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Abstract

We define the robustness of a sequential plan as the probabil-
ity that it will execute successfully despite uncertainty in the
execution environment. We consider a rich notion of uncer-
tainty over continuous domains that includes stochastic action
effects, and changes to state variables due to unpredictable
exogenous events. Given a characterization of this uncer-
tainty in terms of probability distributions (e.g., Gaussian)
our contributions are two-fold: First, we describe a novel ap-
proach to computing the robustness of a plan in the situation
calculus, which (a) separates the projection problem from
the problem of reasoning about probability, and (b) explic-
itly reveals the relevance and statistical independence of ran-
dom variables and events (i.e., conditions that contain random
variables). Then, building on this approach, we describe a
forward search based planner that generates maximally robust
plans, exploiting the revealed structure for speed-up. Prelim-
inary empirical results demonstrate that our approach can re-
alize exponential savings in both time and space compared to
the classical sampling approach.

1. Introduction

We define the robustness of a sequential plan as its probabil-
ity of achieving the goal despite uncertainty about the values
of certain state variables (fluents). Robust plans are required
when the execution environment is not observable, unlike
in (PO)MDP research. But unlike in classical conformant
planning, we assume that the uncertainty is quantifiable. We
consider a rich notion of uncertainty that is due to stochas-
tic action effects or unpredictable exogenous events. We are
particularly interested in, and here focus on, functional flu-
ents that range over the real numbers and changes that follow
known distributions, e.g., Gaussian or exponential.

Existing approaches to this problem (e.g., (Fox, Howey,
and Long 2006; Blackmore et al. 2007)) conceptually fol-
low state estimation techniques: they project the uncertainty
forward to obtain sets of possible future states, sometimes
called belief states, over which the goal and preconditions
in the plan can be evaluated. In general, this can only be
done using sampling, and the number of samples needed to
assure accuracy of approximation increases quickly with the
amount of uncertainty in the domain.
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However, the problem of computing plan robustness is
slightly different from the problem of state estimation be-
cause at any point in time only certain aspects of the state
matter, namely those that are relevant to the achievement of
the goal. This observation leads us to a more efficient tech-
nique for computing plan robustness which we propose in
this paper. In particular, we develop a relevance-based tech-
nique that cleanly separates the projection problem, i.e., rea-
soning about action and change, from reasoning about prob-
ability. This is achieved by the use of regression. It turns
out that applying regression in the context of robustness has
a lot of potential. By regressing the goal and the precondi-
tions of all actions in a plan, we are often able to not only
determine that certain aspects of state are irrelevant, but also
that certain relevant conditions are statistically independent.
Exploiting this structure allows for exponential savings in
computing robustness. Sometimes regression even produces
closed form mathematical formulae for the robustness of a
plan. At the same time, our approach can support rich no-
tions of uncertainty, including complex interactions between
sources of uncertainty.

After reviewing preliminaries, we describe our notion of
uncertainty and robustness and show how all probabilistic
reasoning can be regressed into the initial state. In Section
4.we describe a prototype planner for finding most robust
plans and measure its empirical performance compared to a
planner that uses the belief state approach, showing expo-
nential savings in both time and space. We conclude with a
brief discussion of related and future work.

2. Preliminaries
For the purpose of formal characterization, we here use the
situation calculus, but the presented approach can be used
with other action description languages as well. For illus-
tration purposes, we will use the TPP domain from the In-
ternational Planning Competition. In this domain, an agent
needs to purchase goods at markets. Driving between mar-
kets takes time, and both money and time are limited re-
sources. In our examples, we will consider various types of
uncertainty about both prices and driving times.

The situation calculus is a logical language for specifying
and reasoning about dynamical systems (Reiter 2001). In the
situation calculus, the state of the world is expressed in terms
of fluents, functions and relations relativized to a situation s,
e.g., F (�x, s). A situation is a history of the primitive actions
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a performed from a distinguished initial situation S0. The
function do(a, s) maps an action and a situation into a new
situation thus inducing a tree of situations rooted in S0. The
relation � provides an ordering on situations of the same
branch, and s � s′ abbreviates s = s′ ∨ s � s′. We ab-
breviate do(an, do(an−1, . . . do(a1, s))) to do([a1, . . . , an], s)
or do(�a, s).

