
Extended Goals for Composing Services

Eirini Kaldeli and Alexander Lazovik and Marco Aiello
Distributed Systems Group

Dep. of Mathematics and Computing Science
University of Groningen

Nijenborg 9 – 9747AG Groningen
The Netherlands

Abstract

The ability to automatically compose Web Services is critical
for realising more complex functionalities. Several proposals
to use automated planning to deal with the problem of ser-
vice composition have been recently made. We present an
approach, based on modelling the problem as a CSP (Con-
straint Satisfaction Problem), that accommodates for the use
of numeric variables, sensing and incomplete knowledge. We
introduce a language for expressing extended goals, equipped
with temporal constructs, maintainability properties, and an
explicit distinction between sensing and achievement goals,
in order to avoid undesirable situations.

Introduction
Automatic Web Service Composition (WSC) addresses the
problem of the on-demand combination of loosely-coupled
service operations, in order to realise some complex objec-
tive, specified by an end-user. AI planning offers suitable
tools for achieving such a dynamic composition. In this re-
spect, the operations provided by the Web Services (WSs)
available in a business domain are viewed as actions, de-
scribed in terms of preconditions and effects. WSC prob-
lems are characterised by a number of requirements, that
distinguish them from classical planning domains, such as
the need to deal with incomplete information, numerical flu-
ents, extended goals and non-determinism during execution.

Herein, we propose a modelling of the domain and goal
via constraints, and resort to a standard constraint solver to
compute a valid plan. Our approach is driven by the aim
of maintaining a framework where the business domain is
as generic as possible, and plans are built dynamically ac-
cording to the preferences of the user. This is unlike most
previous approaches that rely on pre-defined business pro-
cesses, which dictate the allowed sequences between the WS
operations, like the state transition diagrams in (Lazovik,
Aiello, and Gennari 2005) or the method lists required in
(Kuter et al. 2004). Our approach accommodates for incom-
plete knowledge and supports proactive information gather-
ing, i.e. the planner detects in which cases it lacks knowl-
edge and chooses the necessary sensing operations.

Another contribution of this work is the proposal of a rich
goal language, that allows for the specification of extended

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

goals, beyond a mere description of the final state. Such an
expressive power is missing from other domain-independent
approaches to WSC, like (Klusch and Gerber 2006). Al-
though complex goals have been addressed in a number of
planning approaches, we are not aware of any such exten-
sions in the context of CSP for planning, with the exception
of the work in (Lazovik, Aiello, and Gennari 2005), which
is however confined by a rather restrictive domain theory.

Despite the fact that our work is inspired by the require-
ments set forth by the field of WSs, the applicability of our
framework is domain-independent, and touches on many is-
sues that are of concern to the planning community. Thus, it
can be deployed in any problem where versatility of domain
description, incomplete knowledge, and expressivity of the
goal language are at stake.

Representing the domain
A service marketplace is conceived as a planning domain,
where the actions correspond to operations of abstract WSs,
that may be realised by a number of concrete service
providers supplying equivalent functionalities. The service
domain description is carried out by a domain designer, who
provides the necessary markups for the individual WSs.
Definition 1 (Service Domain). A service domain is a tuple
SD = 〈Var , Par , Act〉, where:
- Var is a set of variables. Each variable v ∈ Var ranges

over a finite domain Dv .
- Par is a set of variables that play the role of input param-

eters to WS operations. Each variable p ∈ Par ranges
over a finite domain Dp.

- Act is the set of actions. An action a ∈ Act is a triple
a = (id(a), precond(a), effects(a)), where id(a) is a
unique identifier, i.e. “book hotel”, precond(a) is a set of
propositions on variables and parameters, and effects(a)
is a set of assignments to variables in Var .
A state s is defined as a tuple s = 〈(x1 ,Dx1

s), . . . ,
(xn ,Dxn

s)〉, where xi ∈ Var ∪ Par and Dxi
s ⊆ Dxi . The do-

main of x at state s is given by the state-variable function
x(s), so that x(s) = Dx

s if (x, Dx
s) ∈ s. If |Dx

s | = 1, this
means that x at s has a specific value.

