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Abstract

This paper proposes an iterative improvement approach for
solving the Resource Constraint Project Scheduling Prob-
lem with Time-Windows (RCPSP/max), a well-known and
challenging NP-hard scheduling problem. The algorithm is
based on Iterative Flattening Search (IFS), an effective heuris-
tic strategy for solving multi-capacity optimization schedul-
ing problems. Given an initial solution, IFS iteratively per-
forms two-steps: a relaxation-step, that randomly removes a
subset of solution constraints and a solving-step, that incre-
mentally recomputes a new solution. At the end, the best
solution found is returned. The main contribution of this pa-
per is the extension to RCPSP/max of the IFS optimization
procedures developed for solving scheduling problems with-
out time-windows. An experimental evaluation performed
on medium-large size and web-available benchmark sets con-
firms the effectiveness of the proposed procedures. In parti-
cular, we have improved the average quality w.r.t. the current
bests, while discovering three new optimal solutions, thus
demonstrating the general efficacy of IFS.

Introduction

This paper explores the solving capabilities of the Itera-
tive Flattening Search (IFS) (Oddi et al. 2008) algorithm
against scheduling problem instances belonging to the class
of Resource Constrained Project Scheduling Problem with
Time Windows (RCPSP/max). IFS represents a family of
stochastic search techniques that was originally introduced
in (Cesta, Oddi, and Smith 2000) as a non systematic
approach to solve difficult scheduling problem instances;
as demonstrated in (Bartusch, Mohring, and Radermacher
1988), RCPSP/max problems indeed belong to this cate-
gory, as both the optimization and the feasibility versions
of the problem are NP-hard. IFS is devised to iteratively
use heuristics for solving makespan-minimization schedul-
ing problems, and it has been shown to have very good scal-
ing capabilities. The procedure basically iterates two solv-
ing steps: (1) a relaxation step, where a subset of solving
decisions made at iteration (i − 1) are randomly retracted
at iteration i, and (2) a flattening step, where a new solution
is re-computed after the previous relaxation. Over the last
years, the basic optimization principle behind IFS has been
used to effectively solve other classes of scheduling prob-
lems, see for example (Ruiz and Stützle 2008) for sequence
dependent setup times flowshop problems. However, this
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paper is among the very first attempts, to the best of our
knowledge, to use the IFS algorithm to solve RCPSP/max in-
stances. Tackling such instances entails an extension of the
set of temporal constraints to reason upon, which increases
the consistency check complexity from polynomial to NP-
hard. The performance of the procedure will be analysed
and its effectiveness empirically demonstrated.

Reference Problem and its Representation

The Resource Constrained Project Scheduling Problem
(RCPSP) has been widely studied in Operations Research
(OR) literature (see (Brucker et al. 1999) for a survey). The
RCPSP version with Time Windows (RCPSP/max) is an ex-
tended formulation of the basic problem which underlies a
number of scheduling applications (Neumann and Schwindt
1997) and is considered particularly difficult, due to the
presence of temporal separation constraints (in particular
maximum time lags) between project activities.

The RCPSP/max The RCPSP/max can be formalized in
terms of the following three sets: (1) a set V of n non-
preemptive activities where each activity ai has a fixed du-
ration di. Each activity has a start-time si and a completion-
time ei that satisfies the constraint si+di = ei; (2) a set E of
temporal constraints that may exist between any two activ-

ities 〈ai, aj〉 of the form sj − si ∈ [T min
ij , T max

ij ], called

start-to-start constraints (time lags or generalized prece-
dence relations between activities); (3) a set R of renew-
able resources, where each resource rk is characterized by
a maximum integer capacity ck ≥ 1. The execution of
an activity ai requires some capacity from one or more
resources. For each resource rk the integer rci,k repre-
sents the capacity required by the activity ai. A schedule
S is an assignment of values to the start-times of all ac-
tivities in V (S = (s1, . . . , sn)). A schedule is said to
be feasible if it is both time and resource-feasible. Solv-
ing the RCPSP/max optimization problem equates to finding
a feasible schedule with minimum makespan MK , where
MK(S) = maxai∈V {ei}.

