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Abstract

This paper presents multi-goal planning for an au-
tonomous blasthole drill used in open pit mining oper-
ations. Given a blasthole pattern to be drilled and con-
straints on the vehicle’s motion and orientation when
drilling, we wish to compute the best order in which
to drill the given pattern. Blasthole pattern drilling is
an asymmetric Traveling Salesman Problem with prece-
dence constraints specifying that some holes must be
drilled before others. We wish to find the minimum
cost tour according to criteria that minimize the distance
travelled satisfying the precedence and vehicle motion
constraints. We present an iterative method for solving
the blasthole sequencing problem using the combina-
tion of a Genetic Algorithm and motion planning sim-
ulations that we use to determine the true cost of travel
between any two holes.

Introduction

In this work, we introduce the problem of blasthole pattern
drilling in open pit mining and propose an iterative method
for solving it providing early results supporting our method.
Given a drilling pattern, an autonomous drill must decide
on the order in which to drill the holes taking into account
its operational constraints along with the drilling guidelines
and safety rules decided by the mining company.

Blasthole pattern drilling is a Sequential Ordering Prob-
lem (SOP). SOPs are Asymmetric Travelling Salesman
Problems (ATSPs) (Applegate et al. 2006) with the addi-
tion of precedence constraints, i.e., some cities must be vis-
ited before others for all tours that are valid solutions of
the SOP. What makes our problem difficult to solve are dy-
namic obstacles, e.g., already drilled holes, vehicle motion
constraints, large drilling patterns, and the orientation of the
drill which must be taken into account when deciding on
the cost to travel from one hole location to the next. The
latter generalizes the hole sequencing problem to a group
Steiner problem which is notoriously difficult to solve even
though a quasi-polynomial approximation technique was re-
cently published (Even and Kortsarz 2002).

In order to address the above issues, we propose the use of
an iterative, hybrid method combining an SOP solver and a
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motion planning/simulation module to generate good plans
for large drilling patterns. Our overall approach most closely
resembles the work of (Saha et al. 2006) on multi-goal plan-
ning for industrial robots. Our method differs in (a) how we
solve the SOP, (b) the planning method for a non-holonomic
vehicle, (c) determination of the vehicle’s orientation, and,
(d) the overall application to surface mining.

Because of the combinatorial complexity of solving an
SOP, we make use of an approximate optimization algo-
rithm. Genetic Algorithms (GAs) (Chen and Smith 1996)
have been shown to provide good approximate solutions
for large SOPs and so we utilize one such method in this
work. An alternative approach is a recently proposed Ant
Colony Optimization algorithm (Gambardella and Dorigo
2000) which for some problems can provide solutions with
tighter bounds around the optimal tour.

In order to recover the true cost of travelling from one hole
location to the next, we use a randomized, motion planning
algorithm namely a Probabilistic Roadmap (PRM) (Kavraki
et al. 1996). The motion planner generates a valid path
connecting two configurations of our vehicle modeled using
non-holonomic constraints. We connect states using curva-
ture polynomial steering functions (Kelly and Nagy 2003)
that can be computed efficiently, are easy to execute, and can
be used to optimize any desirable performance index such as
trajectory smoothness or fuel consumption.

Problem definition and previous work

The drill operator is given a pattern of holes that must be
drilled at a particular location/bench in the pit. This pattern
includes the location (specified using GPS coordinates) of
the required holes and their depth along with other informa-
tion such as the type of drill operation that should be used
(i.e., rotary or percussion) for each hole. Other information
included is not relevant to the sequencing problem. Opera-
tions follow in a tram-jack-drill-jack cycle.

This paper addresses the problem of finding the order in
which to drill the holes in a given blasthole pattern. This
sequence is not dictated a priori and it is currently deter-
mined by the drill operator based on a set of general guide-
lines and priorities for various classes of holes. Briefly, these
rules dictate that the first holes to be drilled are “angle holes”
along the open face, which constrains the drill’s orientation
so as to be aligned perpendicular to this edge. These are
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Figure 1: (a) Blasthole sequencing shown as a group Steiner
problem with each vertex in the partitioned graph represent-
ing the drill at the same spatial location but having differ-
ent orientations. (b) A block diagram of our proposed solu-
tion method. Given an initial cost table, we employ an opti-
mization algorithm to solve the sequential ordering problem.
Given this solution, we perform simulation to re-estimate
the travel costs between holes. This iterative procedure ends
when convergence is reached or a stopping criterion is met.

followed by holes near free face(s) or adjacent to blasted
material (i.e., a high wall or a crest). After these are batter
and buffer holes, which are followed by drilling of the main
rows. The main rows are aligned in straight lines making it
straightforward for the operator to drill.