The effects of an action are either world-altering, which
actively change the value of a variable, or knowledge-
providing, which sense the current value of a variable. Vari-
ables involved in some knowledge-providing effect of an

362

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

action are called knowledge variables. An action may
have both knowledge-providing and world-altering effects.
To capture incomplete knowledge, we introduce for ev-
ery knowledge variable and for every parameter var a new
boolean variable var known , which is set to true whenever
var becomes known after a sensing action. A state-variable
function is defined for each of these knowledge base vari-
ables. At the initial state s0, var known(s0) may be true
or false, depending on whether the corresponding var has
a specific value or not. Knowledge-providing effects are of
the form k -var := k -response, where k-var is a knowledge
variable and k-response is a placeholder for the value re-
turned by the respective sensing operation. Since this value
is unknown until execution time, k -response ranges over
k-var’s domain (k -response ∈ Dk-var).

World altering effects are of the form var := value,
where variable var ∈ Var is assigned a value compli-
ant with var ’s domain, or var := var � value, where � ∈
{+,−}. We also maintain for every variable var ∈ Var that
participates in at least one world-altering effect a boolean
flag var changed , which becomes true whenever a world
altering effect changes the value of var . A state-variable
function is defined for the var changed variables as well.

Under the light of these supplements, the Var set of the
service domain is extended to also include the set of knowl-
edge base variables, the change-indicative flag variables, and
the response variables. We call this extended set V .

An example

The travel WS domain comprises a set of providers which
offer a number of operations that are useful for organis-
ing a trip, and is one of the most established test cases in
the WSC literature. In Figure 1 a possible high-level en-
coding of the operations provided by an air-tickets reser-
vation WS is shown. In this example, we assume that all
parameters regarding the dates, origin etc. are specified in
advance by the user. The “searchForFlight” (abstract) opera-
tion is issued simultaneously to all or some of the respective
concrete WSs, and only one particular instance is returned
(flightWS_response) following some criteria, e.g. the
cheapest air-ticket found. It is also an indispensable part of
the preconditions of all actions that the respective parame-
ters are known (left implicit in Figure 1).

Planning by using CSP

Constraint satisfaction has become a powerful solving tech-
nique that has been applied to planning either by directly
modelling the planning problem as a CSP, e.g. in (van Beek
and Chen 1999), or indirectly, e.g. in (Do and Kambhampati
2000). We follow the former approach, proposing a way to
represent the planning problem in the form of constraints,
which maintain the structure of the high-level domain de-
scription.

Planning as constraint satisfaction has a number of advan-
tages, some of which are of particular interest to WS envi-
ronments. Firstly, it supports efficient handling of numeric
variables, which are common in WS interactions. Secondly,
suitable fine-tuned variable and value ordering heuristics, as

flight WS
searchForFlight (params: fdate1, fdate2,

origin, destin)::

prec: flightWS_known=false

effects: (flightWS:=flightWS_response AND

flightWS_known:=true) AND

(flightPrice:=flightPrice_response

AND flightPrice_known:=true)

bookFlight (params: fdate1, fdate2, origin,

destin, vegMeal)::

prec: flightWS_known=true

effects: flightBooked:=true AND

flightBooked_changed:=true

Figure 1: Booking flights Web Service operations.

well as different propagation techniques can be applied to
speed up solving. Concerning the maintenance of rich goal
descriptions, which is a major requirement in a versatile do-
main, we show that constraints can serve the need for ex-
pressing complex goals. A constraint-based system is also
well-suited for the interaction between off-line planning and
execution, an important aspect that although not addressed
in this paper, should be taken into account by the overall
framework. Through the dynamic addition and removal of
constraints, the knowledge acquired from the environment
can be effectively incorporated into the solver, and by ex-
ploiting an explanation-providing mechanism and filtering
techniques the original plan can be revised in an “intelligent”
way.