The Scheduling Problem Representation Formalism
The class of scheduling algorithms we are focusing upon in
this paper is based on a representation of the basic schedul-
ing problem as a precedence graph G(A, E) where A is the
set of activities (plus two fictitious activities source asource

and sink asink), and E is the set of precedence constraints
defined among the nodes in A. A solution S is represented

378

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



Figure 1: An example of Partial Order Schedule (POS)

as an extended graph GS of G, characterized by an addi-
tional set of precedence constraints (or decisions) that are
necessary to solve the original problem. The solution con-
straints contained in the graph GS can be produced in dif-
ferent ways. Among the possible types of solution there is
the so-called Partial Order Schedule (POS) used in one of
the relaxation procedures for IFS described below. The the-
oretical aspects of the POS are outside the scope of this pa-
per, for more details the reader can refer to (Policella et al.
2007). An example of POS for a single resource with capac-
ity c = 5 is depicted in Figure 1. Activities are represented
as rectangles and edges represent the precedence constraints.
The numbers inside the rectangles represent the resource re-
quirements and the labeling numbers on the directed edges
represent the flow of resource units supplied to a generic ac-
tivity ai from its predecessors in order to satisfy the imposed
resource constraint. In the figure, the activity requiring 4
units of resource receives 2 units of resource from each of
its two predecessors and supplies 1 and 3 units of resource
respectively to its two successors.

Iterative Flattening Search

In this section we introduce a general IFS procedure, as de-
picted in Figure 2. The algorithm basically alternates re-
laxation and flattening steps until a better solution is found
or a maximal number of iterations is reached. The proce-
dure takes two parameters as input: (1) an initial solution
S; (2) a positive integer MaxFail which specifies the max-
imum number of non-makespan improving moves that the
algorithm will tolerate before terminating. After initializa-
tion (Steps 1-2), a solution is repeatedly modified within the
while loop (Steps 3-10) by the application of the RELAX and
FLATTEN procedures. In case a better makespan solution is
found (Step 6), the new solution is stored in Sbest and the
counter is reset to 0. Otherwise, if no improvement is found
within MaxFail moves, the algorithm terminates and re-
turns the best solution found.

The Relaxation Procedures Two relaxation strategies
have been used in this work: the first strategy (IFS-CP) is
based on the critical path analysis, while the second strategy
(IFS-CH) is exclusively applied on solutions in the POS form.
At each relaxation step, the IFS-CP procedure is controlled
by two parameters: nr determines the number of individual
relaxation attempts performed at each relaxation cycle, and
for each attempt, pr determines the percentage of decision
constraints that will be randomly removed from the critical
path. On the other hand, the relaxation procedure within
IFS-CH proceeds in two steps and the only single pr param-
eter takes a slightly different meaning. First, some activities
whose number is determined by pr (percentage of activities
to be removed) are randomly selected and eliminated from

IFS(S,MaxFail)
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S)
5. S ←FLATTEN(S)
6. if MK(S) < MK(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)

Figure 2: The IFS general schema

S 1. Secondly, a new POS-form solution is recomputed from
the remainig activities.

The Flattening Procedure This step aims at levelling re-
source demands by posting precedence constraints. Re-
source constraints are super-imposed by projecting “re-
source demand profiles” over time. The detected resource
conflicts, once reduced to Minimal Conflict Sets (MCS,
see (Laborie and Ghallab 1995) for further details), are
then resolved by iteratively posting simple precedence con-
straints between pairs of competing activities ((Cesta, Oddi,
and Smith 2002)). The procedure iteratively propagates the
current temporal constraints, and then proceeds to select a
resource conflict (one MCS). If no conflict exists then a so-
lution is found. If a conflict exists that can be solved, a new
precedence constraint is posted; otherwise the process fails,
meaning that the temporal constraints currently posted in the
solution disallow the separation of any pair of activities be-
longing to the currently selected MCS.

Experimental Analysis

In this section we present the results of the experi-
ments to assess the performances of the IFS procedure
against RCPSP/max instances. The empirical analy-
sis has been organized as follows. The RCPSP/max
benchmarks that have been chosen for the present inves-
tigation are taken from well known test sets available at
www.wior.uni-karlsruhe.de/LS_Neumann/
Forschung/ProGenMax/rcpspmax.html, namely
the UBO-200 and the J30, both generated through the project
generator ProGen/max ((Kolisch, Schwindt, and Sprecher
1998)). The J30 set is composed of 270 problem instances,
and represents a rather challenging benchmark despite
the relatively small size of each instance (30 activities, 5
multicapacity resources), while the UBO-200 problems are
composed of 90 RCPSP/max instances each made up of
200 activities and 5 multicapacity resources. The optimal
solutions for many instances of this benchmark are still
unknown. In this analysis, the J30 set of RCPSP/max have
been initially solved with both the precedence relaxation
(IFS-CP) and chain relaxation (IFS-CH) versions of the IFS

procedure. Both procedures are fed with initial solutions
computed through the same algorithm used in the flattening

1It is worth observing that the remainig activities still repre-
sents a feasible solution to a scheduling sub-problem, which can
be transformed into POS-form, in which the randomly selected ac-
tivities float outside the solution thus re-creating contention peaks.
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step. During this first phase it was also performed an
exploration over the parameters nr and pr. Secondly, the
same solving procedures have been used to tackle the whole
set of RCPSP/max UBO-200 benchmark by using the value
of the parameters which gave the best results during the first
phase. The efficacy of all strategies is compared against the
best known results published at the above mentioned URL.

