
a solution (Vidal & Geffner 2006). This observation leads
us to start with a CSP encoding where each action can oc-
cur at most once. If the encoding is proved to be insoluble,
then we increase the bound by one. That means, we add
an extra copy of each action and search again. This process
will be repeated until a solution is found. This is similar
to other constraint-based planning approaches where, gener-
ally, the bound is on the makespan of the plan (Kautz & Sel-
man 1992; Do & Kambhampati 2001). Note that our method
doesn’t guarantee either makespan or cost optimal solution.

CSP Variables and Domains

To formulate the problem as a CSP we create the following
CSP variables:

• next[T]: For each transition T , except for the goal tran-
sitions, next[T] represents which EFFECT transition im-
mediately follows T. Domain of next[T] contains all EF-
FECT transitions that can immediately follow T (in the
local-plan for T.var). That is, domain of next[T] contains
all T′ such that T ′.from = T.to ∧ T ′.var = T.var.

• previous[T]: For each transition T , except for the initial
transitions, previous[T] represents which EFFECT tran-
sition is immediately before T. Domain of previous[T] is
the set of EFFECT transitions that can appear immedi-
ately before T (in the local-plan for T.var). That is, do-
main of previous[T] containts all T′ such that T ′.to =
T.from ∧ T ′.var = T.var.

• inplan[A]: For each action A, inplan[A] represents if the
action A is in the plan or not. There are two possible
values for inplan[A], true or false.

Note, that although either the next or the previous variables
alone are sufficient for the encoding, using both provides an
opportunity for better propagation.

There are two addtional variables for each transition T:
start[T], which represents the start time of T, and end[T]
representing the end time of T. For each action A, a vari-
able start[A] represents the start time of A. The next[T] and
previous[T] variables can be assigned to a not-in-plan value
⊥, which will denote that the transition T will not be part of
the final plan. The next[T] variables, where T.var is a non-
goal state variable, can be assigned to a special value IG
(Induced Goal), which will mean that T is the last transition
in the local-plan of T.var.

Constraints

1. EFFECT Position Constraints: If an EFFECT transi-
tion T appears before another EFFECT transition T ′, then
T ′ must appear after T and vice versa, i.e. ∀T ′, T ′ ∈
EFFECT

previous[T ′] = T ⇔ next[T ] = T ′

2. PREVAIL Position Constraints: The following con-
straints holds for all PREVAIL transition Tp that can ap-
pear next to an EFFECT transition Te and before N ,
where N = IG or N is an EFFECT transition.

previous[Tp] = Te ∧ next[Tp] = N ⇒ next[Te] = N

previous[Tp] = Te ∧ next[Te] = N ⇒ next[Tp] = N

next[Tp] = N ∧ next[Te] = N ⇒ previous[Tp] = Te

3. Action Synchronization Constraints: If an action is in
the plan then all the transitions caused by the action must
also be in the plan and vice versa, i.e for all action A,

inplan[A] = true ⇔ ∀T.act=AT : ¬(next[T ] = ⊥).

4. Transition Exclusion Constraint: If a transition T is ex-
cluded from the plan, then no transition can appear before
or after it, i.e. for all transition T 4,

next[T ] = ⊥ ⇔ previous[T] = ⊥.

4both EFFECT and PREVAIL transitions

332



5. Start Time Synchronization Constraints: Start times of
transitions must be consistent with the start time of their
corresponding actions and vice versa.

start[A] = ∀T.act=AT : start[T ]

6. Temporal Position Constraints: Each assignment of a
next variable implies a temporal constraint between start
and end time of the related transitions.

next[T ] = T ′ ⇒ start[T ′] ≥ end[T ]

Similar constraints apply for the assignment of previous
variables.