A constraint satisfaction problem is a triple CSP =
〈X,D, C〉, where X = {x1, . . . , xn} is a finite set of n vari-
ables, D = {D1, . . . , Dn} is the set of finite domains of the
variables in X , so that xi ∈ Di, and C = {c1, . . . , cm} is a
finite set of constraints over the variables in X . A constraint
ci involving some subset of variables in X is a proposition
that restricts the allowable values of its variables. A solution
to a CSP 〈X,D, C〉 is an assignment of values to the vari-
ables in X {x1 = v1, . . . , xn = vn}, with vi ∈ Di, that
satisfies all constraints in C.

Encoding the domain into a CSP

Following a common practice in many planning approaches,
we consider a bounded planning problem, i.e. we restrict
our target to finding a plan of length at most k. k in-
creases iteratively until a solution is found or a prefixed
maximum number is reached. Considering a service do-
main SD = 〈V,Par ,Act〉, the target is to encode SD
into a CSP = 〈XCSP ,D, C〉. First, for each variable
x ∈ (V ∪ Par) ranging over Dx for which a state-variable
function is defined, and for each 0≤ i ≤ k we define a CSP
variable x[i] in CSP with domain Dx. The k -response vari-
ables are added to XCSP as they are. Actions are also repre-
sented as variables: for each 0≤ i ≤ k−1 there is a variable
act [i] in XCSP , whose domain is the set of all possible ac-
tion ids in the planning domain, in addition to an idle action
no-op: act[i] ∈ (Id(Act) ∪ “noop”). The no-op action is
defined as the action with no preconditions and no effects.

363

searchForFlight action
prec constraints:

act[i] = “searchForFlight” ⇒ flightWS known[i] = false

effect constraints: /*knowledge-gathering*/
act[i] = “searchForFlight” ⇒
flightWS [i + 1] = hotelWS response ∧
flightWS known[i + 1] = true ∧
flightPrice[i + 1] = flightPrice response ∧
flightPrice known[i + 1] = true

bookFlight action
prec constraints:

act[i] = “bookFlight” ⇒ flightWS known[i] = true

effect constraints: /*world-altering*/
act[i] = “bookFlight” ⇒
bookedFlight[i + 1] = true ∧
bookedFlight changed[i + 1] = true

Figure 2: Constraints encoding the preconditions and effects
of the actions offered by the flightWS .

Action preconditions and effects, as well as frame axioms,
are encoded as constraints on the CSP state variables. So,
for example, the constraints corresponding to the operations
of the flightWS are presented in Figure 2 (where i ranges
from 0 to k − 1). In addition, for every state variable xinv

that is not modified by an assignment in effects(a), we add
the constraints act [i] = id(a) ⇒ xinv[i] = xinv[i + 1],
0 ≤ i ≤ k − 1.

The goal syntax

In the context of loosely-coupled and modular domain de-
scriptions, it is particularly important to support an extended
language for expressing user requests in a declarative and ac-
curate syntax, with powerful constructs. The goal language
we present accommodates for the specification of expres-
sions on numeric variables, temporal constructs and main-
tainability properties, adopting a clear distinction between
information-gathering and achievement goals.

The goal syntax is defined as follows:

goal ::= ∧i(condition-goali | subgoali)
condition-goal ::= (subgoal) under_condition

(condition-goal | subgoal)
subgoal ::= achieve-maint (∧ipropi) |

achieve(∧ipropi) |
find_out-maint (∧ik -propi) |
find_out (∧ik -propi)

prop ::= var � value | var1 � var2 |
(var1 � var2) � value

k -prop ::= k -var � value | k -var1 � k -var2
| (k -var1 � k -var2) � value
| k -var known = true

In the above syntax, var ∈ Var , k -var stands for the
knowledge variables, and value represents some boolean
or numeric constant, depending on the type of the respec-
tive variable. Note that a knowledge proposition k-prop
refers only to knowledge variables. � is a relational oper-
ator (� ∈ {<, >, �=,≤,≥, =}) and � a numeric operator
(� ∈ {+,−}).