A basic action theory in the situation calculus, D, com-
prises four domain-independent foundational axioms, and
a set of domain-dependent axioms. Details of the form of
these axioms can be found in (Reiter 2001). Included in the
domain-dependent axioms are the following sets:
Initial state axioms, DS0

: a set of first-order sentences rela-
tivized to situation S0, specifying what is true in the initial
state, e.g. price(M1, S0) = 10, where M1 denotes a market,
and money(S0) = 14.
Successor state axioms: provide a parsimonious representa-
tion of frame and effect axioms under an assumption of the
completeness of the axiomatization. There is one successor
state axiom for each fluent, F , of the form F (�x, do(a, s)) ≡
ΦF (�x, a, s), where ΦF (�x, a, s) is a formula with free vari-
ables among �x, a, s. ΦF (�x, a, s) characterizes the truth value
of the fluent F (�x) in the situation do(a, s) in terms of what
is true in situation s. These can be automatically gener-
ated from effect axioms such as: time

`
do(DriveTo(d), s)

´
=

time(s) − drivetime(at(s), d).
Action precondition axioms: specify the conditions under
which an action is possible. There is one axiom for each
action a of the form Poss(a(�x), s) ≡ Πa(�x, s) where Πa(�x, s)
is a formula with free variables among �x, s. For instance,
Poss(Buy(m), s) ≡ price(m,s) < money(s).

A situation s is executable if all actions in s have their
preconditions satisfied in the situation where they are per-

formed: executable(s)
def
= (∀a, s′).do(a, s′) � s ⊃ Poss(a, s′).

Definition 1. A planning problem is a tuple 〈D, G(s)〉,
where D is a basic action theory, and G(s) a goal formula.
A plan is a sequence of actions �a = [a1, . . . , an] such that
D |= executable(do(�a, S0)) ∧ G(do(�a, S0)).

Regression The regression of a formula ψ through an ac-
tion sequence �a is a formula ψ′ that holds prior to �a being
performed if and only if ψ holds after �a is performed. In the
situation calculus regression is defined inductively using the
successor state axiom for a fluent F (�x, s) as above:

R[F (�x, S0)] = F (�x, S0)

R[F (�x, do(a, s))] = R[ΦF (�x, a, s)]

R[ψ1 ∧ ψ2] = R[ψ1] ∧ R[ψ2]

˛̨
˛̨
˛̨

R[¬ψ] = ¬R[ψ]

R[(∃x)ψ] = (∃x)R[ψ]

We use R[ψ,�a] as a shorthand for R
ˆ
ψ(do(�a, S0))

˜
. Intu-

itively, R[ψ,�a] is predominantly comprised of the fluents oc-
curring in the conditional effects of the actions in �a. The
only situation term it contains is S0 and the regression the-
orem (Reiter 2001, p.65) states that for all formulae ψ:
D |= ψ(do(�a, S0)) iff DS0

|= R[ψ,�a]. Hence, regression can
be used to reduce reasoning about future states of the world
(projection) to reasoning about the initial state alone.

Regression is a purely syntactic operation. Nevertheless,
it is often beneficial to simplify the resulting formula for
later evaluation. Regression was first proposed by Waldinger

(Waldinger 1977) and has been defined in many action spec-
ification languages, including STRIPS, ADL, and PDDL.

Plan validity as defined in Def. 1 requires a solution to
the projection problem for reasoning about future states
(do(�a, S0)). However, for a given action sequence, using re-
gression, it is easy to transform this definition into one that
is solely with respect to the initial state (S0):

Definition 2. The validity condition of an action se-
quence �a = [a1, . . . , an] w.r.t. 〈D, G(s)〉 is: Poss(a1, S0) ∧
R
ˆ
Poss(a2), [a1]

˜
∧· · ·∧R

ˆ
Poss(an), [a1, . . . , an−1]

˜
∧R

ˆ
G,�a

˜
.