The behavior of the proposed IFS strategies is evaluated
according to the following metrics: (1) Number of Improved
Makespans, i.e., the number of instances where the IFS algo-
rithm succeeded in improving the makespan value w.r.t. the
current best; (2) Average Makespan Gap Δmk: this metric
returns the average percentage makespan gap between the
best published results (mk0

i ) and our experimental results,
for all the n instances belonging to the benchmark set which
have a feasible solution; (3) Average CPU Time; (4) Average
IFS Cycles, which returns the average number of {relaxation
- flatten} cycles performed by IFS to solve all instances.

All the proposed IFS procedures have been implemented
using the JAVA libraries provided by the Timeline-based
Representation Framework, a general modeling framework
for Planning & Scheduling problem fast prototyping. The
experiments have been performed on an AMD Athlon ma-
chine 2,4 Ghz, 3 GB ram, under Linux Ubuntu 8.04.

Experiments on the J30 Set In this analysis we set the
MaxFail parameter of the algorithm (see Figure 2) to 100
and particular attention has been dedicated to assessing the
best values of (1) the number of relaxations (nr) for the IFS-
CP procedure (the value of pr related to the critical path is
set to 20) and (2) the percentage of activities to eliminate
(pr) for the IFS-CH procedure. To this aim, the J30 bench-
mark set has been solved seven times with the IFS-CP pro-
cedure (with nr = 2, 3, 4, 5, 6, 7, 8), and seven times with
the IFS-CH procedure (with pr = 10, 15, 20, 25, 30, 35, 40).
Since there are no assessed results in literature about solv-
ing RCPSP/max instances with IFS, it was necessary to in-
vestigate whether the best values of such parameters would
somehow differ from the best values used to solve problem

instances without time windows (RCPSP and MCJSSP2).
Table 1 shows the results of the experiments. For the IFS-

CP case, the best value of the nr parameter is around 6, 7;
this value is higher than the values 4-6 used in (Michel and
Van Hentenryck 2004) for MCJSSP instances. For the IFS-
CH case, the best value of the pr parameter is around 30, 40;
again, these values are definitively higher than the figure 20
used in (Godard, Laborie, and Nuitjen 2005) to obtain the
best performances when solving MCJSSP instances. The pre-
vious results clearly indicate that the presence of maximum
constraints requires a deeper relaxing action in the IFS pro-
cedure. As Table 1 shows, the overall performance of IFS

reveals quite good. The best performing procedure is IFS-
CH(35) which gives a value Δmk = 9.75, against a value of
Δmk equal to 8.91 for the currently published best solutions.
However, since IFS is a stochastic procedure it makes sense
to run it several times (as we did in Table 1) and to take
the average value of the overall best output solutions. In-
deed, the best overall value for the IFS-CP procedure is 9.88,
whereas the best overall value for IFS-CH is 9.02. When we
consider the best values for both the procedures (last row of
Table 1), we obtain the average value 8.9, which is equal
to the current best results. As the table shows, the average

2Multiple Capacitated Job Shop Scheduling Problem.

Table 1: Results on J30 benchmark

Strategy nr/pr Impr. Δmk Cpu Cycles
2 2 12.09 59.09 124.83
3 7 11.72 58.47 122.28
4 7 11.28 61.76 122.60

IFS-CP(nr) 5 6 11.64 42.53 119.77
6 4 10.98 55.79 121.22
7 6 10.97 57.38 118.69
8 4 11.05 60.40 122.36

Best - 9 9.88 - -
10 4 11.61 40.28 141.09
15 5 11.16 45.75 133.37
20 7 10.49 47.82 131.27

IFS-CH(pr) 25 5 10.25 49.00 127.47
30 11 9.85 52.16 128.61
35 9 9.75 53.06 128.47
40 6 9.91 54.45 123.90

Best - 16 9.02 - -

BEST - 16 8.90 - -

CPU time to obtain a solution ranges from 42 to 61 sec-
onds, though the cpu time is not the major issue; in fact,
the attention should rather be focused on the low number of
{relaxation - flatten} cycles necessary to converge (see be-
low a similar observation about the CPU time related to the
UBO200 instances).

Finally, it is interesting to analyse the behavior of IFS as
the disturbing factor (nr and pr) in the relaxing step varies.
As can be observed, an initial increase in both parameters
is associated to an improvement in the quality of the ob-
tained solutions; but if the increase continues, eventually the
trend reverses after reaching a maximum. This behavior can
be explained as follows: high values of the nr and pr pa-
rameters correspond to heavy disruptions of the solutions
at each IFS cycle, eventually resembling the exact behavior
(and the performances) of a full Iterative Sampling proce-
dure (see for example (Cesta, Oddi, and Smith 2002)), which
recomputes the solution from scratch at each iteration. In
general, we can see an IFS procedure as an incremental It-
erative Sampling procedure that destroys at random only a
part of the current solution (or that maintains a partial mem-
ory of the previous solution), from which a new solution is
recomputed. ¿From the results presented in Table 1 we can
make the guess, that given the procedure IFS-CH(pr) and
considered the performance of IFS-CH(100) (i.e., full Itera-
tive Sampling), there always exists a value 0 ≤ p∗r ≤ 100
which improves over the full iterative sampling procedure.