Goal semantics

The achieve(∧ipropi) subgoal implies that the plan-
ner can try any action that has the potential to con-
tribute to the propositions’ satisfaction. On the other
hand, find_out(∧ik -propi) means that ∧ik -propi has
to become true at some state, but without employing any
actions that include world-altering effects on the vari-
ables in ∧ik -propi . For instance, a goal of the form
find_out(account balance > 100) will be satisfied if
the sensed value for account balance is greater than 100,
without however allowing any action to alter the variable’s
value before the sensing action. On the other hand, if the
goal is achieve(account balance > 100), the planner
might try to fulfill it by invoking a pay in action that in-
creases the account balance by some amount. The maint
annotation adds the requirement that once the respective
propositions become true at some state, they should remain
true in all subsequent states. In the case of find_out,
maintainability also enforces that the involved variables
should remain intact throughout the whole execution.

Subgoals can be further on combined through the
under_condition structure: subgoal0
under_condition (subgoal1 under_condition
(subgoal2 . . .)) is satisfied if each subgoal in the sequence
is satisfied at some state, and for each subgoali , 1 < i ≤ n
that is satisfied at some state, subgoali+1 holds at the di-
rectly preceding state. under_condition is a powerful
operator, and is particularly useful in cases where the user
would like to go ahead with altering some variable, only if
its sensed value satisfies some property beforehand.

The specification of the action parameters is also part
of the goal. It consists of propositions of the form either
par = value or par = k -var , where par ∈ Par . The latter
is used to express the case where a parameter is not known in
advance, but depends on the information acquired through a
knowledge variable. The formal semantics of the goal struc-
tures can be found in (Kaldeli 2009).

To give an example of a goal, consider a user who wants to
reserve a hotel and an air ticket, only if the overall price does
not exceed 400 euros, given a travel marketplace that offers
the necessary operations. The goal in this case is (Goal 1):
achieve-maint (bookedHotel ∧ bookedFlight)
under_condition
(find_out-maint(hotelPrice + flightPrice ≤ 400))

The goal is translated into the form of constraints on the
CSP state variables, which are added to the constraint set
of the CSP together with the constraints modelling the do-
main. Due to lack of space, we do not go through the algo-
rithm for transforming each subgoal and condition goal into
constraints, which can be found in (Kaldeli 2009), but rather
give an intuition by presenting the constraints encoding Goal
1 in Figure 3.

After the invocation of the solver, an assignment to the
action variables is returned, which corresponds to an opti-
mistic plan, i.e. a plan that has the potential to satisfy the
goal if the operations respond in the expected way, and the
outcome of the sensing actions conforms to the restrictions
imposed by the goal.

364

bookedHotel[k] ∧ bookedF light[k]

for i ← 0, k − 1 /*maint constraints*/

for j ← i + 1, k

bookedHotel[i] ⇒ bookedHotel[j]

for i ← 0, k − 1 /*maint constraints*/

for j ← i + 1, k

bookedF light[i] ⇒ bookedF light[j]

/*knowledge variables should become known*/

hotelPrice known[k] ∧ carPrice known[k]

hotelPrice[k] + carPrice[k] ≤ 400

for i ← 0, k − 1 /*maint constraints*/

for j ← i + 1, k

hotelPrice[i] + flightPrice[i] ≤ 400 ⇒
hotelPrice[j] + flightPrice[j] ≤ 400

/*knowledge variables should remain unchanged (find-out goal)*/

¬hotelPrice changed[k], ¬flightPrice changed[k]

for i ← 1, k /*under condition goal*/

(bookedHotel[i] ∧ bookedF light[i]) ⇒
(hotelPrice[i − 1] + flightPrice[i − 1] ≤ 400) ∧
(hotelPrice known[i − 1] ∧ flightPrice known[i − 1])