Corollary 1. Let �a be an action sequence, Ψ(S0) its validity
condition w.r.t. 〈D, G(s)〉. Then �a is a plan iff DS0

|= Ψ(S0).

The corollary is a consequence of the regression theorem
and states that if the regression of the preconditions of all
actions in the plan and the regression of the goal hold in the
initial state, then the plan is going to succeed according to
the model. In our approach, we will use this corollary to also
reason about the probability of successful plan execution,
i.e., plan robustness, in terms of the initial state alone. But
first we need to define a notion of uncertainty.

3. Uncertainty and Plan Robustness

We assume that uncertainty can be quantified in terms of sta-
tistically independent random variables that follow known
distributions. In our approach, we use regression to sepa-
rate projection from probabilistic reasoning and we perform
the latter “outside” of the situation calculus. As a result,
we do not need to give semantics to random variables in the
situation calculus, in contrast to others (e.g., (Mateus et al.
2001)). This is good news, as it keeps the theory nice and
simple. Instead, we can simply represent a random variable
as a non-fluent function that takes as many parameters as
the density function describing the distribution of the vari-
able, plus a constant that serves as an identifier. For instance,
we use fN (X, μ, σ2) as a placeholder for a random variable
X with a normal (Gaussian) distribution with mean μ and
variance σ2. We allow these functions to appear in effect
axioms and their arguments may be constants, fluents, or
other random variables. For instance, price(M1, do(A, s)) =
fN (X, price(M1, s), duration(A, s) · price(M1, s)) may ex-
press that after performing A, the price at market M1 follows
a normal distribution whose mean is the previous price, and
whose variance is A’s duration times that price. We disallow
these functions from appearing as fluent arguments.

3.1 Regressing Random Variables

Since regression is a purely syntactic operation and in partic-
ular independent from S0, the interpretation of these place-
holder functions does not matter. After regressing a for-
mula back to S0 and replacing all fluents by their val-
ues defined by DS0

, we can give any interpretation to
these functions, including probabilistic ones. For exam-
ple, after regressing the preconditions for the Buy ac-
tion (cf. Sec. 2.), over the above action A and another ac-
tion B that reduces our money by 3, say, we would
obtain the formula fN (X, price(M1, S0), duration(A, S0) ·
price(M1, S0)) < money(S0) − 3. After replacing all flu-
ents by their values in S0 and algebraic simplification, we
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obtain fN (X, 10, 2) < 11, assuming A takes 0.2 time units.
By the regression theorem, the purchase will be possible af-
ter performing [B, A] iff this formula is true. Hence, the
probability for the purchase to be possible can be defined as
the probability for this formula to hold, when interpreting
the placeholder function as a normally distributed variable
X ∼ N (10, 2), as intended.

In this particular example we can compute this probability
very efficiently, by evaluating the corresponding cumulative
distribution function (CDF). This is implemented by vari-
ous software packages. In our implementation we use the
freely available GNU Scientific Library1 (GSL). When the
regressed formula is not as simple as in the example—and
in general it is not—one can sample from the distribution to
approximate the probability of the formula to hold. How-
ever, there is a number of known simplification results about
arithmetic operations over random variables. For instance, a
mixture of Gaussians follows again a Gaussian distribution.
This and other simplifications can result in the form above,
for which probabilities can be computed very efficiently.

In what follows, for any formula ψ whose only situation
term is S0, we use ψDS0

to denote the result of substituting
all fluents in ψ by their value in S0 as defined by DS0

. The
resulting formula contains only numbers, Boolean operators
and constants, and the described functions that denote ran-
dom variables. We can hence interpret it according to prob-
ability theory and we denote its probability by P (ψDS0

). For

instance, P
`
fN (X, 10, 2) < 11

´
= 0.7602.