7. Non-preemptive Transition Constraints: Since transi-
tions are non-preemptive, the following condition must
hold for all transition T .

end[T ]− start[T ] = T.duration

Each solution of the CSP, which is an assignment of the
next, previous and inplan variables that satisfies all the con-
straints, corresponds to a solution of the planning problem,
because it satisfies all the conditions of a Global-Plan de-
scribed in the previous section. The final plan corresponds
to the following set of tuples:

PLAN = {< A,A.start > | inplan[A] = true}.
Modeling Temporal Features

Each transition in the transition-based formulation repre-
sents a change in value or a persistent value requirement of
a state-variable. Temporal features, such as time-windows,
deadlines, release times etc. which restrict when a change
can happen, can be modelled by constraining start and end
times, and occurrences of the corresponding transitions. For
example, in our Logistic domain, if the package needs to be
at location B before 5pm (goal deadline), then we can post
start[T ] ≤ 5pm, where T is the goal transition for the state
variable loc pack. A constraint, where the truck must visit
location A at-least once before 3pm (sub-goal deadline), can
be expressed by posting: (1) ∀T : end[T ] ≤ 3pm and (2)
∃T : inplan[T.act] = true, where T.var = loc truck and
T.to = At A. Similarly, if the truck can only be at loca-
tion A between 2pm to 6pm (time-window), then we can
post for all transition T: (1) 2pm ≤ end[T ] ≤ 6pm, and (2)
inplan[T.act] = true → ∃T ′ : inplan[T ′.act] = true ∧
end[T ] ≤ start[T ′] ∧ start[T ′] ≤ 6pm, where T.var =
T ′.var = loc truck, T.to = At A, and T ′.from = At A.
Which means that the truck can only move to location A
after 2pm and before 6pm, and for each time it moves to lo-
cation A, there must be another action in the plan that moves
the truck out of location A before 6pm.

Discussion And Future Work

Many potential planning applications lie between planning
and scheduling. We have proposed a transition-based for-
mulation for this type of planning problems which allows us
to represent temporal constraints like time-windows, goal-
deadlines, release times etc., that are common in these prob-
lems, in a simple way. The transition-based formulation pro-

vides a framework where sophisticated constraint propaga-
tion techniques, like time-tabling, edge-finding etc. can be
adopted to solve a problem efficiently.

To encode a planning problem as a CSP, we start with the
assumption that each action can only occur at most once, and
add extra copies in case of failure. This approach is unlikely
to be effective for any larger problem, because we need to
perform an exhaustive search to prove that there exists no
solution for the given bound. Based on the observation, that
in the class of problems we are interested in, only a small
subset of the actions may need to occur more than once, we
would like to investigate how can we identify this subset of
actions and the number of times they will be needed. This
could be done in either in a pre-processing phase or during
the search where we will add additional copies of actions
(and transitions) on-the-fly.

Acknowledgement: We would like to thank Patrik
Haslum and the anonymous reviewers for their helpful com-
ments and suggestions. NICTA is funded by the Australian
Government’s Backing Australia’s Ability initiative.

References

Banerjee, D., and Haslum, P. 2008. Planning As CSP :
A Transition Based Encoding. In ICAPS 2008 Doctoral
Consortium, Sydney, Australia.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into CSP. Artificial Intelligence. 132(2):151–182.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in IxTeT, a Temporal Planner. In AIPS, 61–67.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and com-
plexity. Artif. Intell. 100(1-2):125–176.
Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.;
and Smith, B. D. 2000. Planning in interplanetary space:
Theory and practice. In AIPS, 177–186.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of the Tenth European Conference on
Artificial Intelligence (ECAI’92), 359–363.
Muscettola, N. 1993. HSTS: Integrating planning
and scheduling. Technical Report CMU-RI-TR-93-05,
Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA.
Pralet, C., and Verfaillie, G. 2008. Using constraint
networks on timelines to model and solve planning and
scheduling problems. In Rintanen, J.; Nebel, B.; Beck,
J. C.; and Hansen, E. A., eds., ICAPS, 272–279. AAAI.
Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. Knowledge
Engineering Review 15(1):47–83.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.

333


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