The drill is a tracked vehicle capable of turning on the
spot towards any direction. However, its massive size (15
meters long and 12 meters wide with a max speed of 1m/s)
and potential to damage the drilling surface makes accurate
positioning over target hole locations difficult. For the pur-
poses of this paper, we model it as a non-holonomic car-like
vehicle with a constrained turning radius. This model allows
us to generate smooth motion plans with constrained curva-
ture which when executed should minimize surface damage.
Moreover, turning on the spot is not advisable since such
motions increase the chances of damaging an already drilled
hole by pushing dirt back down the hole requiring drilling
it a second time, a very time consuming and undesirable ac-
tion. Finally, the operator selects the first and last hole to
drill such that the above requirements are satisfied. The last
hole is chosen in a location that allows the drill easy ac-
cess away from the bench. In our work, we assume that the
first and last holes are given along with any precedence con-
straints as described earlier.

As given above, blasthole pattern drilling is a combina-
torial optimization problem which in the most general case
is similar to a group Steiner problem with precedence con-
straints. Part (a) of Figure 1 presents the drill pattern drilling
problem as a group Steiner problem. The Figure shows a
pattern with 9 holes arranged in 3 columns. A small set of
drill orientation are shown using arrows. The solution to the
sequencing problem is to select a tour through each of the
partitioned nodes selecting one orientation out of the sam-
pled set such that some optimization criterion is minimized.
A possible solution is illustrated using the blue color while

the first and last holes have blue and green colors respec-
tively.

Planning over a partitioned graph of goals is hard and
at best there exist only approximate quasi-polynomial so-
lution methods that can guarantee the approximation is
bounded (Chekuri, Even, and Kortsarz 2006); this latter
method has been used to solve a multi-goal planning prob-
lem for an industrial robot arm (Saha et al. 2006). We
propose to use a hybrid, iterative solution algorithm solving
our drilling problem posed as a Sequential Ordering Prob-
lem coupled with a probabilistic motion planning method
for recovering the true cost of navigating from one hole to
the next.

Other researchers have solved similar multi-goal path
planning problems in different domains. For example, (Spitz
and Requicha 2000) consider the path planning problem for
coordinate measuring machines. Moreover, (Danner and
Kavraki 2000) consider a similar approach for solving the
“watchman problem” in robotics. Lastly, (Saha et al. 2006)
solve another multi-goal path planning problem for an in-
dustrial, spot-welding robotic arm. Our method most closely
matches theirs with the differences being that (a) we solve an
SOP instead of a TSP; (b) our robot is a non-holonomic ve-
hicle instead of a robotic arm; and (c) our solution method
reduces the partitioned graph problem to one with singleton
groups by heuristically selecting a preferred individual, i.e.,
orientation, in each sub-group.

Proposed Solution Method

We have already established that the blasthole drill planning
problem is hard. In this section, we propose an iterative
method for solving this problem first by solving the SOP
using an initial cost table, then performing a simulation of
the vehicle drilling the pattern in the computed order, and
finally recalculating the SOP cost table; this procedure is to
be repeated until convergence is achieved or some other ter-
mination criterion such as maximum number of iterations is
met. Convergence is achieved if the tour with minimum cost
remains the same or within a predefined threshold for two
consecutive iterations. Part (b) of Figure 1 shows a block
diagram of our proposed iterative procedure. In the follow-
ing 3 Sections, we describe the components of our proposed
method and the drill orientation selection mechanism.

SOP solver

We solve the Sequential Ordering Problem using the
commonality-based Maximum Partial Order/Arbitrary In-
sertion (MPO/AI) genetic algorithm of (Chen and Smith
1996).

Part (a) of Figure 2 shows a graphical representation of a
small drilling example with 9 holes positioned on a regular
grid. For this example, we do not consider the vehicle ori-
entation at each location but only its position in 2D. The
starting location C is shown in blue and the desired last lo-
cation G is shown in green. The precedence constraints for
this problem are defined as follows:

1. Crest (angle-holes): C before B, F before E, and I be-
fore H
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Figure 2: (a) An example solution for a drilling pattern
with 9 holes. The first hole is shown in blue and the last
hole is shown in green. The arrows denote the best so-
lution found using a Genetic Algorithm with the MPO/AI
crossover operator satisfying our specified precedence con-
straints (see text). (b) Examples of using cubic polynomial
steering functions to connect two arbitrary states. In all cases
the start pose is {0, 0, 0, 0}; moreover, the curvature for all
goal poses is set to 0. In all cases the final pose is correct.

2. High-wall (face/adjacent holes): A before D, B before E,
and C before F

These constraints satisfy the established drilling guidelines
that holes near a crest or a high wall must be drilled first. For
this experiment, the costs to travel between any two holes
were set to the Euclidean distance between them. In this
particular case, the cost table is symmetric. The solution is
also shown in Part (a) of Figure 2 using arrows. Inspecting
the solution, we see that all the constraints are satisfied.