3.2 Computing Robustness

Combining the above with Corollary 1, we immediately ob-
tain the means to define and reason about the robustness of
plans. Recall that the validity condition is a formula rela-
tivized to S0 that captures what must be true in the initial
state, in order for an action sequence to be a valid plan.

Definition 3. Let 〈D, G(s)〉 be a planning problem, �a an ac-
tion sequence in D, and Ψ(S0) its validity condition. Then
the robustness of �a is the probability P (Ψ(S0)DS0

).

Recall that we required all random variables referred to in
the effect axioms to be independent from one another. This
allows us to interpret the conjunction and disjunction of for-
mulae that mention pairwise different random variables us-
ing multiplication and summation of the respective probabil-
ities. However, this is not always the case. After regression,
the random variables may interact in complex ways and ran-
dom events (conditions that mention random variables) may
not be statistically independent. Consider the two formulae
ϕ1 = fN (X, 0, 1) > 2 and ϕ2 = fN (Y, fN (X, 0, 1), 2) > 5.
Because the two random events mention the same random
variable they are dependent. Thus we cannot compute the
probability for ϕ1 ∧ ϕ2 by simply determining their individ-
ual probabilities and then multiplying the results. Instead, in
these cases, we need to determine the probability for the for-
mula as a whole, which can be done by sampling from all in-
volved distributions simultaneously. Unfortunately, this re-
quires a combinatorial increase in the number of samples, to
obtain the same approximation quality.

1GSL: http://www.gnu.org/software/gsl/

Algorithm 1: Regr.-Based Uniform Robustness Search.

Input: action theory D, goal G(s), threshold δ

begin1

open ← [ ] ; // initialize open list2

best.plan ← none ; // best plan so far3

best.prob ← 0.0 ; // best plan’s robustness4

node ← (1.0, [ ], true) ; // the current search node5

while best.prob < node.p do6

foreach action a do7

�a ← node.path · a ; // append action8

ψposs ← R[Poss(a), node.path]DS0
∧ node.cond ;9

p ← COMPUTEPROB(ψposs) ;10

if p > δ then // prune low robustness plans11

insert (p,�a, ψposs) into open according to p ;12

Ψvalid ← R[G,�a]DS0
∧ ψposs ;13

p′ ← COMPUTEPROB(Ψvalid) ;14

if p′ > best.prob then // found a better plan15

best.plan ← �a ;16

best.prob ← p′ ;17

node ← POP(open), or break if open is empty18

return best.plan, best.prob19

end20

4. Generating Robust Plans

Given a definition of plan robustness and the means for com-
puting it, we turn to the problem of finding the most robust
plan for a planning problem. The algorithm we propose is
similar to uniform cost search, which is why we name it
regression-based uniform robustness search (rbURobS). It is
complete and approximately optimal, in the sense that it will
generate a plan whose robustness is within ε from the most
robust plan, where ε is the approximation error when com-
puting probabilities. For analytically computed probabili-
ties, ε is zero, and when sampling, limn→∞ ε = 0 where n
is the number of samples. The elements of the open list have
the form (p, path, cond), where path is an action sequence,
p its probability of being executable, and cond the conjunc-
tion of regressed preconditions. Space precludes a detailed
description of the algorithm, but intuitively it operates like
uniform cost search and expands plan-prefixes in decreasing
order of executability probability. Most crucial are lines 9
and 13, where preconditions and goal are regressed and all
fluents evaluated in S0. The search succeeds when a plan is
found whose robustness is greater or equal to the executabil-
ity probability of the head of the open list. Search fails when
no plan with robustness ≥ δ exists, where δ is a threshold pa-
rameter. Optimality follows from the fact that executability
probabilities are non-increasing: by appending actions to a
plan-prefix the probability cannot increase.