Experiments on the UBO200 Set Based on the experi-
mentation performed on the J30 set, the nr and the pr pa-
rameters have been set to 7 and 35 in the IFS-CP and the
IFS-CH case, respectively. In both cases, the MaxFail pa-
rameter has been set to 400. The experiment results are
summarized in Table 2. The table is organized as follows:
the first two columns, with names IFS-CP and IFS-CH, rep-
resent the performance of the proposed IFS algorithm. The
last column, with name BEST, represents the results obtained
merging the best performances of the previous two columns.

Among the two procedures, the better behavior exhibited
by IFS-CH w.r.t. IFS-CP with the J30 set is again confirmed
with the UBO200. In Table 2, the first result that catches
the eye is the significant number of makespan inprovements
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Table 2: Experimental results on the UBO200 set

Metrics IFS-CP IFS-CH BEST

No. improved MKs (Impr.) 14 21 27
Avg. Makespan Gap (Δmk) 1.47 0.02 -0.44

Avg. Cpu time (Cpu) 6867.08 13395.42 -
Avg. IFS Cycles 580.04 693.38 -

No. new optimal solutions 2 1 3

that has been obtained; on a total of 90 problems, IFS-CP

succeeds in improving 14 instances (i.e., more than 15%),
with a correspondent value of Δmk = 1.47. On the other
hand, IFS-CH improves 21 instances (i.e., more than 23%)
with a value of Δmk = 0.02. Globally, 27 instances have
been improved with an overall Δmk = −0.44, therefore im-
proving over the best known results and finding three new
optimal solutions (i.e., by equalling the solution’s published
lower bound). This circumstance is remarkable and leads
to the following conclusion: the IFS approach can be effec-
tively used also against the RCPSP/max benchmark. Its effi-
cacy is mainly proved by the fact that all experimental runs
have been performed with a low value of the MaxFail pa-
rameter (400), where in general a value around the tenths of
thousand is employed.

As for the algorithm convergence speed, it should how-
ever be noted that IFS-CP converges faster than IFS-CH;
the explanation is simple: acting on the critical path, ev-
ery search move of IFS-CP is more efficient, as it directly
aims at reducing the solution’s makespan. On the other
hand, IFS-CH’s search moves act over the whole solution; as
a consequence, its convergence speed towards the smallest
makespans is lower. As the table shows, the average time to
obtain a solution with IFS-CP is about 6900 seconds (around
115 minutes), while the average time to obtain a solution
with IFS-CH is about 13400 seconds (around 223 minutes).
The reader should not be misled by the high solving time: in
fact, tackling the RCPSP/max entails an increase in compu-
tational complexity, with respect to solving RCPSP instances
without time windows. Nonetheless, a considerable boost
might be obtained by using the fastest versions available of
the All-Pair Shortest Path propagation algorithms, which is
outside the scope of this paper. Again, the reader should
look at the low number of {relaxation - flatten} cycles nec-
essary to converge to a good solution; since this figure is in-
dependent from all machine-dependent factors, it should in
fact be regarded as one of the fairest efficiency measure. As
shown, the average number of solving cycles is between 580
and 700 for all strategies, indeed a very low value, which
definitely confirms the efficacy of the IFS approach.

Conclusions and Future Work

This work analyses the role of IFS strategies in solving Re-
source Constraint Project Scheduling Problem with Time-
Windows (RCPSP/max). RCPSP/max represents a hard and
general scheduling problem, such that even the search of
a feasible solution is NP-hard. The performed experimen-
tal analysis has revealed that the proposed IFS strategies
can be very effective in solving challenging and large-size
RCPSP/max instances. Our experimental analysis demon-
strates that IFS requires on average a higher degree of ran-
dom disruption than in the case without time windows. In

addition, the efficacy of IFS is particularly demonstrated if
one considers the extremely low number of solving cycles
(only a few hundreds!) that are necessary to converge to
good solutions.

The results proposed in this paper have also paved the way
for future research work on the definition of more effective
solving procedures for large size benchmarks. As a further
extension of the present work, we plan to study the effects
of different flattening and relaxation procedures within the
IFS loop, where key issues for improving effectiveness will
be the use of efficient temporal and resource propagation
algorithms as well as the definition of different strategies to
retract decision constraints from the current solution.
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