Motion Planning

We perform motion planning to compute the cost of travel
from one hole location to the next. We have obtained
good results using curvature polynomial steering func-
tions (Kelly and Nagy 2003) in conjunction with a Prob-
abilistic Roadmap (PRM) framework. We have to perform
many queries at each iteration of our algorithm and the PRM
method is much better suited for our application since the
roadmap can be constructed once at the beginning and then
used to answer all queries. The polynomial steering func-
tions are also fast to compute and can be designed to opti-
mize for any performance index that is suitable to our ap-
plication, e.g., trajectory smoothness, fuel consumption, or
GPS signal strength. These primitives are also much more
straightforward to execute by a controller. Part (b) of Fig-
ure 2 shows a small set of curvature polynomials connecting
the same start state to arbitrary goal states.

For the PRM, we transform all queries from the global
coordinate frame to a local coordinate frame with respect to
the vehicle’s body frame at the start state; in other words,
the start pose is always at the origin of the local coordinate
frame and has 0 orientation and curvature. Further, we con-
strain our roadmap to a small region around the starting state
setting the bounds on position to be in the range −25 to 25
meters. Orientation can be anywhere in the range 0 to 2π.
We have obtained good results using a PRM with 2000 states
sampled uniformly at random.

Given the roadmap and a query, we search for a path that
connects the start and goal states. We use the A* algorithm

to efficiently search for a path. The cost to travel from one
vertex to another, i.e., an edge in the graph, is given by the
length of the curvature polynomial. We specify the heuristic
function as the Euclidean distance between an intermediate
state and the goal.

Orientation Selection

Computing the optimal sequence is mostly complicated by
the fact that with the exception of special holes the rest can
be drilled with the vehicle at any orientation. We explained
earlier how this entails blasthole drill planning to be a group
Steiner problem for which currently do not exist solution al-
gorithms that can efficiently solve problems as big as ours,
i.e., in most cases, well over 100 holes and arbitrary orienta-
tion at each location.

As a result, we propose to simplify the problem to the
easier to solve case of a non-partitioned graph considering
a single configuration at each hole location. There is no
way to decide what the correct orientation is without per-
forming an exhaustive search which is computationally in-
feasible. So, we select the vehicle’s orientation employing a
heuristic based on our intuition.

• The two-step lookahead heuristic: We consider setting
the orientation according to the direction of motion two-
steps ahead. The order is the one selected in the last tour
computed given the most recently updated cost table. To
give an example of setting the vehicle’s orientation using
this method consider the simple pattern shown in Part (a)
of Figure 2 and assume that the vehicle is at location C
facing North towards location B. The orientation at B after
completing the motion from C to B will be in the direction
of location F which is the next in the tour.

Empirical Evaluation

Here we present an early result of evaluating our method
by comparing the computed plan to an operator’s with data
from a surface mining operation. Part (a) of Figure 3 shows
the pattern as drilled by the operator. He started by drilling
the rightmost column where the angle holes are located
(shown with a dashed rectangle at the bottom right) and then
proceeded to drill the columns one at a time. When drilling
the bottom two holes in the second column from the left
and top two holes from the third column from the left, he
performed a maneuver that is uncommon; we do not know
why he did this. Regardless, we consider his solution as
the ground truth and compare it with that of our proposed
method.

Part (b) of the same Figure shows the best tour selected
by our algorithm after 25 iterations at which point conver-
gence was reached with a tour length of just below 825 me-
ters. Figure 4 shows the moving average for the tour length
at the end of each iteration. We can see that it reaches a
minimum after about 25 iterations. For our experiment we
used a population of 500 individuals for the genetic algo-
rithm and initialized the cost table to twice the Euclidean
distance between every pair of holes. This result shows that
our method is capable of discovering that large parts of the
pattern are designed to be drilled with the vehicle moving in
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Figure 3: (a) The original pattern (77 holes) and how it was
drilled by the operator. (b) The result obtained using our
iterative method after 25 iterations.
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Figure 4: Plot of the moving average of the tour length (in
meters) versus iteration number solving the pattern shown in
Figure 3.

straight lines. The precedence constraints for the crest holes
were also satisfied in the final solution. The solution is close
to the operator’s which provides some promising evidence
of the usefulness of our method. Convergence was reached
in 27 minutes including the time to construct the roadmap
(about 5 minutes.)

Conclusions and Future Work

In this paper, we introduced the blasthole sequencing prob-
lem in surface mining and proposed an iterative, approxi-
mate method for solving it. Given a pattern to drill, prece-
dence and orientation constraints for some of the hole loca-
tions, and constraints on the vehicle’s motion, we showed
how the sequencing problem can be posed as an SOP and
solved using an iterative procedure such that the true cost
to travel between any two hole locations for given start and
goal orientations is estimated using a motion planning stage.
We also presented a heuristic for selecting the vehicle orien-
tation at each hole location and an initial evaluation of our
method with data from real operations.

In the future, we plan to further evaluate our method us-
ing a larger data set. Also, we wish to integrate the motion
planner with the construction component of the genetic al-
gorithm. We believe that the latter will be required for find-
ing solutions for more complex patterns and also for online
updating of the solution. External factors such as those that
caused the operator to perform an uncommon action in the
example shown earlier cannot all be accounted for in simu-
lation and as such an online plan refinement method is nec-
essary.
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