The auxiliary function COMPUTEPROB(ψ) computes
P (ψ), i.e., the probability that the condition ψ holds, given
the probability distributions for all occurring random vari-
ables, if any. Given the structure of the regressed formulae,
this function is able to exploit the statistical independence
of random events. For instance, if ψ = ψ1 ∧ ψ2 and ψ1

and ψ2 do not have any random variables in common, as de-
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Figure 1: Comparison of regression-based uniform robustness

search vs. a belief-state based progression approach. For read-

ability, we sorted the test cases by the time of the latter.

scribed above, COMPUTEPROB computes the probabilities
for these two events separately and multiplies the results. In
such a case, the sub-probabilities can be cached and then of-
ten reused later as well. In practice, this saves a lot of time,
since formulae of consecutive branch nodes share many sub-
conditions. When possible, the function computes probabil-
ities using CDFs. In general though, simultaneous sampling
for all random variables mentioned in ψ is necessary.

4.1 Empirical Results

We present preliminary empirical results, obtained using a
proof-of-concept implementation of rbURobS, using Prolog
for the regression and the GNU Scientific Library for prob-
abilistic reasoning (in C). For comparison, we implemented
the same uniform robustness search algorithm but using the
classical belief state approach for reasoning about robust-
ness (progress). Fig. 1 shows the time and memory (limit:
2GB) required by the two approaches for finding the most
robust plans in problems from the described TPP domain.
We considered five different settings of uncertainty about
drive times and prices, described by effect axioms such as:

price
`
m, do(DriveTo(d), s)

´
=

price(m,s) ·
`
1 + fN (C1, 0, drivetime(at(s), d)/60)2

´

time
`
do(DriveTo(d), s)

´
=

time(s) − drivetime(at(s), d) ·
`
1 + fExp(C2, 4)

´

where fExp stands for an exponentially distributed variable.

In the belief state approach, for each random variable
appearing in the effects of an action, a set of samples is
drawn to generate possible successor states. These succes-
sors form the next belief state. To maximize objectivity, the
two implementations use the same code base, except for re-
gression/progression. Both use the GSL for sampling from
distributions, use the same number of samples per distribu-
tion appearing in a condition, and use the same threshold
(δ = 0.1) to prune low-probability branches.

The reason for the exponential savings of rbURobS, seen
in the graphs (note the logarithmic scale), is that regression
reveals which random events are relevant to the validity of a
plan and also which ones are mutually independent. By ex-
ploiting this structure, we significantly reduce the amount of
computation involved in determining the robustness of ac-
tion sequences. Regression further creates a symbolic repre-
sentation of plan robustness more compact than belief states.

5. Discussion
We have presented a new approach to computing the robust-
ness of sequential plans in the face of uncertainty. Our ap-
proach distinguishes itself from previous approaches for rea-
soning about plan robustness (e.g., (Fox, Howey, and Long
2006; Blackmore et al. 2007)) by the richness of express-
ible uncertainty, and its ability to exploit the structure of the
problem to compute probabilities more efficiently. By us-
ing regression, we are able to reveal the relevance structure
of the problem and the statistical independence of random
events. We furthermore separate the projection problem
from the problem of reasoning about probabilities, which
distinguishes us from previous approaches for defining un-
certainty in the situation calculus (e.g., (Mateus et al. 2001;
Bacchus, Halpern, and Levesque 1999)).

Going beyond the mere computation of robustness, we
further proposed an algorithm for finding most robust plans.
Preliminary empirical results confirm the intuitively possible
exponential savings, due to the exploitation of the planning
problem’s relevance and dependence structure.

The problem of computing robust plans has received com-
paratively little attention in the AI community. Conceptu-
ally, the problem explores the spectrum between decision-
theoretic and conformant planning. In fact, previous ap-
proaches to the latter have made similar use of the relevance
structure of problems (e.g., (Son and Tu 2006)).

Lots needs to be done in terms of future work. For lack
of space we opt to merely enumerate possible directions:
run more experiments; integrate the technique with a state-
of-the-art planner; develop heuristics for robustness search,
e.g., by extracting maximally robust relaxed plans from plan
graphs, or compute probability of reaching identified land-
marks; incrementally build conditional plans by considering
most likely points of failure.
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