Figure 3: Constraints encoding Goal 1

Avoiding undesirable situations

The planner performs forward-chaining search, so it may
pursue actions that are irrelevant to the goal. Such actions
may have undesirable effects, e.g. book also a train ticket,
if the respective operation is available, while planning for
Goal 1. Therefore, it is important that the returned plan only
includes actions that are potentially relevant to the goal and
do not have any world-altering effects that the user has not
asked for. To this end, a preliminary process that prunes
actions irrelevant to the goal is performed. The first phase
of this process is done once for the domain, independently
of the goal: starting from each action ai in the domain, we
find all actions aj with at least one effect that has the po-
tential to satisfy one of the preconditions of ai, so that a
Backward Action Chain BAC (ai) is recursively computed
for each action. The second phase involves identifying the
actions that have the prospect to satisfy the propositions in-
duced by the goal, and only entail world-altering effects that
are either relevant to some proposition of the goal, or are
explicitly approved by the user. The details of this process
can be found in (Kaldeli 2009). The additional overhead im-
posed by the second phase of the pruning process is partially
counterbalanced by the reduced search space passed to the
planner. Figure 4 depicts a broad overview of the framework
described so far.

Some initial precaution against contingency during exe-
cution should be taken by the domain designer. Considering
the goal achieve(bookedHotel ∧ bookedF light) for ex-
ample, both plans 〈searchForHotel, bookHotel, searchFor-
Flight, bookFlight〉 and 〈searchForHotel, searchForFlight,
bookHotel, bookFlight〉 would be admissible, if we could
guarantee that the execution of all actions succeeds. How-
ever, because of the unpredictable nature of WSs, in the first
case we might end up paying for a hotel, just to discover
later that it is impossible to book a transportations means.

high-level
domain

descript ion

goal

user

domain
designer

Translate goal
into constraints

Constraint
Solver

Find actions
directly relevant

to the goal

Compute
backward

action chains

Translate domain
into constraints

Find irrelevant
actions

actions to
be pruned

domain
constraints

goal constraints

goal-relevant
actions

BACs

once for the
domain

on demand

Figure 4: Overview of the planning framework

Such situations are avoided by imposing an action selection
order that favours sensing, non-committing actions first.

Concluding remarks

A preliminary implementation of the proposed approach has
been developed by using the Choco v2 constraint solving
library (www.emn.fr/x-info/choco-solver). We are currently
testing the implementation against domains comprising 10-
20 actions, and plan to experiment with larger domains. In-
tended improvements include the application of fine-tuned
selection strategies and propagation rules, as well as the in-
vestigation of alternative constraint models.

An important extension of our current work involves the
support for contingency handling. A framework for inter-
leaving planning and execution would allow for plan revi-
sions based on the feedback gathered at runtime by the ex-
ecutor, triggered either by a newly sensed value or a failure
indication.

Acknowledgements

The research is supported by NWO Jacquard SaS-
LeG contract no. 638.000.000.07N07. Project website:
http://www.sas-leg.net.

References

Do, M., and Kambhampati, S. 2000. Solving Planning-
Graph by Compiling it into CSP. In Proc. AIPS-00, 82–91.
Kaldeli, E. 2009. Using CSP for Adaptable Web Service
Composition. Technical Report 2009-7-01, University of
Groningen. www.cs.rug.nl/∼eirini/tech rep 09-7-01.pdf.
Klusch, M., and Gerber, A. 2006. Fast Composition Plan-
ning of OWL-S Services and Application. In ECOWS ’06.
Kuter, U.; Sirin, E.; Nau, D.; Parsia, B.; and Hendler, J.
2004. Information Gathering During Planning for Web
Service Composition. In Journal of Web Semantics.
Lazovik, A.; Aiello, M.; and Gennari, R. 2005. Encoding
Requests to Web Service Compositions as Constraints. In
Proc. CP2005.
van Beek, P., and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. In Proc. AAAI ’99.

365

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

